gecko-dev/xpcom/threads/nsThreadPool.cpp

730 строки
24 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "nsThreadPool.h"
#include "nsCOMArray.h"
#include "ThreadDelay.h"
#include "nsThreadManager.h"
#include "nsThread.h"
#include "nsThreadUtils.h"
#include "prinrval.h"
#include "mozilla/Logging.h"
#include "mozilla/ProfilerLabels.h"
#include "mozilla/ProfilerRunnable.h"
#include "mozilla/SchedulerGroup.h"
#include "mozilla/ScopeExit.h"
#include "mozilla/SpinEventLoopUntil.h"
#include "mozilla/StickyTimeDuration.h"
#include "nsThreadSyncDispatch.h"
#include <mutex>
using namespace mozilla;
static LazyLogModule sThreadPoolLog("nsThreadPool");
#ifdef LOG
# undef LOG
#endif
#define LOG(args) MOZ_LOG(sThreadPoolLog, mozilla::LogLevel::Debug, args)
static MOZ_THREAD_LOCAL(nsThreadPool*) gCurrentThreadPool;
void nsThreadPool::InitTLS() { gCurrentThreadPool.infallibleInit(); }
// DESIGN:
// o Allocate anonymous threads.
// o Use nsThreadPool::Run as the main routine for each thread.
// o Each thread waits on the event queue's monitor, checking for
// pending events and rescheduling itself as an idle thread.
#define DEFAULT_THREAD_LIMIT 4
#define DEFAULT_IDLE_THREAD_LIMIT 1
#define DEFAULT_IDLE_THREAD_GRACE_TIMEOUT_MS 100
#define DEFAULT_IDLE_THREAD_MAX_TIMEOUT_MS 60000
NS_IMPL_ISUPPORTS_INHERITED(nsThreadPool, Runnable, nsIThreadPool,
nsIEventTarget)
nsThreadPool* nsThreadPool::GetCurrentThreadPool() {
return gCurrentThreadPool.get();
}
nsThreadPool::nsThreadPool()
: Runnable("nsThreadPool"),
mMutex("[nsThreadPool.mMutex]"),
mThreadLimit(DEFAULT_THREAD_LIMIT),
mIdleThreadLimit(DEFAULT_IDLE_THREAD_LIMIT),
mIdleThreadGraceTimeout(
TimeDuration::FromMilliseconds(DEFAULT_IDLE_THREAD_GRACE_TIMEOUT_MS)),
mIdleThreadMaxTimeout(
TimeDuration::FromMilliseconds(DEFAULT_IDLE_THREAD_MAX_TIMEOUT_MS)),
mQoSPriority(nsIThread::QOS_PRIORITY_NORMAL),
mStackSize(nsIThreadManager::DEFAULT_STACK_SIZE),
mShutdown(false),
mIsAPoolThreadFree(true) {
LOG(("THRD-P(%p) constructor!!!\n", this));
}
nsThreadPool::~nsThreadPool() {
// Threads keep a reference to the nsThreadPool until they return from Run()
// after removing themselves from mThreads.
MOZ_ASSERT(mThreads.IsEmpty());
}
// Each thread has its own MRUIdleEntry instance. If it is element of the
// mMRUIdleThreads list, it can be notified for event processing.
struct nsThreadPool::MRUIdleEntry
: public mozilla::LinkedListElement<MRUIdleEntry> {
// Created from thread (as local variable).
explicit MRUIdleEntry(mozilla::Mutex& aMutex)
: mEventsAvailable(aMutex,
"[nsThreadPool.MRUIdleStatus.mEventsAvailable]") {}
// Keep track of the moment the thread finished its last event.
mozilla::TimeStamp mIdleSince;
// Each thread has its own cond var.
mozilla::CondVar mEventsAvailable;
#ifdef DEBUG
// If we were notified for work, keeps track when.
mozilla::TimeStamp mNotifiedSince;
// If we are going to sleep, keeps track for how long.
mozilla::TimeDuration mLastWaitDelay;
#endif
};
#ifdef DEBUG
// This logging relies on extra members we do not want to bake into release.
void nsThreadPool::DebugLogPoolStatus(MutexAutoLock& aProofOfLock,
MRUIdleEntry* aWakingEntry) {
if (!MOZ_LOG_TEST(sThreadPoolLog, mozilla::LogLevel::Debug)) {
return;
}
LOG(
("THRD-P(%p) \"%s\" (entry %p) status ---- mThreads(%u), mEvents(%u), "
"mThreadLimit(%u), mIdleThreadLimit(%u), mIdleCount(%zd), "
"mMRUIdleThreads(%u), mShutdown(%u)\n",
this, mName.get(), aWakingEntry, mThreads.Length(),
(uint32_t)mEvents.Count(aProofOfLock), mThreadLimit, mIdleThreadLimit,
mMRUIdleThreads.length(), (uint32_t)mMRUIdleThreads.length(),
(uint32_t)mShutdown));
auto logEntry = [&](MRUIdleEntry* entry, const char* msg) {
LOG(
(" - (entry %p) %s, IdleSince(%d), "
"NotifiedSince(%d) LastWaitDelay(%d)\n",
entry, msg,
(int)((entry->mIdleSince.IsNull())
? -1
: (TimeStamp::Now() - entry->mIdleSince).ToMilliseconds()),
(int)((entry->mNotifiedSince.IsNull())
? -1
: (TimeStamp::Now() - entry->mNotifiedSince)
.ToMilliseconds()),
(int)entry->mLastWaitDelay.ToMilliseconds()));
};
if (aWakingEntry) {
logEntry(aWakingEntry, "woke up");
}
for (auto* idle : mMRUIdleThreads) {
logEntry(idle, "in idle list");
}
}
#endif
nsresult nsThreadPool::PutEvent(nsIRunnable* aEvent) {
nsCOMPtr<nsIRunnable> event(aEvent);
return PutEvent(event.forget(), 0);
}
nsresult nsThreadPool::PutEvent(already_AddRefed<nsIRunnable> aEvent,
uint32_t aFlags) {
// Avoid spawning a new thread while holding the event queue lock...
bool spawnThread = false;
uint32_t stackSize = 0;
nsCString name;
{
MutexAutoLock lock(mMutex);
if (NS_WARN_IF(mShutdown)) {
return NS_ERROR_NOT_AVAILABLE;
}
nsCOMPtr<nsIRunnable> event(aEvent);
LogRunnable::LogDispatch(event);
mEvents.PutEvent(event.forget(), EventQueuePriority::Normal, lock);
#ifdef DEBUG
DebugLogPoolStatus(lock, nullptr);
#endif
// We've added the event to the queue, make sure a thread
// will wake up to handle it.
if (aFlags & NS_DISPATCH_AT_END) {
// If NS_DISPATCH_AT_END is set, this thread is about to
// become free to process the event, so we don't need to
// signal another thread.
MOZ_ASSERT(IsOnCurrentThreadInfallible(),
"NS_DISPATCH_AT_END can only be set when "
"dispatching from on the thread pool.");
LOG(("THRD-P(%p) put [%zd %d %d]: NS_DISPATCH_AT_END w/out Notify.\n",
this, mMRUIdleThreads.length(), mThreads.Count(), mThreadLimit));
} else if (auto* mruThread = mMRUIdleThreads.getFirst()) {
// If we have an idle thread, wake it up and remove it
// from the idle list, so that future dispatches try
// to wake other threads.
mruThread->remove();
mruThread->mEventsAvailable.Notify();
#ifdef DEBUG
mruThread->mNotifiedSince = TimeStamp::Now();
#endif
LOG(("THRD-P(%p) put [%zd %d %d]: Notify idle thread via entry(%p).\n",
this, mMRUIdleThreads.length(), mThreads.Count(), mThreadLimit,
mruThread));
} else if (mThreads.Count() < (int32_t)mThreadLimit) {
// Otherwise we want to start a new thread assuming we
// haven't hit the thread limit yet.
spawnThread = true;
LOG(("THRD-P(%p) put [%zd %d %d]: Spawn a new thread.\n", this,
mMRUIdleThreads.length(), mThreads.Count(), mThreadLimit));
} else {
// If we have no thread available, just leave the event in the queue
// ready for the next thread about to become idle and pick it up.
LOG(("THRD-P(%p) put [%zd %d %d]: No idle or new thread available.\n",
this, mMRUIdleThreads.length(), mThreads.Count(), mThreadLimit));
}
MOZ_ASSERT(spawnThread || mThreads.Count() > 0);
stackSize = mStackSize;
name = mName;
}
auto delay = MakeScopeExit([&]() {
// Delay to encourage the receiving task to run before we do work.
DelayForChaosMode(ChaosFeature::TaskDispatching, 1000);
});
if (!spawnThread) {
return NS_OK;
}
nsCOMPtr<nsIThread> thread;
nsresult rv = NS_NewNamedThread(
mThreadNaming.GetNextThreadName(name), getter_AddRefs(thread), nullptr,
{.stackSize = stackSize, .blockDispatch = true});
if (NS_WARN_IF(NS_FAILED(rv))) {
return NS_ERROR_UNEXPECTED;
}
bool killThread = false;
{
MutexAutoLock lock(mMutex);
if (mShutdown) {
killThread = true;
} else if (mThreads.Count() < (int32_t)mThreadLimit) {
mThreads.AppendObject(thread);
if (mThreads.Count() >= (int32_t)mThreadLimit) {
mIsAPoolThreadFree = false;
}
} else {
// Someone else may have also been starting a thread
killThread = true; // okay, we don't need this thread anymore
}
}
LOG(("THRD-P(%p) put [%p kill=%d]\n", this, thread.get(), killThread));
if (killThread) {
// We never dispatched any events to the thread, so we can shut it down
// asynchronously without worrying about anything.
ShutdownThread(thread);
} else {
thread->Dispatch(this, NS_DISPATCH_IGNORE_BLOCK_DISPATCH);
}
return NS_OK;
}
void nsThreadPool::ShutdownThread(nsIThread* aThread) {
LOG(("THRD-P(%p) shutdown async [%p]\n", this, aThread));
// This is either called by a threadpool thread that is out of work, or
// a thread that attempted to create a threadpool thread and raced in
// such a way that the newly created thread is no longer necessary.
// In the first case, we must go to another thread to shut aThread down
// (because it is the current thread). In the second case, we cannot
// synchronously shut down the current thread (because then Dispatch() would
// spin the event loop, and that could blow up the world), and asynchronous
// shutdown requires this thread have an event loop (and it may not, see bug
// 10204784). The simplest way to cover all cases is to asynchronously
// shutdown aThread from the main thread.
SchedulerGroup::Dispatch(NewRunnableMethod(
"nsIThread::AsyncShutdown", aThread, &nsIThread::AsyncShutdown));
}
NS_IMETHODIMP
nsThreadPool::SetQoSForThreads(nsIThread::QoSPriority aPriority) {
MutexAutoLock lock(mMutex);
mQoSPriority = aPriority;
// We don't notify threads here to observe the change, because we don't want
// to create spurious wakeups during idle. Rather, we want threads to simply
// observe the change on their own if they wake up to do some task.
return NS_OK;
}
void nsThreadPool::NotifyChangeToAllIdleThreads() {
for (auto* idleThread : mMRUIdleThreads) {
idleThread->mEventsAvailable.Notify();
}
}
// This event 'runs' for the lifetime of the worker thread. The actual
// eventqueue is mEvents, and is shared by all the worker threads. This
// means that the set of threads together define the delay seen by a new
// event sent to the pool.
//
// To model the delay experienced by the pool, we can have each thread in
// the pool report 0 if it's idle OR if the pool is below the threadlimit;
// or otherwise the current event's queuing delay plus current running
// time.
//
// To reconstruct the delays for the pool, the profiler can look at all the
// threads that are part of a pool (pools have defined naming patterns that
// can be user to connect them). If all threads have delays at time X,
// that means that all threads saturated at that point and any event
// dispatched to the pool would get a delay.
//
// The delay experienced by an event dispatched when all pool threads are
// busy is based on the calculations shown in platform.cpp. Run that
// algorithm for each thread in the pool, and the delay at time X is the
// longest value for time X of any of the threads, OR the time from X until
// any one of the threads reports 0 (i.e. it's not busy), whichever is
// shorter.
// In order to record this when the profiler samples threads in the pool,
// each thread must (effectively) override GetRunnningEventDelay, by
// resetting the mLastEventDelay/Start values in the nsThread when we start
// to run an event (or when we run out of events to run). Note that handling
// the shutdown of a thread may be a little tricky.
NS_IMETHODIMP
nsThreadPool::Run() {
nsCOMPtr<nsIThread> current;
nsThreadManager::get().GetCurrentThread(getter_AddRefs(current));
bool shutdownThreadOnExit = false;
bool exitThread = false;
MRUIdleEntry idleEntry(mMutex);
bool wasIdle = false;
nsIThread::QoSPriority threadPriority = nsIThread::QOS_PRIORITY_NORMAL;
// This thread is an nsThread created below with NS_NewNamedThread()
static_cast<nsThread*>(current.get())
->SetPoolThreadFreePtr(&mIsAPoolThreadFree);
nsCOMPtr<nsIThreadPoolListener> listener;
{
MutexAutoLock lock(mMutex);
listener = mListener;
LOG(("THRD-P(%p) enter %s\n", this, mName.get()));
// Go ahead and check for thread priority. If priority is normal, do nothing
// because threads are created with default priority.
if (threadPriority != mQoSPriority) {
current->SetThreadQoS(threadPriority);
threadPriority = mQoSPriority;
}
}
if (listener) {
listener->OnThreadCreated();
}
MOZ_ASSERT(!gCurrentThreadPool.get());
gCurrentThreadPool.set(this);
do {
nsCOMPtr<nsIRunnable> event;
TimeDuration lastEventDelay;
{
MutexAutoLock lock(mMutex);
#ifdef DEBUG
DebugLogPoolStatus(lock, &idleEntry);
idleEntry.mNotifiedSince = TimeStamp();
#endif
// Before getting the next event, we can adjust priority as needed.
if (threadPriority != mQoSPriority) {
current->SetThreadQoS(threadPriority);
threadPriority = mQoSPriority;
}
event = mEvents.GetEvent(lock, &lastEventDelay);
if (!event) {
TimeStamp now = TimeStamp::Now();
uint32_t cnt = mMRUIdleThreads.length() + ((wasIdle) ? 0 : 1);
TimeDuration currentTimeout = (cnt > mIdleThreadLimit)
? mIdleThreadGraceTimeout
: mIdleThreadMaxTimeout;
if (mShutdown) {
exitThread = true;
} else {
if (!wasIdle) {
// Going idle for a new idle period.
MOZ_ASSERT(!idleEntry.isInList());
idleEntry.mIdleSince = now;
wasIdle = true;
mMRUIdleThreads.insertFront(&idleEntry);
} else if ((now - idleEntry.mIdleSince) < currentTimeout) {
// Continue to stay idle without touching mIdleSince.
if (!idleEntry.isInList()) {
mMRUIdleThreads.insertFront(&idleEntry);
}
} else {
// We reached our timeout.
exitThread = true;
}
}
if (exitThread) {
wasIdle = false;
if (idleEntry.isInList()) {
idleEntry.remove();
}
shutdownThreadOnExit = mThreads.RemoveObject(current);
// keep track if there are threads available to start
mIsAPoolThreadFree = (mThreads.Count() < (int32_t)mThreadLimit);
} else {
current->SetRunningEventDelay(TimeDuration(), TimeStamp());
AUTO_PROFILER_LABEL("nsThreadPool::Run::Wait", IDLE);
// Depending on the allowed number of idle threads, wait for events
// at most our grace or max time minus the time we were already idle.
// Use StickyTimeDuration when performing math to preserve a timeout
// of TimeDuration::Forever.
TimeDuration delta{StickyTimeDuration{currentTimeout} -
(now - idleEntry.mIdleSince)};
delta = TimeDuration::Max(delta, TimeDuration::FromMilliseconds(1));
LOG(("THRD-P(%p) %s waiting [%f]\n", this, mName.get(),
delta.ToMilliseconds()));
#ifdef DEBUG
idleEntry.mLastWaitDelay = delta;
#endif
idleEntry.mEventsAvailable.Wait(delta);
LOG(("THRD-P(%p) done waiting\n", this));
}
} else {
// We have an event to work on.
wasIdle = false;
if (idleEntry.isInList()) {
idleEntry.remove();
}
}
// Release our lock.
}
if (event) {
if (MOZ_LOG_TEST(sThreadPoolLog, mozilla::LogLevel::Debug)) {
MutexAutoLock lock(mMutex);
LOG(("THRD-P(%p) %s running [%p]\n", this, mName.get(), event.get()));
}
// Delay event processing to encourage whoever dispatched this event
// to run.
DelayForChaosMode(ChaosFeature::TaskRunning, 1000);
if (profiler_thread_is_being_profiled(
ThreadProfilingFeatures::Sampling)) {
// We'll handle the case of unstarted threads available
// when we sample.
current->SetRunningEventDelay(lastEventDelay, TimeStamp::Now());
}
LogRunnable::Run log(event);
AUTO_PROFILE_FOLLOWING_RUNNABLE(event);
event->Run();
// To cover the event's destructor code in the LogRunnable span
event = nullptr;
}
} while (!exitThread);
if (listener) {
listener->OnThreadShuttingDown();
}
MOZ_ASSERT(gCurrentThreadPool.get() == this);
gCurrentThreadPool.set(nullptr);
if (shutdownThreadOnExit) {
ShutdownThread(current);
}
LOG(("THRD-P(%p) leave\n", this));
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::DispatchFromScript(nsIRunnable* aEvent, uint32_t aFlags) {
nsCOMPtr<nsIRunnable> event(aEvent);
return Dispatch(event.forget(), aFlags);
}
NS_IMETHODIMP
nsThreadPool::Dispatch(already_AddRefed<nsIRunnable> aEvent, uint32_t aFlags) {
LOG(("THRD-P(%p) dispatch [%p %x]\n", this, /* XXX aEvent*/ nullptr, aFlags));
if (NS_WARN_IF(mShutdown)) {
nsCOMPtr<nsIRunnable> event(aEvent);
return NS_ERROR_NOT_AVAILABLE;
}
NS_ASSERTION(aFlags == NS_DISPATCH_NORMAL || aFlags == NS_DISPATCH_AT_END,
"unexpected dispatch flags");
PutEvent(std::move(aEvent), aFlags);
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::DelayedDispatch(already_AddRefed<nsIRunnable>, uint32_t) {
return NS_ERROR_NOT_IMPLEMENTED;
}
NS_IMETHODIMP
nsThreadPool::RegisterShutdownTask(nsITargetShutdownTask*) {
return NS_ERROR_NOT_IMPLEMENTED;
}
NS_IMETHODIMP
nsThreadPool::UnregisterShutdownTask(nsITargetShutdownTask*) {
return NS_ERROR_NOT_IMPLEMENTED;
}
NS_IMETHODIMP_(bool)
nsThreadPool::IsOnCurrentThreadInfallible() {
return gCurrentThreadPool.get() == this;
}
NS_IMETHODIMP
nsThreadPool::IsOnCurrentThread(bool* aResult) {
MutexAutoLock lock(mMutex);
if (NS_WARN_IF(mShutdown)) {
return NS_ERROR_NOT_AVAILABLE;
}
*aResult = IsOnCurrentThreadInfallible();
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::Shutdown() { return ShutdownWithTimeout(-1); }
NS_IMETHODIMP
nsThreadPool::ShutdownWithTimeout(int32_t aTimeoutMs) {
nsCOMArray<nsIThread> threads;
nsCOMPtr<nsIThreadPoolListener> listener;
{
MutexAutoLock lock(mMutex);
if (mShutdown) {
return NS_ERROR_ILLEGAL_DURING_SHUTDOWN;
}
mShutdown = true;
NotifyChangeToAllIdleThreads();
threads.AppendObjects(mThreads);
mThreads.Clear();
// Swap in a null listener so that we release the listener at the end of
// this method. The listener will be kept alive as long as the other threads
// that were created when it was set.
mListener.swap(listener);
}
nsTArray<nsCOMPtr<nsIThreadShutdown>> contexts;
for (int32_t i = 0; i < threads.Count(); ++i) {
nsCOMPtr<nsIThreadShutdown> context;
if (NS_SUCCEEDED(threads[i]->BeginShutdown(getter_AddRefs(context)))) {
contexts.AppendElement(std::move(context));
}
}
// Start a timer which will stop waiting & leak the thread, forcing
// onCompletion to be called when it expires.
nsCOMPtr<nsITimer> timer;
if (aTimeoutMs >= 0) {
NS_NewTimerWithCallback(
getter_AddRefs(timer),
[&](nsITimer*) {
for (auto& context : contexts) {
context->StopWaitingAndLeakThread();
}
},
aTimeoutMs, nsITimer::TYPE_ONE_SHOT,
"nsThreadPool::ShutdownWithTimeout");
}
// Start a counter and register a callback to decrement outstandingThreads
// when the threads finish exiting. We'll spin an event loop until
// outstandingThreads reaches 0.
uint32_t outstandingThreads = contexts.Length();
RefPtr onCompletion = NS_NewCancelableRunnableFunction(
"nsThreadPool thread completion", [&] { --outstandingThreads; });
for (auto& context : contexts) {
context->OnCompletion(onCompletion);
}
mozilla::SpinEventLoopUntil("nsThreadPool::ShutdownWithTimeout"_ns,
[&] { return outstandingThreads == 0; });
if (timer) {
timer->Cancel();
}
onCompletion->Cancel();
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::GetThreadLimit(uint32_t* aValue) {
MutexAutoLock lock(mMutex);
*aValue = mThreadLimit;
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::SetThreadLimit(uint32_t aValue) {
MutexAutoLock lock(mMutex);
LOG(("THRD-P(%p) thread limit [%u]\n", this, aValue));
mThreadLimit = aValue;
if (mIdleThreadLimit > mThreadLimit) {
mIdleThreadLimit = mThreadLimit;
}
NotifyChangeToAllIdleThreads();
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::GetIdleThreadLimit(uint32_t* aValue) {
MutexAutoLock lock(mMutex);
*aValue = mIdleThreadLimit;
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::SetIdleThreadLimit(uint32_t aValue) {
MutexAutoLock lock(mMutex);
LOG(("THRD-P(%p) idle thread limit [%u]\n", this, aValue));
mIdleThreadLimit = aValue;
if (mIdleThreadLimit > mThreadLimit) {
mIdleThreadLimit = mThreadLimit;
}
NotifyChangeToAllIdleThreads();
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::GetIdleThreadGraceTimeout(uint32_t* aValue) {
MutexAutoLock lock(mMutex);
*aValue = (uint32_t)mIdleThreadGraceTimeout.ToMilliseconds();
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::SetIdleThreadGraceTimeout(uint32_t aValue) {
// We do not want to support forever here.
MOZ_ASSERT(aValue != UINT32_MAX);
MutexAutoLock lock(mMutex);
TimeDuration oldTimeout = mIdleThreadGraceTimeout;
mIdleThreadGraceTimeout = TimeDuration::FromMilliseconds(aValue);
// We do not want to clamp here to avoid unexpected results due to the order
// of calling the setters, but we also do not want to clamp where we use it
// for performance reasons. Tell the caller.
MOZ_ASSERT(mIdleThreadGraceTimeout <= mIdleThreadMaxTimeout);
// Do we need to notify any idle threads that their sleep time has shortened?
if (mIdleThreadGraceTimeout < oldTimeout) {
NotifyChangeToAllIdleThreads();
}
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::GetIdleThreadMaximumTimeout(uint32_t* aValue) {
MutexAutoLock lock(mMutex);
*aValue = (uint32_t)mIdleThreadMaxTimeout.ToMilliseconds();
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::SetIdleThreadMaximumTimeout(uint32_t aValue) {
MutexAutoLock lock(mMutex);
TimeDuration oldTimeout = mIdleThreadMaxTimeout;
if (aValue == UINT32_MAX) {
mIdleThreadMaxTimeout = TimeDuration::Forever();
} else {
mIdleThreadMaxTimeout = TimeDuration::FromMilliseconds(aValue);
}
// We do not want to clamp here to avoid unexpected results due to the order
// of calling the setters, but we also do not want to clamp where we use it
// for performance reasons. Tell the caller.
MOZ_ASSERT(mIdleThreadGraceTimeout <= mIdleThreadMaxTimeout);
// Do we need to notify any idle threads that their sleep time has shortened?
if (mIdleThreadMaxTimeout < oldTimeout) {
NotifyChangeToAllIdleThreads();
}
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::GetThreadStackSize(uint32_t* aValue) {
MutexAutoLock lock(mMutex);
*aValue = mStackSize;
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::SetThreadStackSize(uint32_t aValue) {
MutexAutoLock lock(mMutex);
mStackSize = aValue;
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::GetListener(nsIThreadPoolListener** aListener) {
MutexAutoLock lock(mMutex);
NS_IF_ADDREF(*aListener = mListener);
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::SetListener(nsIThreadPoolListener* aListener) {
nsCOMPtr<nsIThreadPoolListener> swappedListener(aListener);
{
MutexAutoLock lock(mMutex);
mListener.swap(swappedListener);
}
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::SetName(const nsACString& aName) {
MutexAutoLock lock(mMutex);
if (mThreads.Count()) {
return NS_ERROR_NOT_AVAILABLE;
}
mName = aName;
return NS_OK;
}