зеркало из https://github.com/mozilla/gecko-dev.git
236 строки
9.7 KiB
C++
236 строки
9.7 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#ifndef ProportionValue_h
|
|
#define ProportionValue_h
|
|
|
|
#include "mozilla/Attributes.h"
|
|
|
|
#include <algorithm>
|
|
#include <limits>
|
|
|
|
namespace mozilla {
|
|
|
|
// Class storing a proportion value between 0 and 1, effectively 0% to 100%.
|
|
// The public interface deals with doubles, but internally the value is encoded
|
|
// in an integral type, so arithmetic operations are fast.
|
|
// It also supports an invalid value: Use MakeInvalid() to construct, it infects
|
|
// any operation, and gets converted to a signaling NaN.
|
|
class ProportionValue {
|
|
public:
|
|
using UnderlyingType = uint32_t;
|
|
|
|
// Default-construct at 0%.
|
|
constexpr ProportionValue()
|
|
// This `noexcept` is necessary to avoid a build error when encapsulating
|
|
// `ProportionValue` in `std::Atomic`:
|
|
// "use of deleted function
|
|
// 'constexpr std::atomic<mozilla::ProportionValue>::atomic()"
|
|
// because the default `std::atomic<T>::atomic()` constructor is marked:
|
|
// `noexcept(std::is_nothrow_default_constructible_v<T>)`
|
|
// and therefore this default constructor here must be explicitly marked
|
|
// `noexcept` as well.
|
|
noexcept
|
|
: mIntegralValue(0u) {}
|
|
|
|
// Construct a ProportionValue with the given value, clamped to 0..1.
|
|
// Note that it's constexpr, so construction from literal numbers should incur
|
|
// no runtime costs.
|
|
// If `aValue` is NaN, behavior is undefined! Use `MakeInvalid()` instead.
|
|
constexpr explicit ProportionValue(double aValue)
|
|
: mIntegralValue(UnderlyingType(std::clamp(aValue, 0.0, 1.0) * scMaxD)) {}
|
|
|
|
[[nodiscard]] static constexpr ProportionValue MakeInvalid() {
|
|
return ProportionValue(scInvalidU, Internal{});
|
|
}
|
|
|
|
[[nodiscard]] constexpr double ToDouble() const {
|
|
return IsInvalid() ? std::numeric_limits<double>::signaling_NaN()
|
|
: (double(mIntegralValue) * scInvMaxD);
|
|
}
|
|
|
|
// Retrieve the underlying integral value, for storage or testing purposes.
|
|
[[nodiscard]] constexpr UnderlyingType ToUnderlyingType() const {
|
|
return mIntegralValue;
|
|
};
|
|
|
|
// Re-construct a ProportionValue from an underlying integral value.
|
|
[[nodiscard]] static constexpr ProportionValue FromUnderlyingType(
|
|
UnderlyingType aUnderlyingType) {
|
|
return ProportionValue(
|
|
(aUnderlyingType <= scMaxU) ? aUnderlyingType : scInvalidU, Internal{});
|
|
}
|
|
|
|
[[nodiscard]] constexpr bool IsExactlyZero() const {
|
|
return mIntegralValue == 0u;
|
|
}
|
|
|
|
[[nodiscard]] constexpr bool IsExactlyOne() const {
|
|
return mIntegralValue == scMaxU;
|
|
}
|
|
|
|
[[nodiscard]] constexpr bool IsValid() const {
|
|
// Compare to the maximum value, not just exactly scInvalidU, to catch any
|
|
// kind of invalid state.
|
|
return mIntegralValue <= scMaxU;
|
|
}
|
|
[[nodiscard]] constexpr bool IsInvalid() const {
|
|
// Compare to the maximum value, not just exactly scInvalidU, to catch any
|
|
// kind of invalid state.
|
|
return mIntegralValue > scMaxU;
|
|
}
|
|
|
|
// Strict comparisons based on the underlying integral value. Use
|
|
// `CompareWithin` instead to make fuzzy comparisons.
|
|
// `ProportionValue::MakeInvalid()`s are equal, and greater than anything
|
|
// else; Best to avoid comparisons, and first use IsInvalid() instead.
|
|
#define OPERATOR_COMPARISON(CMP) \
|
|
[[nodiscard]] constexpr friend bool operator CMP( \
|
|
const ProportionValue& aLHS, const ProportionValue& aRHS) { \
|
|
return aLHS.mIntegralValue CMP aRHS.mIntegralValue; \
|
|
}
|
|
OPERATOR_COMPARISON(==)
|
|
OPERATOR_COMPARISON(!=)
|
|
OPERATOR_COMPARISON(<)
|
|
OPERATOR_COMPARISON(<=)
|
|
OPERATOR_COMPARISON(>)
|
|
OPERATOR_COMPARISON(>=)
|
|
#undef OPERATOR_COMPARISON
|
|
|
|
// Arithmetic operations + - *, all working on the underlying integral values
|
|
// (i.e, no expensive floating-point operations are used), and always clamping
|
|
// to 0..1 range. Invalid values are poisonous.
|
|
|
|
[[nodiscard]] constexpr ProportionValue operator+(
|
|
ProportionValue aRHS) const {
|
|
return ProportionValue(
|
|
(IsInvalid() || aRHS.IsInvalid())
|
|
? scInvalidU
|
|
// Adding fixed-point values keep the same scale, so there is no
|
|
// adjustment needed for that. [0,1]+[0,1]=[0,2], so we only need to
|
|
// ensure that the result is capped at max 1, aka scMaxU:
|
|
// a+b<=max <=> b<=max-a, so b is at maximum max-a.
|
|
: (mIntegralValue +
|
|
std::min(aRHS.mIntegralValue, scMaxU - mIntegralValue)),
|
|
Internal{});
|
|
}
|
|
|
|
[[nodiscard]] constexpr ProportionValue operator-(
|
|
ProportionValue aRHS) const {
|
|
return ProportionValue(
|
|
(IsInvalid() || aRHS.IsInvalid())
|
|
? scInvalidU
|
|
// Subtracting fixed-point values keep the same scale, so there is
|
|
// no adjustment needed for that. [0,1]-[0,1]=[-1,1], so we only
|
|
// need to ensure that the value is positive:
|
|
// a-b>=0 <=> b<=a, so b is at maximum a.
|
|
: (mIntegralValue - std::min(aRHS.mIntegralValue, mIntegralValue)),
|
|
Internal{});
|
|
}
|
|
|
|
[[nodiscard]] constexpr ProportionValue operator*(
|
|
ProportionValue aRHS) const {
|
|
// Type to hold the full result of multiplying two maximum numbers.
|
|
using DoublePrecisionType = uint64_t;
|
|
static_assert(sizeof(DoublePrecisionType) >= 2 * sizeof(UnderlyingType));
|
|
return ProportionValue(
|
|
(IsInvalid() || aRHS.IsInvalid())
|
|
? scInvalidU
|
|
// Multiplying fixed-point values doubles the scale (2^31 -> 2^62),
|
|
// so we need to adjust the result by dividing it by one scale
|
|
// (which is optimized into a binary right-shift).
|
|
: (UnderlyingType((DoublePrecisionType(mIntegralValue) *
|
|
DoublePrecisionType(aRHS.mIntegralValue)) /
|
|
DoublePrecisionType(scMaxU))),
|
|
Internal{});
|
|
}
|
|
|
|
// Explicitly forbid divisions, they make little sense, and would almost
|
|
// always return a clamped 100% (E.g.: 50% / 10% = 0.5 / 0.1 = 5 = 500%).
|
|
[[nodiscard]] constexpr ProportionValue operator/(
|
|
ProportionValue aRHS) const = delete;
|
|
|
|
// Division by a positive integer value, useful to split an interval in equal
|
|
// parts (with maybe some spare space at the end, because it is rounded down).
|
|
// Division by 0 produces an invalid value.
|
|
[[nodiscard]] constexpr ProportionValue operator/(uint32_t aDivisor) const {
|
|
return ProportionValue((IsInvalid() || aDivisor == 0u)
|
|
? scInvalidU
|
|
: (mIntegralValue / aDivisor),
|
|
Internal{});
|
|
}
|
|
|
|
// Multiplication by a positive integer value, useful as inverse of the
|
|
// integer division above. But it may be lossy because the division is rounded
|
|
// down, therefore: PV - u < (PV / u) * u <= PV.
|
|
// Clamped to 100% max.
|
|
[[nodiscard]] constexpr ProportionValue operator*(
|
|
uint32_t aMultiplier) const {
|
|
return ProportionValue(IsInvalid()
|
|
? scInvalidU
|
|
: ((aMultiplier > scMaxU / mIntegralValue)
|
|
? scMaxU
|
|
: (mIntegralValue * aMultiplier)),
|
|
Internal{});
|
|
}
|
|
|
|
private:
|
|
// Tagged constructor for internal construction from the UnderlyingType, so
|
|
// that it is never ambiguously considered in constructions from one number.
|
|
struct Internal {};
|
|
constexpr ProportionValue(UnderlyingType aIntegralValue, Internal)
|
|
: mIntegralValue(aIntegralValue) {}
|
|
|
|
// Use all but 1 bit for the fractional part.
|
|
// Valid values can go from 0b0 (0%) up to 0b1000...00 (scMaxU aka 100%).
|
|
static constexpr unsigned scFractionalBits = sizeof(UnderlyingType) * 8 - 1;
|
|
// Maximum value corresponding to 1.0 or 100%.
|
|
static constexpr UnderlyingType scMaxU = UnderlyingType(1u)
|
|
<< scFractionalBits;
|
|
// This maximum value corresponding to 1.0 can also be seen as the scaling
|
|
// factor from any [0,1] `double` value to the internal integral value.
|
|
static constexpr double scMaxD = double(scMaxU);
|
|
// The inverse can be used to convert the internal value back to [0,1].
|
|
static constexpr double scInvMaxD = 1.0 / scMaxD;
|
|
|
|
// Special value outside [0,max], used to construct invalid values.
|
|
static constexpr UnderlyingType scInvalidU = ~UnderlyingType(0u);
|
|
|
|
// Internal integral value, guaranteed to always be <= scMaxU, or scInvalidU.
|
|
// This is effectively a fixed-point value using 1 bit for the integer part
|
|
// and 31 bits for the fractional part.
|
|
// It is roughly equal to the `double` value [0,1] multiplied by scMaxD.
|
|
UnderlyingType mIntegralValue;
|
|
};
|
|
|
|
namespace literals {
|
|
inline namespace ProportionValue_literals {
|
|
|
|
// User-defined literal for integer percentages, e.g.: `10_pc`, `100_pc`
|
|
// (equivalent to `ProportionValue{0.1}` and `ProportionValue{1.0}`).
|
|
// Clamped to [0, 100]_pc.
|
|
[[nodiscard]] constexpr ProportionValue operator""_pc(
|
|
unsigned long long int aPercentage) {
|
|
return ProportionValue{
|
|
double(std::clamp<unsigned long long int>(aPercentage, 0u, 100u)) /
|
|
100.0};
|
|
}
|
|
|
|
// User-defined literal for non-integer percentages, e.g.: `12.3_pc`, `100.0_pc`
|
|
// (equivalent to `ProportionValue{0.123}` and `ProportionValue{1.0}`).
|
|
// Clamped to [0.0, 100.0]_pc.
|
|
[[nodiscard]] constexpr ProportionValue operator""_pc(long double aPercentage) {
|
|
return ProportionValue{
|
|
double(std::clamp<long double>(aPercentage, 0.0, 100.0)) / 100.0};
|
|
}
|
|
|
|
} // namespace ProportionValue_literals
|
|
} // namespace literals
|
|
|
|
} // namespace mozilla
|
|
|
|
#endif // ProportionValue_h
|