gecko-dev/dom/media/MediaCache.cpp

2817 строки
103 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "MediaCache.h"
#include "ChannelMediaResource.h"
#include "FileBlockCache.h"
#include "MediaBlockCacheBase.h"
#include "MediaResource.h"
#include "MemoryBlockCache.h"
#include "mozilla/Attributes.h"
#include "mozilla/ClearOnShutdown.h"
#include "mozilla/ErrorNames.h"
#include "mozilla/Logging.h"
#include "mozilla/Monitor.h"
#include "mozilla/Preferences.h"
#include "mozilla/Services.h"
#include "mozilla/StaticPtr.h"
#include "mozilla/StaticPrefs_browser.h"
#include "mozilla/StaticPrefs_media.h"
#include "mozilla/Telemetry.h"
#include "nsContentUtils.h"
#include "nsINetworkLinkService.h"
#include "nsIObserverService.h"
#include "nsPrintfCString.h"
#include "nsProxyRelease.h"
#include "nsTHashSet.h"
#include "nsThreadUtils.h"
#include "prio.h"
#include "VideoUtils.h"
#include <algorithm>
namespace mozilla {
#undef LOG
#undef LOGI
#undef LOGE
LazyLogModule gMediaCacheLog("MediaCache");
#define LOG(...) MOZ_LOG(gMediaCacheLog, LogLevel::Debug, (__VA_ARGS__))
#define LOGI(...) MOZ_LOG(gMediaCacheLog, LogLevel::Info, (__VA_ARGS__))
#define LOGE(...) \
NS_DebugBreak(NS_DEBUG_WARNING, nsPrintfCString(__VA_ARGS__).get(), nullptr, \
__FILE__, __LINE__)
// For HTTP seeking, if number of bytes needing to be
// seeked forward is less than this value then a read is
// done rather than a byte range request.
//
// If we assume a 100Mbit connection, and assume reissuing an HTTP seek causes
// a delay of 200ms, then in that 200ms we could have simply read ahead 2MB. So
// setting SEEK_VS_READ_THRESHOLD to 1MB sounds reasonable.
static const int64_t SEEK_VS_READ_THRESHOLD = 1 * 1024 * 1024;
// Readahead blocks for non-seekable streams will be limited to this
// fraction of the cache space. We don't normally evict such blocks
// because replacing them requires a seek, but we need to make sure
// they don't monopolize the cache.
static const double NONSEEKABLE_READAHEAD_MAX = 0.5;
// Data N seconds before the current playback position is given the same
// priority as data REPLAY_PENALTY_FACTOR*N seconds ahead of the current
// playback position. REPLAY_PENALTY_FACTOR is greater than 1 to reflect that
// data in the past is less likely to be played again than data in the future.
// We want to give data just behind the current playback position reasonably
// high priority in case codecs need to retrieve that data (e.g. because
// tracks haven't been muxed well or are being decoded at uneven rates).
// 1/REPLAY_PENALTY_FACTOR as much data will be kept behind the
// current playback position as will be kept ahead of the current playback
// position.
static const uint32_t REPLAY_PENALTY_FACTOR = 3;
// When looking for a reusable block, scan forward this many blocks
// from the desired "best" block location to look for free blocks,
// before we resort to scanning the whole cache. The idea is to try to
// store runs of stream blocks close-to-consecutively in the cache if we
// can.
static const uint32_t FREE_BLOCK_SCAN_LIMIT = 16;
#ifdef DEBUG
// Turn this on to do very expensive cache state validation
// #define DEBUG_VERIFY_CACHE
#endif
class MediaCacheFlusher final : public nsIObserver,
public nsSupportsWeakReference {
public:
NS_DECL_ISUPPORTS
NS_DECL_NSIOBSERVER
static void RegisterMediaCache(MediaCache* aMediaCache);
static void UnregisterMediaCache(MediaCache* aMediaCache);
private:
MediaCacheFlusher() = default;
~MediaCacheFlusher() = default;
// Singleton instance created when a first MediaCache is registered, and
// released when the last MediaCache is unregistered.
// The observer service will keep a weak reference to it, for notifications.
static StaticRefPtr<MediaCacheFlusher> gMediaCacheFlusher;
nsTArray<MediaCache*> mMediaCaches;
};
/* static */
StaticRefPtr<MediaCacheFlusher> MediaCacheFlusher::gMediaCacheFlusher;
NS_IMPL_ISUPPORTS(MediaCacheFlusher, nsIObserver, nsISupportsWeakReference)
/* static */
void MediaCacheFlusher::RegisterMediaCache(MediaCache* aMediaCache) {
NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");
if (!gMediaCacheFlusher) {
gMediaCacheFlusher = new MediaCacheFlusher();
nsCOMPtr<nsIObserverService> observerService =
mozilla::services::GetObserverService();
if (observerService) {
observerService->AddObserver(gMediaCacheFlusher, "last-pb-context-exited",
true);
observerService->AddObserver(gMediaCacheFlusher,
"cacheservice:empty-cache", true);
observerService->AddObserver(
gMediaCacheFlusher, "contentchild:network-link-type-changed", true);
observerService->AddObserver(gMediaCacheFlusher,
NS_NETWORK_LINK_TYPE_TOPIC, true);
}
}
gMediaCacheFlusher->mMediaCaches.AppendElement(aMediaCache);
}
/* static */
void MediaCacheFlusher::UnregisterMediaCache(MediaCache* aMediaCache) {
NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");
gMediaCacheFlusher->mMediaCaches.RemoveElement(aMediaCache);
if (gMediaCacheFlusher->mMediaCaches.Length() == 0) {
gMediaCacheFlusher = nullptr;
}
}
class MediaCache {
using AutoLock = MonitorAutoLock;
public:
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(MediaCache)
friend class MediaCacheStream::BlockList;
typedef MediaCacheStream::BlockList BlockList;
static const int64_t BLOCK_SIZE = MediaCacheStream::BLOCK_SIZE;
// Get an instance of a MediaCache (or nullptr if initialization failed).
// aContentLength is the content length if known already, otherwise -1.
// If the length is known and considered small enough, a discrete MediaCache
// with memory backing will be given. Otherwise the one MediaCache with
// file backing will be provided.
// If aIsPrivateBrowsing is true, only initialization of a memory backed
// MediaCache will be attempted, returning nullptr if that fails.
static RefPtr<MediaCache> GetMediaCache(int64_t aContentLength,
bool aIsPrivateBrowsing);
nsISerialEventTarget* OwnerThread() const { return sThread; }
// Brutally flush the cache contents. Main thread only.
void Flush();
// Close all streams associated with private browsing windows. This will
// also remove the blocks from the cache since we don't want to leave any
// traces when PB is done.
void CloseStreamsForPrivateBrowsing();
// Cache-file access methods. These are the lowest-level cache methods.
// mMonitor must be held; these can be called on any thread.
// This can return partial reads.
// Note mMonitor will be dropped while doing IO. The caller need
// to handle changes happening when the monitor is not held.
nsresult ReadCacheFile(AutoLock&, int64_t aOffset, void* aData,
int32_t aLength, int32_t* aBytes);
// The generated IDs are always positive.
int64_t AllocateResourceID(AutoLock&) { return ++mNextResourceID; }
// mMonitor must be held, called on main thread.
// These methods are used by the stream to set up and tear down streams,
// and to handle reads and writes.
// Add aStream to the list of streams.
void OpenStream(AutoLock&, MediaCacheStream* aStream, bool aIsClone = false);
// Remove aStream from the list of streams.
void ReleaseStream(AutoLock&, MediaCacheStream* aStream);
// Free all blocks belonging to aStream.
void ReleaseStreamBlocks(AutoLock&, MediaCacheStream* aStream);
// Find a cache entry for this data, and write the data into it
void AllocateAndWriteBlock(
AutoLock&, MediaCacheStream* aStream, int32_t aStreamBlockIndex,
Span<const uint8_t> aData1,
Span<const uint8_t> aData2 = Span<const uint8_t>());
// mMonitor must be held; can be called on any thread
// Notify the cache that a seek has been requested. Some blocks may
// need to change their class between PLAYED_BLOCK and READAHEAD_BLOCK.
// This does not trigger channel seeks directly, the next Update()
// will do that if necessary. The caller will call QueueUpdate().
void NoteSeek(AutoLock&, MediaCacheStream* aStream, int64_t aOldOffset);
// Notify the cache that a block has been read from. This is used
// to update last-use times. The block may not actually have a
// cache entry yet since Read can read data from a stream's
// in-memory mPartialBlockBuffer while the block is only partly full,
// and thus hasn't yet been committed to the cache. The caller will
// call QueueUpdate().
void NoteBlockUsage(AutoLock&, MediaCacheStream* aStream, int32_t aBlockIndex,
int64_t aStreamOffset, MediaCacheStream::ReadMode aMode,
TimeStamp aNow);
// Mark aStream as having the block, adding it as an owner.
void AddBlockOwnerAsReadahead(AutoLock&, int32_t aBlockIndex,
MediaCacheStream* aStream,
int32_t aStreamBlockIndex);
// This queues a call to Update() on the media cache thread.
void QueueUpdate(AutoLock&);
// Notify all streams for the resource ID that the suspended status changed
// at the end of MediaCache::Update.
void QueueSuspendedStatusUpdate(AutoLock&, int64_t aResourceID);
// Updates the cache state asynchronously on the media cache thread:
// -- try to trim the cache back to its desired size, if necessary
// -- suspend channels that are going to read data that's lower priority
// than anything currently cached
// -- resume channels that are going to read data that's higher priority
// than something currently cached
// -- seek channels that need to seek to a new location
void Update();
#ifdef DEBUG_VERIFY_CACHE
// Verify invariants, especially block list invariants
void Verify(AutoLock&);
#else
void Verify(AutoLock&) {}
#endif
mozilla::Monitor& Monitor() {
// This method should only be called outside the main thread.
// The MOZ_DIAGNOSTIC_ASSERT(!NS_IsMainThread()) assertion should be
// re-added as part of bug 1464045
return mMonitor;
}
// Polls whether we're on a cellular network connection, and posts a task
// to the MediaCache thread to set the value of MediaCache::sOnCellular.
// Call on main thread only.
static void UpdateOnCellular();
/**
* An iterator that makes it easy to iterate through all streams that
* have a given resource ID and are not closed.
* Must be used while holding the media cache lock.
*/
class ResourceStreamIterator {
public:
ResourceStreamIterator(MediaCache* aMediaCache, int64_t aResourceID)
: mMediaCache(aMediaCache), mResourceID(aResourceID), mNext(0) {
aMediaCache->mMonitor.AssertCurrentThreadOwns();
}
MediaCacheStream* Next(AutoLock& aLock) {
while (mNext < mMediaCache->mStreams.Length()) {
MediaCacheStream* stream = mMediaCache->mStreams[mNext];
++mNext;
if (stream->GetResourceID() == mResourceID && !stream->IsClosed(aLock))
return stream;
}
return nullptr;
}
private:
MediaCache* mMediaCache;
int64_t mResourceID;
uint32_t mNext;
};
protected:
explicit MediaCache(MediaBlockCacheBase* aCache)
: mMonitor("MediaCache.mMonitor"),
mBlockCache(aCache),
mUpdateQueued(false)
#ifdef DEBUG
,
mInUpdate(false)
#endif
{
NS_ASSERTION(NS_IsMainThread(), "Only construct MediaCache on main thread");
MOZ_COUNT_CTOR(MediaCache);
MediaCacheFlusher::RegisterMediaCache(this);
UpdateOnCellular();
}
~MediaCache() {
NS_ASSERTION(NS_IsMainThread(), "Only destroy MediaCache on main thread");
if (this == gMediaCache) {
LOG("~MediaCache(Global file-backed MediaCache)");
// This is the file-backed MediaCache, reset the global pointer.
gMediaCache = nullptr;
} else {
LOG("~MediaCache(Memory-backed MediaCache %p)", this);
}
MediaCacheFlusher::UnregisterMediaCache(this);
NS_ASSERTION(mStreams.IsEmpty(), "Stream(s) still open!");
Truncate();
NS_ASSERTION(mIndex.Length() == 0, "Blocks leaked?");
MOZ_COUNT_DTOR(MediaCache);
}
static size_t CacheSize() {
MOZ_ASSERT(sThread->IsOnCurrentThread());
return sOnCellular ? StaticPrefs::media_cache_size_cellular()
: StaticPrefs::media_cache_size();
}
static size_t ReadaheadLimit() {
MOZ_ASSERT(sThread->IsOnCurrentThread());
return sOnCellular ? StaticPrefs::media_cache_readahead_limit_cellular()
: StaticPrefs::media_cache_readahead_limit();
}
static size_t ResumeThreshold() {
return sOnCellular ? StaticPrefs::media_cache_resume_threshold_cellular()
: StaticPrefs::media_cache_resume_threshold();
}
// Find a free or reusable block and return its index. If there are no
// free blocks and no reusable blocks, add a new block to the cache
// and return it. Can return -1 on OOM.
int32_t FindBlockForIncomingData(AutoLock&, TimeStamp aNow,
MediaCacheStream* aStream,
int32_t aStreamBlockIndex);
// Find a reusable block --- a free block, if there is one, otherwise
// the reusable block with the latest predicted-next-use, or -1 if
// there aren't any freeable blocks. Only block indices less than
// aMaxSearchBlockIndex are considered. If aForStream is non-null,
// then aForStream and aForStreamBlock indicate what media data will
// be placed; FindReusableBlock will favour returning free blocks
// near other blocks for that point in the stream.
int32_t FindReusableBlock(AutoLock&, TimeStamp aNow,
MediaCacheStream* aForStream,
int32_t aForStreamBlock,
int32_t aMaxSearchBlockIndex);
bool BlockIsReusable(AutoLock&, int32_t aBlockIndex);
// Given a list of blocks sorted with the most reusable blocks at the
// end, find the last block whose stream is not pinned (if any)
// and whose cache entry index is less than aBlockIndexLimit
// and append it to aResult.
void AppendMostReusableBlock(AutoLock&, BlockList* aBlockList,
nsTArray<uint32_t>* aResult,
int32_t aBlockIndexLimit);
enum BlockClass {
// block belongs to mMetadataBlockList because data has been consumed
// from it in "metadata mode" --- in particular blocks read during
// Ogg seeks go into this class. These blocks may have played data
// in them too.
METADATA_BLOCK,
// block belongs to mPlayedBlockList because its offset is
// less than the stream's current reader position
PLAYED_BLOCK,
// block belongs to the stream's mReadaheadBlockList because its
// offset is greater than or equal to the stream's current
// reader position
READAHEAD_BLOCK
};
struct BlockOwner {
constexpr BlockOwner() = default;
// The stream that owns this block, or null if the block is free.
MediaCacheStream* mStream = nullptr;
// The block index in the stream. Valid only if mStream is non-null.
// Initialized to an insane value to highlight misuse.
uint32_t mStreamBlock = UINT32_MAX;
// Time at which this block was last used. Valid only if
// mClass is METADATA_BLOCK or PLAYED_BLOCK.
TimeStamp mLastUseTime;
BlockClass mClass = READAHEAD_BLOCK;
};
struct Block {
// Free blocks have an empty mOwners array
nsTArray<BlockOwner> mOwners;
};
// Get the BlockList that the block should belong to given its
// current owner
BlockList* GetListForBlock(AutoLock&, BlockOwner* aBlock);
// Get the BlockOwner for the given block index and owning stream
// (returns null if the stream does not own the block)
BlockOwner* GetBlockOwner(AutoLock&, int32_t aBlockIndex,
MediaCacheStream* aStream);
// Returns true iff the block is free
bool IsBlockFree(int32_t aBlockIndex) {
return mIndex[aBlockIndex].mOwners.IsEmpty();
}
// Add the block to the free list and mark its streams as not having
// the block in cache
void FreeBlock(AutoLock&, int32_t aBlock);
// Mark aStream as not having the block, removing it as an owner. If
// the block has no more owners it's added to the free list.
void RemoveBlockOwner(AutoLock&, int32_t aBlockIndex,
MediaCacheStream* aStream);
// Swap all metadata associated with the two blocks. The caller
// is responsible for swapping up any cache file state.
void SwapBlocks(AutoLock&, int32_t aBlockIndex1, int32_t aBlockIndex2);
// Insert the block into the readahead block list for the stream
// at the right point in the list.
void InsertReadaheadBlock(AutoLock&, BlockOwner* aBlockOwner,
int32_t aBlockIndex);
// Guess the duration until block aBlock will be next used
TimeDuration PredictNextUse(AutoLock&, TimeStamp aNow, int32_t aBlock);
// Guess the duration until the next incoming data on aStream will be used
TimeDuration PredictNextUseForIncomingData(AutoLock&,
MediaCacheStream* aStream);
// Truncate the file and index array if there are free blocks at the
// end
void Truncate();
void FlushInternal(AutoLock&);
// There is at most one file-backed media cache.
// It is owned by all MediaCacheStreams that use it.
// This is a raw pointer set by GetMediaCache(), and reset by ~MediaCache(),
// both on the main thread; and is not accessed anywhere else.
static inline MediaCache* gMediaCache = nullptr;
// This member is main-thread only. It's used to allocate unique
// resource IDs to streams.
int64_t mNextResourceID = 0;
// The monitor protects all the data members here. Also, off-main-thread
// readers that need to block will Wait() on this monitor. When new
// data becomes available in the cache, we NotifyAll() on this monitor.
mozilla::Monitor mMonitor;
// This must always be accessed when the monitor is held.
nsTArray<MediaCacheStream*> mStreams;
// The Blocks describing the cache entries.
nsTArray<Block> mIndex;
RefPtr<MediaBlockCacheBase> mBlockCache;
// The list of free blocks; they are not ordered.
BlockList mFreeBlocks;
// True if an event to run Update() has been queued but not processed
bool mUpdateQueued;
#ifdef DEBUG
bool mInUpdate;
#endif
// A list of resource IDs to notify about the change in suspended status.
nsTArray<int64_t> mSuspendedStatusToNotify;
// The thread on which we will run data callbacks from the channels.
// Note this thread is shared among all MediaCache instances.
static inline StaticRefPtr<nsIThread> sThread;
// True if we've tried to init sThread. Note we try once only so it is safe
// to access sThread on all threads.
static inline bool sThreadInit = false;
private:
// MediaCache thread only. True if we're on a cellular network connection.
static inline bool sOnCellular = false;
// Try to trim the cache back to its desired size, if necessary. Return the
// amount of free block counts after trimming.
int32_t TrimCacheIfNeeded(AutoLock& aLock, const TimeStamp& aNow);
struct StreamAction {
enum { NONE, SEEK, RESUME, SUSPEND } mTag = NONE;
// Members for 'SEEK' only.
bool mResume = false;
int64_t mSeekTarget = -1;
};
// In each update, media cache would determine an action for each stream,
// possible actions are: keeping the stream unchanged, seeking to the new
// position, resuming its channel or suspending its channel. The action would
// be determined by considering a lot of different factors, eg. stream's data
// offset and length, how many free or reusable blocks are avaliable, the
// predicted time for the next block...e.t.c. This function will write the
// corresponding action for each stream in `mStreams` into `aActions`.
void DetermineActionsForStreams(AutoLock& aLock, const TimeStamp& aNow,
nsTArray<StreamAction>& aActions,
int32_t aFreeBlockCount);
// Used by MediaCacheStream::GetDebugInfo() only for debugging.
// Don't add new callers to this function.
friend void MediaCacheStream::GetDebugInfo(
dom::MediaCacheStreamDebugInfo& aInfo);
mozilla::Monitor& GetMonitorOnTheMainThread() {
MOZ_DIAGNOSTIC_ASSERT(NS_IsMainThread());
return mMonitor;
}
};
void MediaCache::UpdateOnCellular() {
NS_ASSERTION(NS_IsMainThread(),
"Only call on main thread"); // JNI required on Android...
bool onCellular = OnCellularConnection();
LOG("MediaCache::UpdateOnCellular() onCellular=%d", onCellular);
nsCOMPtr<nsIRunnable> r = NS_NewRunnableFunction(
"MediaCache::UpdateOnCellular", [=]() { sOnCellular = onCellular; });
sThread->Dispatch(r.forget());
}
NS_IMETHODIMP
MediaCacheFlusher::Observe(nsISupports* aSubject, char const* aTopic,
char16_t const* aData) {
NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");
if (strcmp(aTopic, "last-pb-context-exited") == 0) {
for (MediaCache* mc : mMediaCaches) {
mc->CloseStreamsForPrivateBrowsing();
}
return NS_OK;
}
if (strcmp(aTopic, "cacheservice:empty-cache") == 0) {
for (MediaCache* mc : mMediaCaches) {
mc->Flush();
}
return NS_OK;
}
if (strcmp(aTopic, "contentchild:network-link-type-changed") == 0 ||
strcmp(aTopic, NS_NETWORK_LINK_TYPE_TOPIC) == 0) {
MediaCache::UpdateOnCellular();
}
return NS_OK;
}
MediaCacheStream::MediaCacheStream(ChannelMediaResource* aClient,
bool aIsPrivateBrowsing)
: mMediaCache(nullptr),
mClient(aClient),
mIsTransportSeekable(false),
mCacheSuspended(false),
mChannelEnded(false),
mStreamOffset(0),
mPlaybackBytesPerSecond(10000),
mPinCount(0),
mNotifyDataEndedStatus(NS_ERROR_NOT_INITIALIZED),
mIsPrivateBrowsing(aIsPrivateBrowsing) {}
size_t MediaCacheStream::SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const {
AutoLock lock(mMediaCache->Monitor());
// Looks like these are not owned:
// - mClient
size_t size = mBlocks.ShallowSizeOfExcludingThis(aMallocSizeOf);
size += mReadaheadBlocks.SizeOfExcludingThis(aMallocSizeOf);
size += mMetadataBlocks.SizeOfExcludingThis(aMallocSizeOf);
size += mPlayedBlocks.SizeOfExcludingThis(aMallocSizeOf);
size += aMallocSizeOf(mPartialBlockBuffer.get());
return size;
}
size_t MediaCacheStream::BlockList::SizeOfExcludingThis(
MallocSizeOf aMallocSizeOf) const {
return mEntries.ShallowSizeOfExcludingThis(aMallocSizeOf);
}
void MediaCacheStream::BlockList::AddFirstBlock(int32_t aBlock) {
NS_ASSERTION(!mEntries.GetEntry(aBlock), "Block already in list");
Entry* entry = mEntries.PutEntry(aBlock);
if (mFirstBlock < 0) {
entry->mNextBlock = entry->mPrevBlock = aBlock;
} else {
entry->mNextBlock = mFirstBlock;
entry->mPrevBlock = mEntries.GetEntry(mFirstBlock)->mPrevBlock;
mEntries.GetEntry(entry->mNextBlock)->mPrevBlock = aBlock;
mEntries.GetEntry(entry->mPrevBlock)->mNextBlock = aBlock;
}
mFirstBlock = aBlock;
++mCount;
}
void MediaCacheStream::BlockList::AddAfter(int32_t aBlock, int32_t aBefore) {
NS_ASSERTION(!mEntries.GetEntry(aBlock), "Block already in list");
Entry* entry = mEntries.PutEntry(aBlock);
Entry* addAfter = mEntries.GetEntry(aBefore);
NS_ASSERTION(addAfter, "aBefore not in list");
entry->mNextBlock = addAfter->mNextBlock;
entry->mPrevBlock = aBefore;
mEntries.GetEntry(entry->mNextBlock)->mPrevBlock = aBlock;
mEntries.GetEntry(entry->mPrevBlock)->mNextBlock = aBlock;
++mCount;
}
void MediaCacheStream::BlockList::RemoveBlock(int32_t aBlock) {
Entry* entry = mEntries.GetEntry(aBlock);
MOZ_DIAGNOSTIC_ASSERT(entry, "Block not in list");
if (entry->mNextBlock == aBlock) {
MOZ_DIAGNOSTIC_ASSERT(entry->mPrevBlock == aBlock,
"Linked list inconsistency");
MOZ_DIAGNOSTIC_ASSERT(mFirstBlock == aBlock, "Linked list inconsistency");
mFirstBlock = -1;
} else {
if (mFirstBlock == aBlock) {
mFirstBlock = entry->mNextBlock;
}
mEntries.GetEntry(entry->mNextBlock)->mPrevBlock = entry->mPrevBlock;
mEntries.GetEntry(entry->mPrevBlock)->mNextBlock = entry->mNextBlock;
}
mEntries.RemoveEntry(entry);
--mCount;
}
int32_t MediaCacheStream::BlockList::GetLastBlock() const {
if (mFirstBlock < 0) return -1;
return mEntries.GetEntry(mFirstBlock)->mPrevBlock;
}
int32_t MediaCacheStream::BlockList::GetNextBlock(int32_t aBlock) const {
int32_t block = mEntries.GetEntry(aBlock)->mNextBlock;
if (block == mFirstBlock) return -1;
return block;
}
int32_t MediaCacheStream::BlockList::GetPrevBlock(int32_t aBlock) const {
if (aBlock == mFirstBlock) return -1;
return mEntries.GetEntry(aBlock)->mPrevBlock;
}
#ifdef DEBUG
void MediaCacheStream::BlockList::Verify() {
int32_t count = 0;
if (mFirstBlock >= 0) {
int32_t block = mFirstBlock;
do {
Entry* entry = mEntries.GetEntry(block);
NS_ASSERTION(mEntries.GetEntry(entry->mNextBlock)->mPrevBlock == block,
"Bad prev link");
NS_ASSERTION(mEntries.GetEntry(entry->mPrevBlock)->mNextBlock == block,
"Bad next link");
block = entry->mNextBlock;
++count;
} while (block != mFirstBlock);
}
NS_ASSERTION(count == mCount, "Bad count");
}
#endif
static void UpdateSwappedBlockIndex(int32_t* aBlockIndex, int32_t aBlock1Index,
int32_t aBlock2Index) {
int32_t index = *aBlockIndex;
if (index == aBlock1Index) {
*aBlockIndex = aBlock2Index;
} else if (index == aBlock2Index) {
*aBlockIndex = aBlock1Index;
}
}
void MediaCacheStream::BlockList::NotifyBlockSwapped(int32_t aBlockIndex1,
int32_t aBlockIndex2) {
Entry* e1 = mEntries.GetEntry(aBlockIndex1);
Entry* e2 = mEntries.GetEntry(aBlockIndex2);
int32_t e1Prev = -1, e1Next = -1, e2Prev = -1, e2Next = -1;
// Fix mFirstBlock
UpdateSwappedBlockIndex(&mFirstBlock, aBlockIndex1, aBlockIndex2);
// Fix mNextBlock/mPrevBlock links. First capture previous/next links
// so we don't get confused due to aliasing.
if (e1) {
e1Prev = e1->mPrevBlock;
e1Next = e1->mNextBlock;
}
if (e2) {
e2Prev = e2->mPrevBlock;
e2Next = e2->mNextBlock;
}
// Update the entries.
if (e1) {
mEntries.GetEntry(e1Prev)->mNextBlock = aBlockIndex2;
mEntries.GetEntry(e1Next)->mPrevBlock = aBlockIndex2;
}
if (e2) {
mEntries.GetEntry(e2Prev)->mNextBlock = aBlockIndex1;
mEntries.GetEntry(e2Next)->mPrevBlock = aBlockIndex1;
}
// Fix hashtable keys. First remove stale entries.
if (e1) {
e1Prev = e1->mPrevBlock;
e1Next = e1->mNextBlock;
mEntries.RemoveEntry(e1);
// Refresh pointer after hashtable mutation.
e2 = mEntries.GetEntry(aBlockIndex2);
}
if (e2) {
e2Prev = e2->mPrevBlock;
e2Next = e2->mNextBlock;
mEntries.RemoveEntry(e2);
}
// Put new entries back.
if (e1) {
e1 = mEntries.PutEntry(aBlockIndex2);
e1->mNextBlock = e1Next;
e1->mPrevBlock = e1Prev;
}
if (e2) {
e2 = mEntries.PutEntry(aBlockIndex1);
e2->mNextBlock = e2Next;
e2->mPrevBlock = e2Prev;
}
}
void MediaCache::FlushInternal(AutoLock& aLock) {
for (uint32_t blockIndex = 0; blockIndex < mIndex.Length(); ++blockIndex) {
FreeBlock(aLock, blockIndex);
}
// Truncate index array.
Truncate();
NS_ASSERTION(mIndex.Length() == 0, "Blocks leaked?");
// Reset block cache to its pristine state.
mBlockCache->Flush();
}
void MediaCache::Flush() {
MOZ_ASSERT(NS_IsMainThread());
nsCOMPtr<nsIRunnable> r = NS_NewRunnableFunction(
"MediaCache::Flush", [self = RefPtr<MediaCache>(this)]() mutable {
AutoLock lock(self->mMonitor);
self->FlushInternal(lock);
// Ensure MediaCache is deleted on the main thread.
NS_ReleaseOnMainThread("MediaCache::Flush", self.forget());
});
sThread->Dispatch(r.forget());
}
void MediaCache::CloseStreamsForPrivateBrowsing() {
MOZ_ASSERT(NS_IsMainThread());
sThread->Dispatch(NS_NewRunnableFunction(
"MediaCache::CloseStreamsForPrivateBrowsing",
[self = RefPtr<MediaCache>(this)]() mutable {
AutoLock lock(self->mMonitor);
// Copy mStreams since CloseInternal() will change the array.
for (MediaCacheStream* s : self->mStreams.Clone()) {
if (s->mIsPrivateBrowsing) {
s->CloseInternal(lock);
}
}
// Ensure MediaCache is deleted on the main thread.
NS_ReleaseOnMainThread("MediaCache::CloseStreamsForPrivateBrowsing",
self.forget());
}));
}
/* static */
RefPtr<MediaCache> MediaCache::GetMediaCache(int64_t aContentLength,
bool aIsPrivateBrowsing) {
NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");
if (!sThreadInit) {
sThreadInit = true;
nsCOMPtr<nsIThread> thread;
nsresult rv = NS_NewNamedThread("MediaCache", getter_AddRefs(thread));
if (NS_FAILED(rv)) {
NS_WARNING("Failed to create a thread for MediaCache.");
return nullptr;
}
sThread = ToRefPtr(std::move(thread));
static struct ClearThread {
// Called during shutdown to clear sThread.
void operator=(std::nullptr_t) {
MOZ_ASSERT(sThread, "We should only clear sThread once.");
sThread->Shutdown();
sThread = nullptr;
}
} sClearThread;
ClearOnShutdown(&sClearThread, ShutdownPhase::XPCOMShutdownThreads);
}
if (!sThread) {
return nullptr;
}
const int64_t mediaMemoryCacheMaxSize =
static_cast<int64_t>(StaticPrefs::media_memory_cache_max_size()) * 1024;
// Force usage of in-memory cache if we are in private browsing mode
// and the forceMediaMemoryCache pref is set
// We will not attempt to create an on-disk cache if this is the case
const bool forceMediaMemoryCache =
aIsPrivateBrowsing &&
StaticPrefs::browser_privatebrowsing_forceMediaMemoryCache();
// Alternatively, use an in-memory cache if the media will fit entirely
// in memory
// aContentLength < 0 indicates we do not know content's actual size
const bool contentFitsInMediaMemoryCache =
(aContentLength > 0) && (aContentLength <= mediaMemoryCacheMaxSize);
// Try to allocate a memory cache for our content
if (contentFitsInMediaMemoryCache || forceMediaMemoryCache) {
// Figure out how large our cache should be
int64_t cacheSize = 0;
if (contentFitsInMediaMemoryCache) {
cacheSize = aContentLength;
} else if (forceMediaMemoryCache) {
// Unknown content length, we'll give the maximum allowed cache size
// just to be sure.
if (aContentLength < 0) {
cacheSize = mediaMemoryCacheMaxSize;
} else {
// If the content length is less than the maximum allowed cache size,
// use that, otherwise we cap it to max size.
cacheSize = std::min(aContentLength, mediaMemoryCacheMaxSize);
}
}
RefPtr<MediaBlockCacheBase> bc = new MemoryBlockCache(cacheSize);
nsresult rv = bc->Init();
if (NS_SUCCEEDED(rv)) {
RefPtr<MediaCache> mc = new MediaCache(bc);
LOG("GetMediaCache(%" PRIi64 ") -> Memory MediaCache %p", aContentLength,
mc.get());
return mc;
}
// MemoryBlockCache initialization failed.
// If we require use of a memory media cache, we will bail here.
// Otherwise use a file-backed MediaCache below.
if (forceMediaMemoryCache) {
return nullptr;
}
}
if (gMediaCache) {
LOG("GetMediaCache(%" PRIi64 ") -> Existing file-backed MediaCache",
aContentLength);
return gMediaCache;
}
RefPtr<MediaBlockCacheBase> bc = new FileBlockCache();
nsresult rv = bc->Init();
if (NS_SUCCEEDED(rv)) {
gMediaCache = new MediaCache(bc);
LOG("GetMediaCache(%" PRIi64 ") -> Created file-backed MediaCache",
aContentLength);
} else {
LOG("GetMediaCache(%" PRIi64 ") -> Failed to create file-backed MediaCache",
aContentLength);
}
return gMediaCache;
}
nsresult MediaCache::ReadCacheFile(AutoLock&, int64_t aOffset, void* aData,
int32_t aLength, int32_t* aBytes) {
if (!mBlockCache) {
return NS_ERROR_FAILURE;
}
return mBlockCache->Read(aOffset, reinterpret_cast<uint8_t*>(aData), aLength,
aBytes);
}
// Allowed range is whatever can be accessed with an int32_t block index.
static bool IsOffsetAllowed(int64_t aOffset) {
return aOffset < (int64_t(INT32_MAX) + 1) * MediaCache::BLOCK_SIZE &&
aOffset >= 0;
}
// Convert 64-bit offset to 32-bit block index.
// Assumes offset range-check was already done.
static int32_t OffsetToBlockIndexUnchecked(int64_t aOffset) {
// Still check for allowed range in debug builds, to catch out-of-range
// issues early during development.
MOZ_ASSERT(IsOffsetAllowed(aOffset));
return int32_t(aOffset / MediaCache::BLOCK_SIZE);
}
// Convert 64-bit offset to 32-bit block index. -1 if out of allowed range.
static int32_t OffsetToBlockIndex(int64_t aOffset) {
return IsOffsetAllowed(aOffset) ? OffsetToBlockIndexUnchecked(aOffset) : -1;
}
// Convert 64-bit offset to 32-bit offset inside a block.
// Will not fail (even if offset is outside allowed range), so there is no
// need to check for errors.
static int32_t OffsetInBlock(int64_t aOffset) {
// Still check for allowed range in debug builds, to catch out-of-range
// issues early during development.
MOZ_ASSERT(IsOffsetAllowed(aOffset));
return int32_t(aOffset % MediaCache::BLOCK_SIZE);
}
int32_t MediaCache::FindBlockForIncomingData(AutoLock& aLock, TimeStamp aNow,
MediaCacheStream* aStream,
int32_t aStreamBlockIndex) {
MOZ_ASSERT(sThread->IsOnCurrentThread());
int32_t blockIndex =
FindReusableBlock(aLock, aNow, aStream, aStreamBlockIndex, INT32_MAX);
if (blockIndex < 0 || !IsBlockFree(blockIndex)) {
// The block returned is already allocated.
// Don't reuse it if a) there's room to expand the cache or
// b) the data we're going to store in the free block is not higher
// priority than the data already stored in the free block.
// The latter can lead us to go over the cache limit a bit.
if ((mIndex.Length() <
uint32_t(mBlockCache->GetMaxBlocks(MediaCache::CacheSize())) ||
blockIndex < 0 ||
PredictNextUseForIncomingData(aLock, aStream) >=
PredictNextUse(aLock, aNow, blockIndex))) {
blockIndex = mIndex.Length();
// XXX(Bug 1631371) Check if this should use a fallible operation as it
// pretended earlier.
mIndex.AppendElement();
mFreeBlocks.AddFirstBlock(blockIndex);
return blockIndex;
}
}
return blockIndex;
}
bool MediaCache::BlockIsReusable(AutoLock&, int32_t aBlockIndex) {
Block* block = &mIndex[aBlockIndex];
for (uint32_t i = 0; i < block->mOwners.Length(); ++i) {
MediaCacheStream* stream = block->mOwners[i].mStream;
if (stream->mPinCount > 0 ||
uint32_t(OffsetToBlockIndex(stream->mStreamOffset)) ==
block->mOwners[i].mStreamBlock) {
return false;
}
}
return true;
}
void MediaCache::AppendMostReusableBlock(AutoLock& aLock, BlockList* aBlockList,
nsTArray<uint32_t>* aResult,
int32_t aBlockIndexLimit) {
int32_t blockIndex = aBlockList->GetLastBlock();
if (blockIndex < 0) return;
do {
// Don't consider blocks for pinned streams, or blocks that are
// beyond the specified limit, or a block that contains a stream's
// current read position (such a block contains both played data
// and readahead data)
if (blockIndex < aBlockIndexLimit && BlockIsReusable(aLock, blockIndex)) {
aResult->AppendElement(blockIndex);
return;
}
blockIndex = aBlockList->GetPrevBlock(blockIndex);
} while (blockIndex >= 0);
}
int32_t MediaCache::FindReusableBlock(AutoLock& aLock, TimeStamp aNow,
MediaCacheStream* aForStream,
int32_t aForStreamBlock,
int32_t aMaxSearchBlockIndex) {
MOZ_ASSERT(sThread->IsOnCurrentThread());
uint32_t length =
std::min(uint32_t(aMaxSearchBlockIndex), uint32_t(mIndex.Length()));
if (aForStream && aForStreamBlock > 0 &&
uint32_t(aForStreamBlock) <= aForStream->mBlocks.Length()) {
int32_t prevCacheBlock = aForStream->mBlocks[aForStreamBlock - 1];
if (prevCacheBlock >= 0) {
uint32_t freeBlockScanEnd =
std::min(length, prevCacheBlock + FREE_BLOCK_SCAN_LIMIT);
for (uint32_t i = prevCacheBlock; i < freeBlockScanEnd; ++i) {
if (IsBlockFree(i)) return i;
}
}
}
if (!mFreeBlocks.IsEmpty()) {
int32_t blockIndex = mFreeBlocks.GetFirstBlock();
do {
if (blockIndex < aMaxSearchBlockIndex) return blockIndex;
blockIndex = mFreeBlocks.GetNextBlock(blockIndex);
} while (blockIndex >= 0);
}
// Build a list of the blocks we should consider for the "latest
// predicted time of next use". We can exploit the fact that the block
// linked lists are ordered by increasing time of next use. This is
// actually the whole point of having the linked lists.
AutoTArray<uint32_t, 8> candidates;
for (uint32_t i = 0; i < mStreams.Length(); ++i) {
MediaCacheStream* stream = mStreams[i];
if (stream->mPinCount > 0) {
// No point in even looking at this stream's blocks
continue;
}
AppendMostReusableBlock(aLock, &stream->mMetadataBlocks, &candidates,
length);
AppendMostReusableBlock(aLock, &stream->mPlayedBlocks, &candidates, length);
// Don't consider readahead blocks in non-seekable streams. If we
// remove the block we won't be able to seek back to read it later.
if (stream->mIsTransportSeekable) {
AppendMostReusableBlock(aLock, &stream->mReadaheadBlocks, &candidates,
length);
}
}
TimeDuration latestUse;
int32_t latestUseBlock = -1;
for (uint32_t i = 0; i < candidates.Length(); ++i) {
TimeDuration nextUse = PredictNextUse(aLock, aNow, candidates[i]);
if (nextUse > latestUse) {
latestUse = nextUse;
latestUseBlock = candidates[i];
}
}
return latestUseBlock;
}
MediaCache::BlockList* MediaCache::GetListForBlock(AutoLock&,
BlockOwner* aBlock) {
switch (aBlock->mClass) {
case METADATA_BLOCK:
NS_ASSERTION(aBlock->mStream, "Metadata block has no stream?");
return &aBlock->mStream->mMetadataBlocks;
case PLAYED_BLOCK:
NS_ASSERTION(aBlock->mStream, "Metadata block has no stream?");
return &aBlock->mStream->mPlayedBlocks;
case READAHEAD_BLOCK:
NS_ASSERTION(aBlock->mStream, "Readahead block has no stream?");
return &aBlock->mStream->mReadaheadBlocks;
default:
NS_ERROR("Invalid block class");
return nullptr;
}
}
MediaCache::BlockOwner* MediaCache::GetBlockOwner(AutoLock&,
int32_t aBlockIndex,
MediaCacheStream* aStream) {
Block* block = &mIndex[aBlockIndex];
for (uint32_t i = 0; i < block->mOwners.Length(); ++i) {
if (block->mOwners[i].mStream == aStream) return &block->mOwners[i];
}
return nullptr;
}
void MediaCache::SwapBlocks(AutoLock& aLock, int32_t aBlockIndex1,
int32_t aBlockIndex2) {
Block* block1 = &mIndex[aBlockIndex1];
Block* block2 = &mIndex[aBlockIndex2];
block1->mOwners.SwapElements(block2->mOwners);
// Now all references to block1 have to be replaced with block2 and
// vice versa.
// First update stream references to blocks via mBlocks.
const Block* blocks[] = {block1, block2};
int32_t blockIndices[] = {aBlockIndex1, aBlockIndex2};
for (int32_t i = 0; i < 2; ++i) {
for (uint32_t j = 0; j < blocks[i]->mOwners.Length(); ++j) {
const BlockOwner* b = &blocks[i]->mOwners[j];
b->mStream->mBlocks[b->mStreamBlock] = blockIndices[i];
}
}
// Now update references to blocks in block lists.
mFreeBlocks.NotifyBlockSwapped(aBlockIndex1, aBlockIndex2);
nsTHashSet<MediaCacheStream*> visitedStreams;
for (int32_t i = 0; i < 2; ++i) {
for (uint32_t j = 0; j < blocks[i]->mOwners.Length(); ++j) {
MediaCacheStream* stream = blocks[i]->mOwners[j].mStream;
// Make sure that we don't update the same stream twice --- that
// would result in swapping the block references back again!
if (!visitedStreams.EnsureInserted(stream)) continue;
stream->mReadaheadBlocks.NotifyBlockSwapped(aBlockIndex1, aBlockIndex2);
stream->mPlayedBlocks.NotifyBlockSwapped(aBlockIndex1, aBlockIndex2);
stream->mMetadataBlocks.NotifyBlockSwapped(aBlockIndex1, aBlockIndex2);
}
}
Verify(aLock);
}
void MediaCache::RemoveBlockOwner(AutoLock& aLock, int32_t aBlockIndex,
MediaCacheStream* aStream) {
Block* block = &mIndex[aBlockIndex];
for (uint32_t i = 0; i < block->mOwners.Length(); ++i) {
BlockOwner* bo = &block->mOwners[i];
if (bo->mStream == aStream) {
GetListForBlock(aLock, bo)->RemoveBlock(aBlockIndex);
bo->mStream->mBlocks[bo->mStreamBlock] = -1;
block->mOwners.RemoveElementAt(i);
if (block->mOwners.IsEmpty()) {
mFreeBlocks.AddFirstBlock(aBlockIndex);
}
return;
}
}
}
void MediaCache::AddBlockOwnerAsReadahead(AutoLock& aLock, int32_t aBlockIndex,
MediaCacheStream* aStream,
int32_t aStreamBlockIndex) {
Block* block = &mIndex[aBlockIndex];
if (block->mOwners.IsEmpty()) {
mFreeBlocks.RemoveBlock(aBlockIndex);
}
BlockOwner* bo = block->mOwners.AppendElement();
bo->mStream = aStream;
bo->mStreamBlock = aStreamBlockIndex;
aStream->mBlocks[aStreamBlockIndex] = aBlockIndex;
bo->mClass = READAHEAD_BLOCK;
InsertReadaheadBlock(aLock, bo, aBlockIndex);
}
void MediaCache::FreeBlock(AutoLock& aLock, int32_t aBlock) {
Block* block = &mIndex[aBlock];
if (block->mOwners.IsEmpty()) {
// already free
return;
}
LOG("Released block %d", aBlock);
for (uint32_t i = 0; i < block->mOwners.Length(); ++i) {
BlockOwner* bo = &block->mOwners[i];
GetListForBlock(aLock, bo)->RemoveBlock(aBlock);
bo->mStream->mBlocks[bo->mStreamBlock] = -1;
}
block->mOwners.Clear();
mFreeBlocks.AddFirstBlock(aBlock);
Verify(aLock);
}
TimeDuration MediaCache::PredictNextUse(AutoLock&, TimeStamp aNow,
int32_t aBlock) {
MOZ_ASSERT(sThread->IsOnCurrentThread());
NS_ASSERTION(!IsBlockFree(aBlock), "aBlock is free");
Block* block = &mIndex[aBlock];
// Blocks can be belong to multiple streams. The predicted next use
// time is the earliest time predicted by any of the streams.
TimeDuration result;
for (uint32_t i = 0; i < block->mOwners.Length(); ++i) {
BlockOwner* bo = &block->mOwners[i];
TimeDuration prediction;
switch (bo->mClass) {
case METADATA_BLOCK:
// This block should be managed in LRU mode. For metadata we predict
// that the time until the next use is the time since the last use.
prediction = aNow - bo->mLastUseTime;
break;
case PLAYED_BLOCK: {
// This block should be managed in LRU mode, and we should impose
// a "replay delay" to reflect the likelihood of replay happening
NS_ASSERTION(static_cast<int64_t>(bo->mStreamBlock) * BLOCK_SIZE <
bo->mStream->mStreamOffset,
"Played block after the current stream position?");
int64_t bytesBehind =
bo->mStream->mStreamOffset -
static_cast<int64_t>(bo->mStreamBlock) * BLOCK_SIZE;
int64_t millisecondsBehind =
bytesBehind * 1000 / bo->mStream->mPlaybackBytesPerSecond;
prediction = TimeDuration::FromMilliseconds(std::min<int64_t>(
millisecondsBehind * REPLAY_PENALTY_FACTOR, INT32_MAX));
break;
}
case READAHEAD_BLOCK: {
int64_t bytesAhead =
static_cast<int64_t>(bo->mStreamBlock) * BLOCK_SIZE -
bo->mStream->mStreamOffset;
NS_ASSERTION(bytesAhead >= 0,
"Readahead block before the current stream position?");
int64_t millisecondsAhead =
bytesAhead * 1000 / bo->mStream->mPlaybackBytesPerSecond;
prediction = TimeDuration::FromMilliseconds(
std::min<int64_t>(millisecondsAhead, INT32_MAX));
break;
}
default:
NS_ERROR("Invalid class for predicting next use");
return TimeDuration(0);
}
if (i == 0 || prediction < result) {
result = prediction;
}
}
return result;
}
TimeDuration MediaCache::PredictNextUseForIncomingData(
AutoLock&, MediaCacheStream* aStream) {
MOZ_ASSERT(sThread->IsOnCurrentThread());
int64_t bytesAhead = aStream->mChannelOffset - aStream->mStreamOffset;
if (bytesAhead <= -BLOCK_SIZE) {
// Hmm, no idea when data behind us will be used. Guess 24 hours.
return TimeDuration::FromSeconds(24 * 60 * 60);
}
if (bytesAhead <= 0) return TimeDuration(0);
int64_t millisecondsAhead =
bytesAhead * 1000 / aStream->mPlaybackBytesPerSecond;
return TimeDuration::FromMilliseconds(
std::min<int64_t>(millisecondsAhead, INT32_MAX));
}
void MediaCache::Update() {
MOZ_ASSERT(sThread->IsOnCurrentThread());
AutoLock lock(mMonitor);
mUpdateQueued = false;
#ifdef DEBUG
mInUpdate = true;
#endif
const TimeStamp now = TimeStamp::Now();
const int32_t freeBlockCount = TrimCacheIfNeeded(lock, now);
// The action to use for each stream. We store these so we can make
// decisions while holding the cache lock but implement those decisions
// without holding the cache lock, since we need to call out to
// stream, decoder and element code.
AutoTArray<StreamAction, 10> actions;
DetermineActionsForStreams(lock, now, actions, freeBlockCount);
#ifdef DEBUG
mInUpdate = false;
#endif
// First, update the mCacheSuspended/mCacheEnded flags so that they're all
// correct when we fire our CacheClient commands below. Those commands can
// rely on these flags being set correctly for all streams.
for (uint32_t i = 0; i < mStreams.Length(); ++i) {
MediaCacheStream* stream = mStreams[i];
switch (actions[i].mTag) {
case StreamAction::SEEK:
stream->mCacheSuspended = false;
stream->mChannelEnded = false;
break;
case StreamAction::RESUME:
stream->mCacheSuspended = false;
break;
case StreamAction::SUSPEND:
stream->mCacheSuspended = true;
break;
default:
break;
}
}
for (uint32_t i = 0; i < mStreams.Length(); ++i) {
MediaCacheStream* stream = mStreams[i];
switch (actions[i].mTag) {
case StreamAction::SEEK:
LOG("Stream %p CacheSeek to %" PRId64 " (resume=%d)", stream,
actions[i].mSeekTarget, actions[i].mResume);
stream->mClient->CacheClientSeek(actions[i].mSeekTarget,
actions[i].mResume);
break;
case StreamAction::RESUME:
LOG("Stream %p Resumed", stream);
stream->mClient->CacheClientResume();
QueueSuspendedStatusUpdate(lock, stream->mResourceID);
break;
case StreamAction::SUSPEND:
LOG("Stream %p Suspended", stream);
stream->mClient->CacheClientSuspend();
QueueSuspendedStatusUpdate(lock, stream->mResourceID);
break;
default:
break;
}
}
// Notify streams about the suspended status changes.
for (uint32_t i = 0; i < mSuspendedStatusToNotify.Length(); ++i) {
MediaCache::ResourceStreamIterator iter(this, mSuspendedStatusToNotify[i]);
while (MediaCacheStream* stream = iter.Next(lock)) {
stream->mClient->CacheClientNotifySuspendedStatusChanged(
stream->AreAllStreamsForResourceSuspended(lock));
}
}
mSuspendedStatusToNotify.Clear();
}
int32_t MediaCache::TrimCacheIfNeeded(AutoLock& aLock, const TimeStamp& aNow) {
MOZ_ASSERT(sThread->IsOnCurrentThread());
const int32_t maxBlocks = mBlockCache->GetMaxBlocks(MediaCache::CacheSize());
int32_t freeBlockCount = mFreeBlocks.GetCount();
TimeDuration latestPredictedUseForOverflow = 0;
if (mIndex.Length() > uint32_t(maxBlocks)) {
// Try to trim back the cache to its desired maximum size. The cache may
// have overflowed simply due to data being received when we have
// no blocks in the main part of the cache that are free or lower
// priority than the new data. The cache can also be overflowing because
// the media.cache_size preference was reduced.
// First, figure out what the least valuable block in the cache overflow
// is. We don't want to replace any blocks in the main part of the
// cache whose expected time of next use is earlier or equal to that.
// If we allow that, we can effectively end up discarding overflowing
// blocks (by moving an overflowing block to the main part of the cache,
// and then overwriting it with another overflowing block), and we try
// to avoid that since it requires HTTP seeks.
// We also use this loop to eliminate overflowing blocks from
// freeBlockCount.
for (int32_t blockIndex = mIndex.Length() - 1; blockIndex >= maxBlocks;
--blockIndex) {
if (IsBlockFree(blockIndex)) {
// Don't count overflowing free blocks in our free block count
--freeBlockCount;
continue;
}
TimeDuration predictedUse = PredictNextUse(aLock, aNow, blockIndex);
latestPredictedUseForOverflow =
std::max(latestPredictedUseForOverflow, predictedUse);
}
} else {
freeBlockCount += maxBlocks - mIndex.Length();
}
// Now try to move overflowing blocks to the main part of the cache.
for (int32_t blockIndex = mIndex.Length() - 1; blockIndex >= maxBlocks;
--blockIndex) {
if (IsBlockFree(blockIndex)) continue;
Block* block = &mIndex[blockIndex];
// Try to relocate the block close to other blocks for the first stream.
// There is no point in trying to make it close to other blocks in
// *all* the streams it might belong to.
int32_t destinationBlockIndex =
FindReusableBlock(aLock, aNow, block->mOwners[0].mStream,
block->mOwners[0].mStreamBlock, maxBlocks);
if (destinationBlockIndex < 0) {
// Nowhere to place this overflow block. We won't be able to
// place any more overflow blocks.
break;
}
// Don't evict |destinationBlockIndex| if it is within [cur, end) otherwise
// a new channel will be opened to download this block again which is bad.
bool inCurrentCachedRange = false;
for (BlockOwner& owner : mIndex[destinationBlockIndex].mOwners) {
MediaCacheStream* stream = owner.mStream;
int64_t end = OffsetToBlockIndexUnchecked(
stream->GetCachedDataEndInternal(aLock, stream->mStreamOffset));
int64_t cur = OffsetToBlockIndexUnchecked(stream->mStreamOffset);
if (cur <= owner.mStreamBlock && owner.mStreamBlock < end) {
inCurrentCachedRange = true;
break;
}
}
if (inCurrentCachedRange) {
continue;
}
if (IsBlockFree(destinationBlockIndex) ||
PredictNextUse(aLock, aNow, destinationBlockIndex) >
latestPredictedUseForOverflow) {
// Reuse blocks in the main part of the cache that are less useful than
// the least useful overflow blocks
nsresult rv = mBlockCache->MoveBlock(blockIndex, destinationBlockIndex);
if (NS_SUCCEEDED(rv)) {
// We successfully copied the file data.
LOG("Swapping blocks %d and %d (trimming cache)", blockIndex,
destinationBlockIndex);
// Swapping the block metadata here lets us maintain the
// correct positions in the linked lists
SwapBlocks(aLock, blockIndex, destinationBlockIndex);
// Free the overflowing block even if the copy failed.
LOG("Released block %d (trimming cache)", blockIndex);
FreeBlock(aLock, blockIndex);
}
} else {
LOG("Could not trim cache block %d (destination %d, "
"predicted next use %f, latest predicted use for overflow %f",
blockIndex, destinationBlockIndex,
PredictNextUse(aLock, aNow, destinationBlockIndex).ToSeconds(),
latestPredictedUseForOverflow.ToSeconds());
}
}
// Try chopping back the array of cache entries and the cache file.
Truncate();
return freeBlockCount;
}
void MediaCache::DetermineActionsForStreams(AutoLock& aLock,
const TimeStamp& aNow,
nsTArray<StreamAction>& aActions,
int32_t aFreeBlockCount) {
MOZ_ASSERT(sThread->IsOnCurrentThread());
// Count the blocks allocated for readahead of non-seekable streams
// (these blocks can't be freed but we don't want them to monopolize the
// cache)
int32_t nonSeekableReadaheadBlockCount = 0;
for (uint32_t i = 0; i < mStreams.Length(); ++i) {
MediaCacheStream* stream = mStreams[i];
if (!stream->mIsTransportSeekable) {
nonSeekableReadaheadBlockCount += stream->mReadaheadBlocks.GetCount();
}
}
// If freeBlockCount is zero, then compute the latest of
// the predicted next-uses for all blocks
TimeDuration latestNextUse;
const int32_t maxBlocks = mBlockCache->GetMaxBlocks(MediaCache::CacheSize());
if (aFreeBlockCount == 0) {
const int32_t reusableBlock =
FindReusableBlock(aLock, aNow, nullptr, 0, maxBlocks);
if (reusableBlock >= 0) {
latestNextUse = PredictNextUse(aLock, aNow, reusableBlock);
}
}
for (uint32_t i = 0; i < mStreams.Length(); ++i) {
aActions.AppendElement(StreamAction{});
MediaCacheStream* stream = mStreams[i];
if (stream->mClosed) {
LOG("Stream %p closed", stream);
continue;
}
// We make decisions based on mSeekTarget when there is a pending seek.
// Otherwise we will keep issuing seek requests until mChannelOffset
// is changed by NotifyDataStarted() which is bad.
const int64_t channelOffset = stream->mSeekTarget != -1
? stream->mSeekTarget
: stream->mChannelOffset;
// Figure out where we should be reading from. It's the first
// uncached byte after the current mStreamOffset.
const int64_t dataOffset =
stream->GetCachedDataEndInternal(aLock, stream->mStreamOffset);
MOZ_ASSERT(dataOffset >= 0);
// Compute where we'd actually seek to to read at readOffset
int64_t desiredOffset = dataOffset;
if (stream->mIsTransportSeekable) {
if (desiredOffset > channelOffset &&
desiredOffset <= channelOffset + SEEK_VS_READ_THRESHOLD) {
// Assume it's more efficient to just keep reading up to the
// desired position instead of trying to seek
desiredOffset = channelOffset;
}
} else {
// We can't seek directly to the desired offset...
if (channelOffset > desiredOffset) {
// Reading forward won't get us anywhere, we need to go backwards.
// Seek back to 0 (the client will reopen the stream) and then
// read forward.
NS_WARNING("Can't seek backwards, so seeking to 0");
desiredOffset = 0;
// Flush cached blocks out, since if this is a live stream
// the cached data may be completely different next time we
// read it. We have to assume that live streams don't
// advertise themselves as being seekable...
ReleaseStreamBlocks(aLock, stream);
} else {
// otherwise reading forward is looking good, so just stay where we
// are and don't trigger a channel seek!
desiredOffset = channelOffset;
}
}
// Figure out if we should be reading data now or not. It's amazing
// how complex this is, but each decision is simple enough.
bool enableReading;
if (stream->mStreamLength >= 0 && dataOffset >= stream->mStreamLength) {
// We want data at the end of the stream, where there's nothing to
// read. We don't want to try to read if we're suspended, because that
// might create a new channel and seek unnecessarily (and incorrectly,
// since HTTP doesn't allow seeking to the actual EOF), and we don't want
// to suspend if we're not suspended and already reading at the end of
// the stream, since there just might be more data than the server
// advertised with Content-Length, and we may as well keep reading.
// But we don't want to seek to the end of the stream if we're not
// already there.
LOG("Stream %p at end of stream", stream);
enableReading =
!stream->mCacheSuspended && stream->mStreamLength == channelOffset;
} else if (desiredOffset < stream->mStreamOffset) {
// We're reading to try to catch up to where the current stream
// reader wants to be. Better not stop.
LOG("Stream %p catching up", stream);
enableReading = true;
} else if (desiredOffset < stream->mStreamOffset + BLOCK_SIZE) {
// The stream reader is waiting for us, or nearly so. Better feed it.
LOG("Stream %p feeding reader", stream);
enableReading = true;
} else if (!stream->mIsTransportSeekable &&
nonSeekableReadaheadBlockCount >=
maxBlocks * NONSEEKABLE_READAHEAD_MAX) {
// This stream is not seekable and there are already too many blocks
// being cached for readahead for nonseekable streams (which we can't
// free). So stop reading ahead now.
LOG("Stream %p throttling non-seekable readahead", stream);
enableReading = false;
} else if (mIndex.Length() > uint32_t(maxBlocks)) {
// We're in the process of bringing the cache size back to the
// desired limit, so don't bring in more data yet
LOG("Stream %p throttling to reduce cache size", stream);
enableReading = false;
} else {
TimeDuration predictedNewDataUse =
PredictNextUseForIncomingData(aLock, stream);
if (stream->mThrottleReadahead && stream->mCacheSuspended &&
predictedNewDataUse.ToSeconds() > MediaCache::ResumeThreshold()) {
// Don't need data for a while, so don't bother waking up the stream
LOG("Stream %p avoiding wakeup since more data is not needed", stream);
enableReading = false;
} else if (stream->mThrottleReadahead &&
predictedNewDataUse.ToSeconds() >
MediaCache::ReadaheadLimit()) {
// Don't read ahead more than this much
LOG("Stream %p throttling to avoid reading ahead too far", stream);
enableReading = false;
} else if (aFreeBlockCount > 0) {
// Free blocks in the cache, so keep reading
LOG("Stream %p reading since there are free blocks", stream);
enableReading = true;
} else if (latestNextUse <= TimeDuration(0)) {
// No reusable blocks, so can't read anything
LOG("Stream %p throttling due to no reusable blocks", stream);
enableReading = false;
} else {
// Read ahead if the data we expect to read is more valuable than
// the least valuable block in the main part of the cache
LOG("Stream %p predict next data in %f, current worst block is %f",
stream, predictedNewDataUse.ToSeconds(), latestNextUse.ToSeconds());
enableReading = predictedNewDataUse < latestNextUse;
}
}
if (enableReading) {
for (uint32_t j = 0; j < i; ++j) {
MediaCacheStream* other = mStreams[j];
if (other->mResourceID == stream->mResourceID && !other->mClosed &&
!other->mClientSuspended && !other->mChannelEnded &&
OffsetToBlockIndexUnchecked(other->mSeekTarget != -1
? other->mSeekTarget
: other->mChannelOffset) ==
OffsetToBlockIndexUnchecked(desiredOffset)) {
// This block is already going to be read by the other stream.
// So don't try to read it from this stream as well.
enableReading = false;
LOG("Stream %p waiting on same block (%" PRId32 ") from stream %p",
stream, OffsetToBlockIndexUnchecked(desiredOffset), other);
break;
}
}
}
if (channelOffset != desiredOffset && enableReading) {
// We need to seek now.
NS_ASSERTION(stream->mIsTransportSeekable || desiredOffset == 0,
"Trying to seek in a non-seekable stream!");
// Round seek offset down to the start of the block. This is essential
// because we don't want to think we have part of a block already
// in mPartialBlockBuffer.
stream->mSeekTarget =
OffsetToBlockIndexUnchecked(desiredOffset) * BLOCK_SIZE;
aActions[i].mTag = StreamAction::SEEK;
aActions[i].mResume = stream->mCacheSuspended;
aActions[i].mSeekTarget = stream->mSeekTarget;
} else if (enableReading && stream->mCacheSuspended) {
aActions[i].mTag = StreamAction::RESUME;
} else if (!enableReading && !stream->mCacheSuspended) {
aActions[i].mTag = StreamAction::SUSPEND;
}
LOG("Stream %p, mCacheSuspended=%d, enableReading=%d, action=%s", stream,
stream->mCacheSuspended, enableReading,
aActions[i].mTag == StreamAction::SEEK ? "SEEK"
: aActions[i].mTag == StreamAction::RESUME ? "RESUME"
: aActions[i].mTag == StreamAction::SUSPEND ? "SUSPEND"
: "NONE");
}
}
void MediaCache::QueueUpdate(AutoLock&) {
// Queuing an update while we're in an update raises a high risk of
// triggering endless events
NS_ASSERTION(!mInUpdate, "Queuing an update while we're in an update");
if (mUpdateQueued) {
return;
}
mUpdateQueued = true;
sThread->Dispatch(NS_NewRunnableFunction(
"MediaCache::QueueUpdate", [self = RefPtr<MediaCache>(this)]() mutable {
self->Update();
// Ensure MediaCache is deleted on the main thread.
NS_ReleaseOnMainThread("UpdateEvent::mMediaCache", self.forget());
}));
}
void MediaCache::QueueSuspendedStatusUpdate(AutoLock&, int64_t aResourceID) {
if (!mSuspendedStatusToNotify.Contains(aResourceID)) {
mSuspendedStatusToNotify.AppendElement(aResourceID);
}
}
#ifdef DEBUG_VERIFY_CACHE
void MediaCache::Verify(AutoLock&) {
mFreeBlocks.Verify();
for (uint32_t i = 0; i < mStreams.Length(); ++i) {
MediaCacheStream* stream = mStreams[i];
stream->mReadaheadBlocks.Verify();
stream->mPlayedBlocks.Verify();
stream->mMetadataBlocks.Verify();
// Verify that the readahead blocks are listed in stream block order
int32_t block = stream->mReadaheadBlocks.GetFirstBlock();
int32_t lastStreamBlock = -1;
while (block >= 0) {
uint32_t j = 0;
while (mIndex[block].mOwners[j].mStream != stream) {
++j;
}
int32_t nextStreamBlock = int32_t(mIndex[block].mOwners[j].mStreamBlock);
NS_ASSERTION(lastStreamBlock < nextStreamBlock,
"Blocks not increasing in readahead stream");
lastStreamBlock = nextStreamBlock;
block = stream->mReadaheadBlocks.GetNextBlock(block);
}
}
}
#endif
void MediaCache::InsertReadaheadBlock(AutoLock& aLock, BlockOwner* aBlockOwner,
int32_t aBlockIndex) {
// Find the last block whose stream block is before aBlockIndex's
// stream block, and insert after it
MediaCacheStream* stream = aBlockOwner->mStream;
int32_t readaheadIndex = stream->mReadaheadBlocks.GetLastBlock();
while (readaheadIndex >= 0) {
BlockOwner* bo = GetBlockOwner(aLock, readaheadIndex, stream);
NS_ASSERTION(bo, "stream must own its blocks");
if (bo->mStreamBlock < aBlockOwner->mStreamBlock) {
stream->mReadaheadBlocks.AddAfter(aBlockIndex, readaheadIndex);
return;
}
NS_ASSERTION(bo->mStreamBlock > aBlockOwner->mStreamBlock,
"Duplicated blocks??");
readaheadIndex = stream->mReadaheadBlocks.GetPrevBlock(readaheadIndex);
}
stream->mReadaheadBlocks.AddFirstBlock(aBlockIndex);
Verify(aLock);
}
void MediaCache::AllocateAndWriteBlock(AutoLock& aLock,
MediaCacheStream* aStream,
int32_t aStreamBlockIndex,
Span<const uint8_t> aData1,
Span<const uint8_t> aData2) {
MOZ_ASSERT(sThread->IsOnCurrentThread());
// Remove all cached copies of this block
ResourceStreamIterator iter(this, aStream->mResourceID);
while (MediaCacheStream* stream = iter.Next(aLock)) {
while (aStreamBlockIndex >= int32_t(stream->mBlocks.Length())) {
stream->mBlocks.AppendElement(-1);
}
if (stream->mBlocks[aStreamBlockIndex] >= 0) {
// We no longer want to own this block
int32_t globalBlockIndex = stream->mBlocks[aStreamBlockIndex];
LOG("Released block %d from stream %p block %d(%" PRId64 ")",
globalBlockIndex, stream, aStreamBlockIndex,
aStreamBlockIndex * BLOCK_SIZE);
RemoveBlockOwner(aLock, globalBlockIndex, stream);
}
}
// Extend the mBlocks array as necessary
TimeStamp now = TimeStamp::Now();
int32_t blockIndex =
FindBlockForIncomingData(aLock, now, aStream, aStreamBlockIndex);
if (blockIndex >= 0) {
FreeBlock(aLock, blockIndex);
Block* block = &mIndex[blockIndex];
LOG("Allocated block %d to stream %p block %d(%" PRId64 ")", blockIndex,
aStream, aStreamBlockIndex, aStreamBlockIndex * BLOCK_SIZE);
ResourceStreamIterator iter(this, aStream->mResourceID);
while (MediaCacheStream* stream = iter.Next(aLock)) {
BlockOwner* bo = block->mOwners.AppendElement();
if (!bo) {
// Roll back mOwners if any allocation fails.
block->mOwners.Clear();
return;
}
bo->mStream = stream;
}
if (block->mOwners.IsEmpty()) {
// This happens when all streams with the resource id are closed. We can
// just return here now and discard the data.
return;
}
// Tell each stream using this resource about the new block.
for (auto& bo : block->mOwners) {
bo.mStreamBlock = aStreamBlockIndex;
bo.mLastUseTime = now;
bo.mStream->mBlocks[aStreamBlockIndex] = blockIndex;
if (aStreamBlockIndex * BLOCK_SIZE < bo.mStream->mStreamOffset) {
bo.mClass = PLAYED_BLOCK;
// This must be the most-recently-used block, since we
// marked it as used now (which may be slightly bogus, but we'll
// treat it as used for simplicity).
GetListForBlock(aLock, &bo)->AddFirstBlock(blockIndex);
Verify(aLock);
} else {
// This may not be the latest readahead block, although it usually
// will be. We may have to scan for the right place to insert
// the block in the list.
bo.mClass = READAHEAD_BLOCK;
InsertReadaheadBlock(aLock, &bo, blockIndex);
}
}
// Invariant: block->mOwners.IsEmpty() iff we can find an entry
// in mFreeBlocks for a given blockIndex.
MOZ_DIAGNOSTIC_ASSERT(!block->mOwners.IsEmpty());
mFreeBlocks.RemoveBlock(blockIndex);
nsresult rv = mBlockCache->WriteBlock(blockIndex, aData1, aData2);
if (NS_FAILED(rv)) {
LOG("Released block %d from stream %p block %d(%" PRId64 ")", blockIndex,
aStream, aStreamBlockIndex, aStreamBlockIndex * BLOCK_SIZE);
FreeBlock(aLock, blockIndex);
}
}
// Queue an Update since the cache state has changed (for example
// we might want to stop loading because the cache is full)
QueueUpdate(aLock);
}
void MediaCache::OpenStream(AutoLock& aLock, MediaCacheStream* aStream,
bool aIsClone) {
LOG("Stream %p opened, aIsClone=%d, mCacheSuspended=%d, "
"mDidNotifyDataEnded=%d",
aStream, aIsClone, aStream->mCacheSuspended,
aStream->mDidNotifyDataEnded);
mStreams.AppendElement(aStream);
// A cloned stream should've got the ID from its original.
if (!aIsClone) {
MOZ_ASSERT(aStream->mResourceID == 0, "mResourceID has been initialized.");
aStream->mResourceID = AllocateResourceID(aLock);
}
// We should have a valid ID now no matter it is cloned or not.
MOZ_ASSERT(aStream->mResourceID > 0, "mResourceID is invalid");
// Queue an update since a new stream has been opened.
QueueUpdate(aLock);
}
void MediaCache::ReleaseStream(AutoLock&, MediaCacheStream* aStream) {
MOZ_ASSERT(OwnerThread()->IsOnCurrentThread());
LOG("Stream %p closed", aStream);
mStreams.RemoveElement(aStream);
// The caller needs to call QueueUpdate() to re-run Update().
}
void MediaCache::ReleaseStreamBlocks(AutoLock& aLock,
MediaCacheStream* aStream) {
// XXX scanning the entire stream doesn't seem great, if not much of it
// is cached, but the only easy alternative is to scan the entire cache
// which isn't better
uint32_t length = aStream->mBlocks.Length();
for (uint32_t i = 0; i < length; ++i) {
int32_t blockIndex = aStream->mBlocks[i];
if (blockIndex >= 0) {
LOG("Released block %d from stream %p block %d(%" PRId64 ")", blockIndex,
aStream, i, i * BLOCK_SIZE);
RemoveBlockOwner(aLock, blockIndex, aStream);
}
}
}
void MediaCache::Truncate() {
uint32_t end;
for (end = mIndex.Length(); end > 0; --end) {
if (!IsBlockFree(end - 1)) break;
mFreeBlocks.RemoveBlock(end - 1);
}
if (end < mIndex.Length()) {
mIndex.TruncateLength(end);
// XXX We could truncate the cache file here, but we don't seem
// to have a cross-platform API for doing that. At least when all
// streams are closed we shut down the cache, which erases the
// file at that point.
}
}
void MediaCache::NoteBlockUsage(AutoLock& aLock, MediaCacheStream* aStream,
int32_t aBlockIndex, int64_t aStreamOffset,
MediaCacheStream::ReadMode aMode,
TimeStamp aNow) {
if (aBlockIndex < 0) {
// this block is not in the cache yet
return;
}
BlockOwner* bo = GetBlockOwner(aLock, aBlockIndex, aStream);
if (!bo) {
// this block is not in the cache yet
return;
}
// The following check has to be <= because the stream offset has
// not yet been updated for the data read from this block
NS_ASSERTION(bo->mStreamBlock * BLOCK_SIZE <= aStreamOffset,
"Using a block that's behind the read position?");
GetListForBlock(aLock, bo)->RemoveBlock(aBlockIndex);
bo->mClass =
(aMode == MediaCacheStream::MODE_METADATA || bo->mClass == METADATA_BLOCK)
? METADATA_BLOCK
: PLAYED_BLOCK;
// Since this is just being used now, it can definitely be at the front
// of mMetadataBlocks or mPlayedBlocks
GetListForBlock(aLock, bo)->AddFirstBlock(aBlockIndex);
bo->mLastUseTime = aNow;
Verify(aLock);
}
void MediaCache::NoteSeek(AutoLock& aLock, MediaCacheStream* aStream,
int64_t aOldOffset) {
if (aOldOffset < aStream->mStreamOffset) {
// We seeked forward. Convert blocks from readahead to played.
// Any readahead block that intersects the seeked-over range must
// be converted.
int32_t blockIndex = OffsetToBlockIndex(aOldOffset);
if (blockIndex < 0) {
return;
}
int32_t endIndex =
std::min(OffsetToBlockIndex(aStream->mStreamOffset + (BLOCK_SIZE - 1)),
int32_t(aStream->mBlocks.Length()));
if (endIndex < 0) {
return;
}
TimeStamp now = TimeStamp::Now();
while (blockIndex < endIndex) {
int32_t cacheBlockIndex = aStream->mBlocks[blockIndex];
if (cacheBlockIndex >= 0) {
// Marking the block used may not be exactly what we want but
// it's simple
NoteBlockUsage(aLock, aStream, cacheBlockIndex, aStream->mStreamOffset,
MediaCacheStream::MODE_PLAYBACK, now);
}
++blockIndex;
}
} else {
// We seeked backward. Convert from played to readahead.
// Any played block that is entirely after the start of the seeked-over
// range must be converted.
int32_t blockIndex =
OffsetToBlockIndex(aStream->mStreamOffset + (BLOCK_SIZE - 1));
if (blockIndex < 0) {
return;
}
int32_t endIndex =
std::min(OffsetToBlockIndex(aOldOffset + (BLOCK_SIZE - 1)),
int32_t(aStream->mBlocks.Length()));
if (endIndex < 0) {
return;
}
while (blockIndex < endIndex) {
MOZ_ASSERT(endIndex > 0);
int32_t cacheBlockIndex = aStream->mBlocks[endIndex - 1];
if (cacheBlockIndex >= 0) {
BlockOwner* bo = GetBlockOwner(aLock, cacheBlockIndex, aStream);
NS_ASSERTION(bo, "Stream doesn't own its blocks?");
if (bo->mClass == PLAYED_BLOCK) {
aStream->mPlayedBlocks.RemoveBlock(cacheBlockIndex);
bo->mClass = READAHEAD_BLOCK;
// Adding this as the first block is sure to be OK since
// this must currently be the earliest readahead block
// (that's why we're proceeding backwards from the end of
// the seeked range to the start)
aStream->mReadaheadBlocks.AddFirstBlock(cacheBlockIndex);
Verify(aLock);
}
}
--endIndex;
}
}
}
void MediaCacheStream::NotifyLoadID(uint32_t aLoadID) {
MOZ_ASSERT(aLoadID > 0);
nsCOMPtr<nsIRunnable> r = NS_NewRunnableFunction(
"MediaCacheStream::NotifyLoadID",
[client = RefPtr<ChannelMediaResource>(mClient), this, aLoadID]() {
AutoLock lock(mMediaCache->Monitor());
mLoadID = aLoadID;
});
OwnerThread()->Dispatch(r.forget());
}
void MediaCacheStream::NotifyDataStartedInternal(uint32_t aLoadID,
int64_t aOffset,
bool aSeekable,
int64_t aLength) {
MOZ_ASSERT(OwnerThread()->IsOnCurrentThread());
MOZ_ASSERT(aLoadID > 0);
LOG("Stream %p DataStarted: %" PRId64 " aLoadID=%u aLength=%" PRId64, this,
aOffset, aLoadID, aLength);
AutoLock lock(mMediaCache->Monitor());
NS_WARNING_ASSERTION(aOffset == mSeekTarget || aOffset == mChannelOffset,
"Server is giving us unexpected offset");
MOZ_ASSERT(aOffset >= 0);
if (aLength >= 0) {
mStreamLength = aLength;
}
mChannelOffset = aOffset;
if (mStreamLength >= 0) {
// If we started reading at a certain offset, then for sure
// the stream is at least that long.
mStreamLength = std::max(mStreamLength, mChannelOffset);
}
mLoadID = aLoadID;
MOZ_ASSERT(aOffset == 0 || aSeekable,
"channel offset must be zero when we become non-seekable");
mIsTransportSeekable = aSeekable;
// Queue an Update since we may change our strategy for dealing
// with this stream
mMediaCache->QueueUpdate(lock);
// Reset mSeekTarget since the seek is completed so MediaCache::Update() will
// make decisions based on mChannelOffset instead of mSeekTarget.
mSeekTarget = -1;
// Reset these flags since a new load has begun.
mChannelEnded = false;
mDidNotifyDataEnded = false;
UpdateDownloadStatistics(lock);
}
void MediaCacheStream::NotifyDataStarted(uint32_t aLoadID, int64_t aOffset,
bool aSeekable, int64_t aLength) {
MOZ_ASSERT(NS_IsMainThread());
MOZ_ASSERT(aLoadID > 0);
nsCOMPtr<nsIRunnable> r = NS_NewRunnableFunction(
"MediaCacheStream::NotifyDataStarted",
[=, client = RefPtr<ChannelMediaResource>(mClient)]() {
NotifyDataStartedInternal(aLoadID, aOffset, aSeekable, aLength);
});
OwnerThread()->Dispatch(r.forget());
}
void MediaCacheStream::NotifyDataReceived(uint32_t aLoadID, uint32_t aCount,
const uint8_t* aData) {
MOZ_ASSERT(OwnerThread()->IsOnCurrentThread());
MOZ_ASSERT(aLoadID > 0);
AutoLock lock(mMediaCache->Monitor());
if (mClosed) {
// Nothing to do if the stream is closed.
return;
}
LOG("Stream %p DataReceived at %" PRId64 " count=%u aLoadID=%u", this,
mChannelOffset, aCount, aLoadID);
if (mLoadID != aLoadID) {
// mChannelOffset is updated to a new position when loading a new channel.
// We should discard the data coming from the old channel so it won't be
// stored to the wrong positoin.
return;
}
mDownloadStatistics.AddBytes(aCount);
// True if we commit any blocks to the cache.
bool cacheUpdated = false;
auto source = Span<const uint8_t>(aData, aCount);
// We process the data one block (or part of a block) at a time
while (!source.IsEmpty()) {
// The data we've collected so far in the partial block.
auto partial = Span<const uint8_t>(mPartialBlockBuffer.get(),
OffsetInBlock(mChannelOffset));
// The number of bytes needed to complete the partial block.
size_t remaining = BLOCK_SIZE - partial.Length();
if (source.Length() >= remaining) {
// We have a whole block now to write it out.
mMediaCache->AllocateAndWriteBlock(
lock, this, OffsetToBlockIndexUnchecked(mChannelOffset), partial,
source.First(remaining));
source = source.From(remaining);
mChannelOffset += remaining;
cacheUpdated = true;
} else {
// The buffer to be filled in the partial block.
auto buf = Span<uint8_t>(mPartialBlockBuffer.get() + partial.Length(),
remaining);
memcpy(buf.Elements(), source.Elements(), source.Length());
mChannelOffset += source.Length();
break;
}
}
MediaCache::ResourceStreamIterator iter(mMediaCache, mResourceID);
while (MediaCacheStream* stream = iter.Next(lock)) {
if (stream->mStreamLength >= 0) {
// The stream is at least as long as what we've read
stream->mStreamLength = std::max(stream->mStreamLength, mChannelOffset);
}
stream->mClient->CacheClientNotifyDataReceived();
}
// XXX it would be fairly easy to optimize things a lot more to
// avoid waking up reader threads unnecessarily
if (cacheUpdated) {
// Wake up the reader who is waiting for the committed blocks.
lock.NotifyAll();
}
}
void MediaCacheStream::FlushPartialBlockInternal(AutoLock& aLock,
bool aNotifyAll) {
MOZ_ASSERT(OwnerThread()->IsOnCurrentThread());
int32_t blockIndex = OffsetToBlockIndexUnchecked(mChannelOffset);
int32_t blockOffset = OffsetInBlock(mChannelOffset);
if (blockOffset > 0) {
LOG("Stream %p writing partial block: [%d] bytes; "
"mStreamOffset [%" PRId64 "] mChannelOffset[%" PRId64
"] mStreamLength [%" PRId64 "] notifying: [%s]",
this, blockOffset, mStreamOffset, mChannelOffset, mStreamLength,
aNotifyAll ? "yes" : "no");
// Write back the partial block
memset(mPartialBlockBuffer.get() + blockOffset, 0,
BLOCK_SIZE - blockOffset);
auto data = Span<const uint8_t>(mPartialBlockBuffer.get(), BLOCK_SIZE);
mMediaCache->AllocateAndWriteBlock(aLock, this, blockIndex, data);
}
// |mChannelOffset == 0| means download ends with no bytes received.
// We should also wake up those readers who are waiting for data
// that will never come.
if ((blockOffset > 0 || mChannelOffset == 0) && aNotifyAll) {
// Wake up readers who may be waiting for this data
aLock.NotifyAll();
}
}
void MediaCacheStream::UpdateDownloadStatistics(AutoLock&) {
if (mChannelEnded || mClientSuspended) {
mDownloadStatistics.Stop();
} else {
mDownloadStatistics.Start();
}
}
void MediaCacheStream::NotifyDataEndedInternal(uint32_t aLoadID,
nsresult aStatus) {
MOZ_ASSERT(OwnerThread()->IsOnCurrentThread());
AutoLock lock(mMediaCache->Monitor());
if (mClosed || aLoadID != mLoadID) {
// Nothing to do if the stream is closed or a new load has begun.
return;
}
// It is prudent to update channel/cache status before calling
// CacheClientNotifyDataEnded() which will read |mChannelEnded|.
mChannelEnded = true;
mMediaCache->QueueUpdate(lock);
UpdateDownloadStatistics(lock);
if (NS_FAILED(aStatus)) {
// Notify the client about this network error.
mDidNotifyDataEnded = true;
mNotifyDataEndedStatus = aStatus;
mClient->CacheClientNotifyDataEnded(aStatus);
// Wake up the readers so they can fail gracefully.
lock.NotifyAll();
return;
}
// Note we don't flush the partial block when download ends abnormally for
// the padding zeros will give wrong data to other streams.
FlushPartialBlockInternal(lock, true);
MediaCache::ResourceStreamIterator iter(mMediaCache, mResourceID);
while (MediaCacheStream* stream = iter.Next(lock)) {
// We read the whole stream, so remember the true length
stream->mStreamLength = mChannelOffset;
if (!stream->mDidNotifyDataEnded) {
stream->mDidNotifyDataEnded = true;
stream->mNotifyDataEndedStatus = aStatus;
stream->mClient->CacheClientNotifyDataEnded(aStatus);
}
}
}
void MediaCacheStream::NotifyDataEnded(uint32_t aLoadID, nsresult aStatus) {
MOZ_ASSERT(NS_IsMainThread());
MOZ_ASSERT(aLoadID > 0);
RefPtr<ChannelMediaResource> client = mClient;
nsCOMPtr<nsIRunnable> r = NS_NewRunnableFunction(
"MediaCacheStream::NotifyDataEnded", [client, this, aLoadID, aStatus]() {
NotifyDataEndedInternal(aLoadID, aStatus);
});
OwnerThread()->Dispatch(r.forget());
}
void MediaCacheStream::NotifyClientSuspended(bool aSuspended) {
MOZ_ASSERT(NS_IsMainThread());
RefPtr<ChannelMediaResource> client = mClient;
nsCOMPtr<nsIRunnable> r = NS_NewRunnableFunction(
"MediaCacheStream::NotifyClientSuspended", [client, this, aSuspended]() {
AutoLock lock(mMediaCache->Monitor());
if (!mClosed && mClientSuspended != aSuspended) {
mClientSuspended = aSuspended;
// mClientSuspended changes the decision of reading streams.
mMediaCache->QueueUpdate(lock);
UpdateDownloadStatistics(lock);
if (mClientSuspended) {
// Download is suspended. Wake up the readers that might be able to
// get data from the partial block.
lock.NotifyAll();
}
}
});
OwnerThread()->Dispatch(r.forget());
}
void MediaCacheStream::NotifyResume() {
MOZ_ASSERT(NS_IsMainThread());
nsCOMPtr<nsIRunnable> r = NS_NewRunnableFunction(
"MediaCacheStream::NotifyResume",
[this, client = RefPtr<ChannelMediaResource>(mClient)]() {
AutoLock lock(mMediaCache->Monitor());
if (mClosed) {
return;
}
// Don't resume download if we are already at the end of the stream for
// seek will fail and be wasted anyway.
int64_t offset = mSeekTarget != -1 ? mSeekTarget : mChannelOffset;
if (mStreamLength < 0 || offset < mStreamLength) {
mClient->CacheClientSeek(offset, false);
// DownloadResumed() will be notified when a new channel is opened.
}
// The channel remains dead. If we want to read some other data in the
// future, CacheClientSeek() will be called to reopen the channel.
});
OwnerThread()->Dispatch(r.forget());
}
MediaCacheStream::~MediaCacheStream() {
MOZ_ASSERT(NS_IsMainThread(), "Only call on main thread");
MOZ_ASSERT(!mPinCount, "Unbalanced Pin");
MOZ_ASSERT(!mMediaCache || mClosed);
uint32_t lengthKb = uint32_t(std::min(
std::max(mStreamLength, int64_t(0)) / 1024, int64_t(UINT32_MAX)));
LOG("MediaCacheStream::~MediaCacheStream(this=%p) "
"MEDIACACHESTREAM_LENGTH_KB=%" PRIu32,
this, lengthKb);
}
bool MediaCacheStream::AreAllStreamsForResourceSuspended(AutoLock& aLock) {
MOZ_ASSERT(!NS_IsMainThread());
MediaCache::ResourceStreamIterator iter(mMediaCache, mResourceID);
// Look for a stream that's able to read the data we need
int64_t dataOffset = -1;
while (MediaCacheStream* stream = iter.Next(aLock)) {
if (stream->mCacheSuspended || stream->mChannelEnded || stream->mClosed) {
continue;
}
if (dataOffset < 0) {
dataOffset = GetCachedDataEndInternal(aLock, mStreamOffset);
}
// Ignore streams that are reading beyond the data we need
if (stream->mChannelOffset > dataOffset) {
continue;
}
return false;
}
return true;
}
RefPtr<GenericPromise> MediaCacheStream::Close() {
MOZ_ASSERT(NS_IsMainThread());
if (!mMediaCache) {
return GenericPromise::CreateAndResolve(true, __func__);
}
return InvokeAsync(OwnerThread(), "MediaCacheStream::Close",
[this, client = RefPtr<ChannelMediaResource>(mClient)] {
AutoLock lock(mMediaCache->Monitor());
CloseInternal(lock);
return GenericPromise::CreateAndResolve(true, __func__);
});
}
void MediaCacheStream::CloseInternal(AutoLock& aLock) {
MOZ_ASSERT(OwnerThread()->IsOnCurrentThread());
if (mClosed) {
return;
}
// Closing a stream will change the return value of
// MediaCacheStream::AreAllStreamsForResourceSuspended as well as
// ChannelMediaResource::IsSuspendedByCache. Let's notify it.
mMediaCache->QueueSuspendedStatusUpdate(aLock, mResourceID);
mClosed = true;
mMediaCache->ReleaseStreamBlocks(aLock, this);
mMediaCache->ReleaseStream(aLock, this);
// Wake up any blocked readers
aLock.NotifyAll();
// Queue an Update since we may have created more free space.
mMediaCache->QueueUpdate(aLock);
}
void MediaCacheStream::Pin() {
MOZ_ASSERT(!NS_IsMainThread());
AutoLock lock(mMediaCache->Monitor());
++mPinCount;
// Queue an Update since we may no longer want to read more into the
// cache, if this stream's block have become non-evictable
mMediaCache->QueueUpdate(lock);
}
void MediaCacheStream::Unpin() {
MOZ_ASSERT(!NS_IsMainThread());
AutoLock lock(mMediaCache->Monitor());
NS_ASSERTION(mPinCount > 0, "Unbalanced Unpin");
--mPinCount;
// Queue an Update since we may be able to read more into the
// cache, if this stream's block have become evictable
mMediaCache->QueueUpdate(lock);
}
int64_t MediaCacheStream::GetLength() const {
MOZ_ASSERT(!NS_IsMainThread());
AutoLock lock(mMediaCache->Monitor());
return mStreamLength;
}
MediaCacheStream::LengthAndOffset MediaCacheStream::GetLengthAndOffset() const {
MOZ_ASSERT(NS_IsMainThread());
AutoLock lock(mMediaCache->Monitor());
return {mStreamLength, mChannelOffset};
}
int64_t MediaCacheStream::GetNextCachedData(int64_t aOffset) {
MOZ_ASSERT(!NS_IsMainThread());
AutoLock lock(mMediaCache->Monitor());
return GetNextCachedDataInternal(lock, aOffset);
}
int64_t MediaCacheStream::GetCachedDataEnd(int64_t aOffset) {
MOZ_ASSERT(!NS_IsMainThread());
AutoLock lock(mMediaCache->Monitor());
return GetCachedDataEndInternal(lock, aOffset);
}
bool MediaCacheStream::IsDataCachedToEndOfStream(int64_t aOffset) {
MOZ_ASSERT(!NS_IsMainThread());
AutoLock lock(mMediaCache->Monitor());
if (mStreamLength < 0) return false;
return GetCachedDataEndInternal(lock, aOffset) >= mStreamLength;
}
int64_t MediaCacheStream::GetCachedDataEndInternal(AutoLock&, int64_t aOffset) {
int32_t blockIndex = OffsetToBlockIndex(aOffset);
if (blockIndex < 0) {
return aOffset;
}
while (size_t(blockIndex) < mBlocks.Length() && mBlocks[blockIndex] != -1) {
++blockIndex;
}
int64_t result = blockIndex * BLOCK_SIZE;
if (blockIndex == OffsetToBlockIndexUnchecked(mChannelOffset)) {
// The block containing mChannelOffset may be partially read but not
// yet committed to the main cache
result = mChannelOffset;
}
if (mStreamLength >= 0) {
// The last block in the cache may only be partially valid, so limit
// the cached range to the stream length
result = std::min(result, mStreamLength);
}
return std::max(result, aOffset);
}
int64_t MediaCacheStream::GetNextCachedDataInternal(AutoLock&,
int64_t aOffset) {
if (aOffset == mStreamLength) return -1;
int32_t startBlockIndex = OffsetToBlockIndex(aOffset);
if (startBlockIndex < 0) {
return -1;
}
int32_t channelBlockIndex = OffsetToBlockIndexUnchecked(mChannelOffset);
if (startBlockIndex == channelBlockIndex && aOffset < mChannelOffset) {
// The block containing mChannelOffset is partially read, but not
// yet committed to the main cache. aOffset lies in the partially
// read portion, thus it is effectively cached.
return aOffset;
}
if (size_t(startBlockIndex) >= mBlocks.Length()) return -1;
// Is the current block cached?
if (mBlocks[startBlockIndex] != -1) return aOffset;
// Count the number of uncached blocks
bool hasPartialBlock = OffsetInBlock(mChannelOffset) != 0;
int32_t blockIndex = startBlockIndex + 1;
while (true) {
if ((hasPartialBlock && blockIndex == channelBlockIndex) ||
(size_t(blockIndex) < mBlocks.Length() && mBlocks[blockIndex] != -1)) {
// We at the incoming channel block, which has has data in it,
// or are we at a cached block. Return index of block start.
return blockIndex * BLOCK_SIZE;
}
// No more cached blocks?
if (size_t(blockIndex) >= mBlocks.Length()) return -1;
++blockIndex;
}
MOZ_ASSERT_UNREACHABLE("Should return in loop");
return -1;
}
void MediaCacheStream::SetReadMode(ReadMode aMode) {
nsCOMPtr<nsIRunnable> r = NS_NewRunnableFunction(
"MediaCacheStream::SetReadMode",
[this, client = RefPtr<ChannelMediaResource>(mClient), aMode]() {
AutoLock lock(mMediaCache->Monitor());
if (!mClosed && mCurrentMode != aMode) {
mCurrentMode = aMode;
mMediaCache->QueueUpdate(lock);
}
});
OwnerThread()->Dispatch(r.forget());
}
void MediaCacheStream::SetPlaybackRate(uint32_t aBytesPerSecond) {
MOZ_ASSERT(!NS_IsMainThread());
MOZ_ASSERT(aBytesPerSecond > 0, "Zero playback rate not allowed");
AutoLock lock(mMediaCache->Monitor());
if (!mClosed && mPlaybackBytesPerSecond != aBytesPerSecond) {
mPlaybackBytesPerSecond = aBytesPerSecond;
mMediaCache->QueueUpdate(lock);
}
}
nsresult MediaCacheStream::Seek(AutoLock& aLock, int64_t aOffset) {
MOZ_ASSERT(!NS_IsMainThread());
if (!IsOffsetAllowed(aOffset)) {
return NS_ERROR_ILLEGAL_VALUE;
}
if (mClosed) {
return NS_ERROR_ABORT;
}
int64_t oldOffset = mStreamOffset;
mStreamOffset = aOffset;
LOG("Stream %p Seek to %" PRId64, this, mStreamOffset);
mMediaCache->NoteSeek(aLock, this, oldOffset);
mMediaCache->QueueUpdate(aLock);
return NS_OK;
}
void MediaCacheStream::ThrottleReadahead(bool bThrottle) {
MOZ_ASSERT(NS_IsMainThread());
nsCOMPtr<nsIRunnable> r = NS_NewRunnableFunction(
"MediaCacheStream::ThrottleReadahead",
[client = RefPtr<ChannelMediaResource>(mClient), this, bThrottle]() {
AutoLock lock(mMediaCache->Monitor());
if (!mClosed && mThrottleReadahead != bThrottle) {
LOGI("Stream %p ThrottleReadahead %d", this, bThrottle);
mThrottleReadahead = bThrottle;
mMediaCache->QueueUpdate(lock);
}
});
OwnerThread()->Dispatch(r.forget());
}
uint32_t MediaCacheStream::ReadPartialBlock(AutoLock&, int64_t aOffset,
Span<char> aBuffer) {
MOZ_ASSERT(IsOffsetAllowed(aOffset));
if (OffsetToBlockIndexUnchecked(mChannelOffset) !=
OffsetToBlockIndexUnchecked(aOffset) ||
aOffset >= mChannelOffset) {
// Not in the partial block or no data to read.
return 0;
}
auto source = Span<const uint8_t>(
mPartialBlockBuffer.get() + OffsetInBlock(aOffset),
OffsetInBlock(mChannelOffset) - OffsetInBlock(aOffset));
// We have |source.Length() <= BLOCK_SIZE < INT32_MAX| to guarantee
// that |bytesToRead| can fit into a uint32_t.
uint32_t bytesToRead = std::min(aBuffer.Length(), source.Length());
memcpy(aBuffer.Elements(), source.Elements(), bytesToRead);
return bytesToRead;
}
Result<uint32_t, nsresult> MediaCacheStream::ReadBlockFromCache(
AutoLock& aLock, int64_t aOffset, Span<char> aBuffer,
bool aNoteBlockUsage) {
MOZ_ASSERT(IsOffsetAllowed(aOffset));
// OffsetToBlockIndexUnchecked() is always non-negative.
uint32_t index = OffsetToBlockIndexUnchecked(aOffset);
int32_t cacheBlock = index < mBlocks.Length() ? mBlocks[index] : -1;
if (cacheBlock < 0 || (mStreamLength >= 0 && aOffset >= mStreamLength)) {
// Not in the cache.
return 0;
}
if (aBuffer.Length() > size_t(BLOCK_SIZE)) {
// Clamp the buffer to avoid overflow below since we will read at most
// BLOCK_SIZE bytes.
aBuffer = aBuffer.First(BLOCK_SIZE);
}
if (mStreamLength >= 0 &&
int64_t(aBuffer.Length()) > mStreamLength - aOffset) {
// Clamp reads to stream's length
aBuffer = aBuffer.First(mStreamLength - aOffset);
}
// |BLOCK_SIZE - OffsetInBlock(aOffset)| <= BLOCK_SIZE
int32_t bytesToRead =
std::min<int32_t>(BLOCK_SIZE - OffsetInBlock(aOffset), aBuffer.Length());
int32_t bytesRead = 0;
nsresult rv = mMediaCache->ReadCacheFile(
aLock, cacheBlock * BLOCK_SIZE + OffsetInBlock(aOffset),
aBuffer.Elements(), bytesToRead, &bytesRead);
// Ensure |cacheBlock * BLOCK_SIZE + OffsetInBlock(aOffset)| won't overflow.
static_assert(INT64_MAX >= BLOCK_SIZE * (uint32_t(INT32_MAX) + 1),
"BLOCK_SIZE too large!");
if (NS_FAILED(rv)) {
nsCString name;
GetErrorName(rv, name);
LOGE("Stream %p ReadCacheFile failed, rv=%s", this, name.Data());
return mozilla::Err(rv);
}
if (aNoteBlockUsage) {
mMediaCache->NoteBlockUsage(aLock, this, cacheBlock, aOffset, mCurrentMode,
TimeStamp::Now());
}
return bytesRead;
}
nsresult MediaCacheStream::Read(AutoLock& aLock, char* aBuffer, uint32_t aCount,
uint32_t* aBytes) {
MOZ_ASSERT(!NS_IsMainThread());
// Cache the offset in case it is changed again when we are waiting for the
// monitor to be notified to avoid reading at the wrong position.
auto streamOffset = mStreamOffset;
// The buffer we are about to fill.
auto buffer = Span<char>(aBuffer, aCount);
// Read one block (or part of a block) at a time
while (!buffer.IsEmpty()) {
if (mClosed) {
return NS_ERROR_ABORT;
}
if (!IsOffsetAllowed(streamOffset)) {
LOGE("Stream %p invalid offset=%" PRId64, this, streamOffset);
return NS_ERROR_ILLEGAL_VALUE;
}
if (mStreamLength >= 0 && streamOffset >= mStreamLength) {
// Don't try to read beyond the end of the stream
break;
}
Result<uint32_t, nsresult> rv = ReadBlockFromCache(
aLock, streamOffset, buffer, true /* aNoteBlockUsage */);
if (rv.isErr()) {
return rv.unwrapErr();
}
uint32_t bytes = rv.unwrap();
if (bytes > 0) {
// Got data from the cache successfully. Read next block.
streamOffset += bytes;
buffer = buffer.From(bytes);
continue;
}
// See if we can use the data in the partial block of any stream reading
// this resource. Note we use the partial block only when it is completed,
// that is reaching EOS.
bool foundDataInPartialBlock = false;
MediaCache::ResourceStreamIterator iter(mMediaCache, mResourceID);
while (MediaCacheStream* stream = iter.Next(aLock)) {
if (OffsetToBlockIndexUnchecked(stream->mChannelOffset) ==
OffsetToBlockIndexUnchecked(streamOffset) &&
stream->mChannelOffset == stream->mStreamLength) {
uint32_t bytes = stream->ReadPartialBlock(aLock, streamOffset, buffer);
streamOffset += bytes;
buffer = buffer.From(bytes);
foundDataInPartialBlock = true;
break;
}
}
if (foundDataInPartialBlock) {
// Break for we've reached EOS.
break;
}
if (mDidNotifyDataEnded && NS_FAILED(mNotifyDataEndedStatus)) {
// Since download ends abnormally, there is no point in waiting for new
// data to come. We will check the partial block to read as many bytes as
// possible before exiting this function.
bytes = ReadPartialBlock(aLock, streamOffset, buffer);
streamOffset += bytes;
buffer = buffer.From(bytes);
break;
}
if (mStreamOffset != streamOffset) {
// Update mStreamOffset before we drop the lock. We need to run
// Update() again since stream reading strategy might have changed.
mStreamOffset = streamOffset;
mMediaCache->QueueUpdate(aLock);
}
// No data to read, so block
aLock.Wait();
}
uint32_t count = buffer.Elements() - aBuffer;
*aBytes = count;
if (count == 0) {
return NS_OK;
}
// Some data was read, so queue an update since block priorities may
// have changed
mMediaCache->QueueUpdate(aLock);
LOG("Stream %p Read at %" PRId64 " count=%d", this, streamOffset - count,
count);
mStreamOffset = streamOffset;
return NS_OK;
}
nsresult MediaCacheStream::ReadAt(int64_t aOffset, char* aBuffer,
uint32_t aCount, uint32_t* aBytes) {
MOZ_ASSERT(!NS_IsMainThread());
AutoLock lock(mMediaCache->Monitor());
nsresult rv = Seek(lock, aOffset);
if (NS_FAILED(rv)) return rv;
return Read(lock, aBuffer, aCount, aBytes);
}
nsresult MediaCacheStream::ReadFromCache(char* aBuffer, int64_t aOffset,
uint32_t aCount) {
MOZ_ASSERT(!NS_IsMainThread());
AutoLock lock(mMediaCache->Monitor());
// The buffer we are about to fill.
auto buffer = Span<char>(aBuffer, aCount);
// Read one block (or part of a block) at a time
int64_t streamOffset = aOffset;
while (!buffer.IsEmpty()) {
if (mClosed) {
// We need to check |mClosed| in each iteration which might be changed
// after calling |mMediaCache->ReadCacheFile|.
return NS_ERROR_FAILURE;
}
if (!IsOffsetAllowed(streamOffset)) {
LOGE("Stream %p invalid offset=%" PRId64, this, streamOffset);
return NS_ERROR_ILLEGAL_VALUE;
}
Result<uint32_t, nsresult> rv =
ReadBlockFromCache(lock, streamOffset, buffer);
if (rv.isErr()) {
return rv.unwrapErr();
}
uint32_t bytes = rv.unwrap();
if (bytes > 0) {
// Read data from the cache successfully. Let's try next block.
streamOffset += bytes;
buffer = buffer.From(bytes);
continue;
}
// The partial block is our last chance to get data.
bytes = ReadPartialBlock(lock, streamOffset, buffer);
if (bytes < buffer.Length()) {
// Not enough data to read.
return NS_ERROR_FAILURE;
}
// Return for we've got all the requested bytes.
return NS_OK;
}
return NS_OK;
}
nsresult MediaCacheStream::Init(int64_t aContentLength) {
NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");
MOZ_ASSERT(!mMediaCache, "Has been initialized.");
if (aContentLength > 0) {
uint32_t length = uint32_t(std::min(aContentLength, int64_t(UINT32_MAX)));
LOG("MediaCacheStream::Init(this=%p) "
"MEDIACACHESTREAM_NOTIFIED_LENGTH=%" PRIu32,
this, length);
mStreamLength = aContentLength;
}
mMediaCache = MediaCache::GetMediaCache(aContentLength, mIsPrivateBrowsing);
if (!mMediaCache) {
return NS_ERROR_FAILURE;
}
OwnerThread()->Dispatch(NS_NewRunnableFunction(
"MediaCacheStream::Init",
[this, res = RefPtr<ChannelMediaResource>(mClient)]() {
AutoLock lock(mMediaCache->Monitor());
mMediaCache->OpenStream(lock, this);
}));
return NS_OK;
}
void MediaCacheStream::InitAsClone(MediaCacheStream* aOriginal) {
MOZ_ASSERT(!mMediaCache, "Has been initialized.");
MOZ_ASSERT(aOriginal->mMediaCache, "Don't clone an uninitialized stream.");
// Use the same MediaCache as our clone.
mMediaCache = aOriginal->mMediaCache;
OwnerThread()->Dispatch(NS_NewRunnableFunction(
"MediaCacheStream::InitAsClone",
[this, aOriginal, r1 = RefPtr<ChannelMediaResource>(mClient),
r2 = RefPtr<ChannelMediaResource>(aOriginal->mClient)]() {
InitAsCloneInternal(aOriginal);
}));
}
void MediaCacheStream::InitAsCloneInternal(MediaCacheStream* aOriginal) {
MOZ_ASSERT(OwnerThread()->IsOnCurrentThread());
AutoLock lock(mMediaCache->Monitor());
LOG("MediaCacheStream::InitAsCloneInternal(this=%p, original=%p)", this,
aOriginal);
// Download data and notify events if necessary. Note the order is important
// in order to mimic the behavior of data being downloaded from the channel.
// Step 1: copy/download data from the original stream.
mResourceID = aOriginal->mResourceID;
mStreamLength = aOriginal->mStreamLength;
mIsTransportSeekable = aOriginal->mIsTransportSeekable;
mDownloadStatistics = aOriginal->mDownloadStatistics;
mDownloadStatistics.Stop();
// Grab cache blocks from aOriginal as readahead blocks for our stream
for (uint32_t i = 0; i < aOriginal->mBlocks.Length(); ++i) {
int32_t cacheBlockIndex = aOriginal->mBlocks[i];
if (cacheBlockIndex < 0) continue;
while (i >= mBlocks.Length()) {
mBlocks.AppendElement(-1);
}
// Every block is a readahead block for the clone because the clone's
// initial stream offset is zero
mMediaCache->AddBlockOwnerAsReadahead(lock, cacheBlockIndex, this, i);
}
// Copy the partial block.
mChannelOffset = aOriginal->mChannelOffset;
memcpy(mPartialBlockBuffer.get(), aOriginal->mPartialBlockBuffer.get(),
BLOCK_SIZE);
// Step 2: notify the client that we have new data so the decoder has a chance
// to compute 'canplaythrough' and buffer ranges.
mClient->CacheClientNotifyDataReceived();
// Step 3: notify download ended if necessary.
if (aOriginal->mDidNotifyDataEnded &&
NS_SUCCEEDED(aOriginal->mNotifyDataEndedStatus)) {
mNotifyDataEndedStatus = aOriginal->mNotifyDataEndedStatus;
mDidNotifyDataEnded = true;
mClient->CacheClientNotifyDataEnded(mNotifyDataEndedStatus);
}
// Step 4: notify download is suspended by the cache.
mClientSuspended = true;
mCacheSuspended = true;
mChannelEnded = true;
mClient->CacheClientSuspend();
mMediaCache->QueueSuspendedStatusUpdate(lock, mResourceID);
// Step 5: add the stream to be managed by the cache.
mMediaCache->OpenStream(lock, this, true /* aIsClone */);
// Wake up the reader which is waiting for the cloned data.
lock.NotifyAll();
}
nsISerialEventTarget* MediaCacheStream::OwnerThread() const {
return mMediaCache->OwnerThread();
}
nsresult MediaCacheStream::GetCachedRanges(MediaByteRangeSet& aRanges) {
MOZ_ASSERT(!NS_IsMainThread());
// Take the monitor, so that the cached data ranges can't grow while we're
// trying to loop over them.
AutoLock lock(mMediaCache->Monitor());
// We must be pinned while running this, otherwise the cached data ranges may
// shrink while we're trying to loop over them.
NS_ASSERTION(mPinCount > 0, "Must be pinned");
int64_t startOffset = GetNextCachedDataInternal(lock, 0);
while (startOffset >= 0) {
int64_t endOffset = GetCachedDataEndInternal(lock, startOffset);
NS_ASSERTION(startOffset < endOffset,
"Buffered range must end after its start");
// Bytes [startOffset..endOffset] are cached.
aRanges += MediaByteRange(startOffset, endOffset);
startOffset = GetNextCachedDataInternal(lock, endOffset);
NS_ASSERTION(
startOffset == -1 || startOffset > endOffset,
"Must have advanced to start of next range, or hit end of stream");
}
return NS_OK;
}
double MediaCacheStream::GetDownloadRate(bool* aIsReliable) {
MOZ_ASSERT(!NS_IsMainThread());
AutoLock lock(mMediaCache->Monitor());
return mDownloadStatistics.GetRate(aIsReliable);
}
void MediaCacheStream::GetDebugInfo(dom::MediaCacheStreamDebugInfo& aInfo) {
AutoLock lock(mMediaCache->GetMonitorOnTheMainThread());
aInfo.mStreamLength = mStreamLength;
aInfo.mChannelOffset = mChannelOffset;
aInfo.mCacheSuspended = mCacheSuspended;
aInfo.mChannelEnded = mChannelEnded;
aInfo.mLoadID = mLoadID;
}
} // namespace mozilla
// avoid redefined macro in unified build
#undef LOG
#undef LOGI