gecko-dev/toolkit/components/places/ClusterLib.js

249 строки
8.6 KiB
JavaScript

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/**
* Class that can run the hierarchical clustering algorithm with the given
* parameters.
*
* @param distance
* Function that should return the distance between two items.
* Defaults to clusterlib.euclidean_distance.
* @param merge
* Function that should take in two items and return a merged one.
* Defaults to clusterlib.average_linkage.
* @param threshold
* The maximum distance between two items for which their clusters
* can be merged.
*/
function HierarchicalClustering(distance, merge, threshold) {
this.distance = distance || clusterlib.euclidean_distance;
this.merge = merge || clusterlib.average_linkage;
this.threshold = threshold == undefined ? Infinity : threshold;
}
HierarchicalClustering.prototype = {
/**
* Run the hierarchical clustering algorithm on the given items to produce
* a final set of clusters. Uses the parameters set in the constructor.
*
* @param items
* An array of "things" to cluster - this is the domain-specific
* collection you're trying to cluster (colors, points, etc.)
* @param snapshotGap
* How many iterations of the clustering algorithm to wait between
* calling the snapshotCallback
* @param snapshotCallback
* If provided, will be called as clusters are merged to let you view
* the progress of the algorithm. Passed the current array of
* clusters, cached distances, and cached closest clusters.
*
* @return An array of merged clusters. The represented item can be
* found in the "item" property of the cluster.
*/
cluster: function HC_cluster(items, snapshotGap, snapshotCallback) {
// array of all remaining clusters
let clusters = [];
// 2D matrix of distances between each pair of clusters, indexed by key
let distances = [];
// closest cluster key for each cluster, indexed by key
let neighbors = [];
// an array of all clusters, but indexed by key
let clustersByKey = [];
// set up clusters from the initial items array
for (let index = 0; index < items.length; index++) {
let cluster = {
// the item this cluster represents
item: items[index],
// a unique key for this cluster, stays constant unless merged itself
key: index,
// index of cluster in clusters array, can change during any merge
index: index,
// how many clusters have been merged into this one
size: 1
};
clusters[index] = cluster;
clustersByKey[index] = cluster;
distances[index] = [];
neighbors[index] = 0;
}
// initialize distance matrix and cached neighbors
for (let i = 0; i < clusters.length; i++) {
for (let j = 0; j <= i; j++) {
var dist = (i == j) ? Infinity :
this.distance(clusters[i].item, clusters[j].item);
distances[i][j] = dist;
distances[j][i] = dist;
if (dist < distances[i][neighbors[i]]) {
neighbors[i] = j;
}
}
}
// merge the next two closest clusters until none of them are close enough
let next = null, i = 0;
for (; next = this.closestClusters(clusters, distances, neighbors); i++) {
if (snapshotCallback && (i % snapshotGap) == 0) {
snapshotCallback(clusters);
}
this.mergeClusters(clusters, distances, neighbors, clustersByKey,
clustersByKey[next[0]], clustersByKey[next[1]]);
}
return clusters;
},
/**
* Once we decide to merge two clusters in the cluster method, actually
* merge them. Alters the given state of the algorithm.
*
* @param clusters
* The array of all remaining clusters
* @param distances
* Cached distances between pairs of clusters
* @param neighbors
* Cached closest clusters
* @param clustersByKey
* Array of all clusters, indexed by key
* @param cluster1
* First cluster to merge
* @param cluster2
* Second cluster to merge
*/
mergeClusters: function HC_mergeClus(clusters, distances, neighbors,
clustersByKey, cluster1, cluster2) {
let merged = { item: this.merge(cluster1.item, cluster2.item),
left: cluster1,
right: cluster2,
key: cluster1.key,
size: cluster1.size + cluster2.size };
clusters[cluster1.index] = merged;
clusters.splice(cluster2.index, 1);
clustersByKey[cluster1.key] = merged;
// update distances with new merged cluster
for (let i = 0; i < clusters.length; i++) {
var ci = clusters[i];
var dist;
if (cluster1.key == ci.key) {
dist = Infinity;
} else if (this.merge == clusterlib.single_linkage) {
dist = distances[cluster1.key][ci.key];
if (distances[cluster1.key][ci.key] >
distances[cluster2.key][ci.key]) {
dist = distances[cluster2.key][ci.key];
}
} else if (this.merge == clusterlib.complete_linkage) {
dist = distances[cluster1.key][ci.key];
if (distances[cluster1.key][ci.key] <
distances[cluster2.key][ci.key]) {
dist = distances[cluster2.key][ci.key];
}
} else if (this.merge == clusterlib.average_linkage) {
dist = (distances[cluster1.key][ci.key] * cluster1.size
+ distances[cluster2.key][ci.key] * cluster2.size)
/ (cluster1.size + cluster2.size);
} else {
dist = this.distance(ci.item, cluster1.item);
}
distances[cluster1.key][ci.key] = distances[ci.key][cluster1.key]
= dist;
}
// update cached neighbors
for (let i = 0; i < clusters.length; i++) {
var key1 = clusters[i].key;
if (neighbors[key1] == cluster1.key ||
neighbors[key1] == cluster2.key) {
let minKey = key1;
for (let j = 0; j < clusters.length; j++) {
var key2 = clusters[j].key;
if (distances[key1][key2] < distances[key1][minKey]) {
minKey = key2;
}
}
neighbors[key1] = minKey;
}
clusters[i].index = i;
}
},
/**
* Given the current state of the algorithm, return the keys of the two
* clusters that are closest to each other so we know which ones to merge
* next.
*
* @param clusters
* The array of all remaining clusters
* @param distances
* Cached distances between pairs of clusters
* @param neighbors
* Cached closest clusters
*
* @return An array of two keys of clusters to merge, or null if there are
* no more clusters close enough to merge
*/
closestClusters: function HC_closestClus(clusters, distances, neighbors) {
let minKey = 0, minDist = Infinity;
for (let i = 0; i < clusters.length; i++) {
var key = clusters[i].key;
if (distances[key][neighbors[key]] < minDist) {
minKey = key;
minDist = distances[key][neighbors[key]];
}
}
if (minDist < this.threshold) {
return [minKey, neighbors[minKey]];
}
return null;
}
};
let clusterlib = {
hcluster: function hcluster(items, distance, merge, threshold, snapshotGap,
snapshotCallback) {
return (new HierarchicalClustering(distance, merge, threshold))
.cluster(items, snapshotGap, snapshotCallback);
},
single_linkage: function single_linkage(cluster1, cluster2) {
return cluster1;
},
complete_linkage: function complete_linkage(cluster1, cluster2) {
return cluster1;
},
average_linkage: function average_linkage(cluster1, cluster2) {
return cluster1;
},
euclidean_distance: function euclidean_distance(v1, v2) {
let total = 0;
for (let i = 0; i < v1.length; i++) {
total += Math.pow(v2[i] - v1[i], 2);
}
return Math.sqrt(total);
},
manhattan_distance: function manhattan_distance(v1, v2) {
let total = 0;
for (let i = 0; i < v1.length; i++) {
total += Math.abs(v2[i] - v1[i]);
}
return total;
},
max_distance: function max_distance(v1, v2) {
let max = 0;
for (let i = 0; i < v1.length; i++) {
max = Math.max(max, Math.abs(v2[i] - v1[i]));
}
return max;
}
};