gecko-dev/ef/Compiler/RegisterAllocator/Coloring.cpp

312 строки
8.2 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public
* License Version 1.1 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.mozilla.org/NPL/
*
* Software distributed under the License is distributed on an "AS
* IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
* implied. See the License for the specific language governing
* rights and limitations under the License.
*
* The Original Code is mozilla.org code.
*
* The Initial Developer of the Original Code is Netscape
* Communications Corporation. Portions created by Netscape are
* Copyright (C) 1998 Netscape Communications Corporation. All
* Rights Reserved.
*
* Contributor(s):
*/
#include "Coloring.h"
#include "VirtualRegister.h"
#include "FastBitSet.h"
#include "FastBitMatrix.h"
#include "CpuInfo.h"
bool Coloring::
assignRegisters(FastBitMatrix& interferenceMatrix)
{
PRUint32 *stackPtr = new(pool) PRUint32[vRegManager.count()];
return select(interferenceMatrix, stackPtr, simplify(interferenceMatrix, stackPtr));
}
PRInt32 Coloring::
getLowestSpillCostRegister(FastBitSet& bitset)
{
PRInt32 lowest = bitset.firstOne();
if (lowest != -1)
{
Flt32 cost = vRegManager.getVirtualRegister(lowest).spillInfo.spillCost;
for (PRInt32 r = bitset.nextOne(lowest); r != -1; r = bitset.nextOne(r))
{
VirtualRegister& vReg = vRegManager.getVirtualRegister(r);
if (!vReg.spillInfo.infiniteSpillCost && (vReg.spillInfo.spillCost < cost))
{
cost = vReg.spillInfo.spillCost;
lowest = r;
}
}
}
return lowest;
}
PRUint32* Coloring::
simplify(FastBitMatrix interferenceMatrix, PRUint32* stackPtr)
{
// first we construct the sets low and high. low contains all nodes of degree
// inferior to the number of register available on the processor. All the
// nodes with an high degree and a finite spill cost are placed in high.
// Nodes of high degree and infinite spill cost are not included in either sets.
PRUint32 nRegisters = vRegManager.count();
FastBitSet low(pool, nRegisters);
FastBitSet high(pool, nRegisters);
FastBitSet stack(pool, nRegisters);
bool all_low = true;
for (VirtualRegisterManager::iterator i = vRegManager.begin(); !vRegManager.done(i); i = vRegManager.advance(i))
{
VirtualRegister& vReg = vRegManager.getVirtualRegister(i);
if (vReg.getClass() == vrcStackSlot)
{
stack.set(i);
vReg.colorRegister(nRegisters);
}
else
{
if (vReg.colorInfo.interferenceDegree < NUMBER_OF_REGISTERS) {
low.set(i);
} else {
high.set(i);
all_low = false;
}
// Set coloring info.
vReg.spillInfo.willSpill = false;
switch(vReg.getClass())
{
case vrcInteger:
vReg.colorRegister(LAST_GREGISTER + 1);
break;
case vrcFloatingPoint:
case vrcFixedPoint:
vReg.colorRegister(LAST_FPREGISTER + 1);
break;
default:
PR_ASSERT(false); // Cannot happen.
}
}
}
// push the stack registers
PRInt32 j;
for (j = stack.firstOne(); j != -1; j = stack.nextOne(j))
*stackPtr++ = j;
/* Simplify handling when every node in the interference graph has degree less
* than K and is therefore trivially K-colorable. In this case, no spilling
* code is necessary.
*/
if (all_low)
{
for (j = low.firstOne(); j != -1; j = low.nextOne(j))
*stackPtr++ = j;
return stackPtr;
}
// simplify
PRInt32 r = low.firstOne();
while (true)
{
/*
* Remove any node of degree less than K from the graph, since that node is
* K-colorable. That deletion may, in turn, cause the degree of other nodes
* in the graph to fall below K and these nodes are then removed.
*/
while (r != -1)
{
VirtualRegister& vReg = vRegManager.getVirtualRegister(r);
/* update low and high */
FastBitSet inter(interferenceMatrix.getRow(r), nRegisters);
for (j = inter.firstOne(); j != -1; j = inter.nextOne(j))
{
VirtualRegister& neighbor = vRegManager.getVirtualRegister(j);
// if the new interference degree of one of his neighbor becomes
// NUMBER_OF_REGISTERS - 1 then it is added to the set 'low'.
PRUint32 maxInterference = 0;
switch (neighbor.getClass())
{
case vrcInteger:
maxInterference = NUMBER_OF_GREGISTERS;
break;
case vrcFloatingPoint:
case vrcFixedPoint:
maxInterference = NUMBER_OF_FPREGISTERS;
break;
default:
PR_ASSERT(false);
}
if ((vRegManager.getVirtualRegister(j).colorInfo.interferenceDegree-- == maxInterference))
{
high.clear(j);
low.set(j);
}
vReg.colorInfo.interferenceDegree--;
interferenceMatrix.clear(r, j);
interferenceMatrix.clear(j, r);
}
low.clear(r);
// Push this register.
*stackPtr++ = r;
r = low.firstOne();
}
/*
* The absence of any node with degree less than K means that a spill might be
* necessary. Use spill cost heurestics to choose the register node to be
* removed from the graph.
*/
if ((r = getLowestSpillCostRegister(high)) != -1)
{
high.clear(r);
}
else
break;
}
return stackPtr;
}
bool Coloring::
select(FastBitMatrix& interferenceMatrix, PRUint32* stackBase, PRUint32* stackPtr)
{
PRUint32 nRegisters = vRegManager.count();
FastBitSet usedRegisters(NUMBER_OF_REGISTERS + 1); // usedRegisters if used for both GR & FPR.
FastBitSet preColoredRegisters(NUMBER_OF_REGISTERS + 1);
FastBitSet usedStack(nRegisters + 1);
bool success = true;
Int32 lastUsedSSR = -1;
// select
while (stackPtr != stackBase)
{
// Pop one register.
PRUint32 r = *--stackPtr;
VirtualRegister& vReg = vRegManager.getVirtualRegister(r);
FastBitSet neighbors(interferenceMatrix.getRow(r), nRegisters);
if (vReg.getClass() == vrcStackSlot)
// Stack slots coloring.
{
usedStack.clear();
for (PRInt32 i = neighbors.firstOne(); i != -1; i = neighbors.nextOne(i))
usedStack.set(vRegManager.getVirtualRegister(i).getColor());
Int32 color = usedStack.firstZero();
vReg.colorRegister(color);
if (color > lastUsedSSR)
lastUsedSSR = color;
}
else
// Integer & Floating point register coloring.
{
usedRegisters.clear();
preColoredRegisters.clear();
for (PRInt32 i = neighbors.firstOne(); i != -1; i = neighbors.nextOne(i))
{
VirtualRegister& nvReg = vRegManager.getVirtualRegister(i);
usedRegisters.set(nvReg.getColor());
if (nvReg.isPreColored())
preColoredRegisters.set(nvReg.getPreColor());
}
if (vReg.hasSpecialInterference)
usedRegisters |= vReg.specialInterference;
PRInt8 c = -1;
PRInt8 maxColor = 0;
PRInt8 firstColor = 0;
switch (vReg.getClass())
{
case vrcInteger:
firstColor = FIRST_GREGISTER;
maxColor = LAST_GREGISTER;
break;
case vrcFloatingPoint:
case vrcFixedPoint:
firstColor = FIRST_FPREGISTER;
maxColor = LAST_FPREGISTER;
break;
default:
PR_ASSERT(false);
}
if (vReg.isPreColored())
{
c = vReg.getPreColor();
if (usedRegisters.test(c))
c = -1;
}
else
{
for (c = usedRegisters.nextZero(firstColor - 1); (c >= 0) && (c <= maxColor) && (preColoredRegisters.test(c));
c = usedRegisters.nextZero(c)) {}
}
if ((c >= 0) && (c <= maxColor))
{
vReg.colorRegister(c);
}
else
{
VirtualRegister& stackRegister = vRegManager.newVirtualRegister(vrcStackSlot);
vReg.equivalentRegister[vrcStackSlot] = &stackRegister;
vReg.spillInfo.willSpill = true;
success = false;
}
}
}
#ifdef DEBUG
if (success)
{
for (VirtualRegisterManager::iterator i = vRegManager.begin(); !vRegManager.done(i); i = vRegManager.advance(i))
{
VirtualRegister& vReg = vRegManager.getVirtualRegister(i);
switch (vReg.getClass())
{
case vrcInteger:
if (vReg.getColor() > LAST_GREGISTER)
PR_ASSERT(false);
break;
case vrcFloatingPoint:
case vrcFixedPoint:
#if NUMBER_OF_FPREGISTERS != 0
if (vReg.getColor() > LAST_FPREGISTER)
PR_ASSERT(false);
#endif
break;
default:
break;
}
}
}
#endif
vRegManager.nUsedStackSlots = lastUsedSSR + 1;
return success;
}