gecko-dev/servo/components/servo_arc/lib.rs

1496 строки
48 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Fork of Arc for Servo. This has the following advantages over std::sync::Arc:
//!
//! * We don't waste storage on the weak reference count.
//! * We don't do extra RMU operations to handle the possibility of weak references.
//! * We can experiment with arena allocation (todo).
//! * We can add methods to support our custom use cases [1].
//! * We have support for dynamically-sized types (see from_header_and_iter).
//! * We have support for thin arcs to unsized types (see ThinArc).
//! * We have support for references to static data, which don't do any
//! refcounting.
//!
//! [1]: https://bugzilla.mozilla.org/show_bug.cgi?id=1360883
// The semantics of `Arc` are already documented in the Rust docs, so we don't
// duplicate those here.
#![allow(missing_docs)]
extern crate nodrop;
#[cfg(feature = "servo")]
extern crate serde;
extern crate stable_deref_trait;
use nodrop::NoDrop;
#[cfg(feature = "servo")]
use serde::{Deserialize, Serialize};
use stable_deref_trait::{CloneStableDeref, StableDeref};
use std::alloc::{self, Layout};
use std::borrow;
use std::cmp::Ordering;
use std::convert::From;
use std::fmt;
use std::hash::{Hash, Hasher};
use std::iter::{ExactSizeIterator, Iterator};
use std::marker::PhantomData;
use std::mem::{self, align_of, size_of};
use std::ops::{Deref, DerefMut};
use std::os::raw::c_void;
use std::process;
use std::ptr;
use std::slice;
use std::sync::atomic;
use std::sync::atomic::Ordering::{Acquire, Relaxed, Release};
use std::{isize, usize};
/// A soft limit on the amount of references that may be made to an `Arc`.
///
/// Going above this limit will abort your program (although not
/// necessarily) at _exactly_ `MAX_REFCOUNT + 1` references.
const MAX_REFCOUNT: usize = (isize::MAX) as usize;
/// Special refcount value that means the data is not reference counted,
/// and that the `Arc` is really acting as a read-only static reference.
const STATIC_REFCOUNT: usize = usize::MAX;
/// An atomically reference counted shared pointer
///
/// See the documentation for [`Arc`] in the standard library. Unlike the
/// standard library `Arc`, this `Arc` does not support weak reference counting.
///
/// See the discussion in https://github.com/rust-lang/rust/pull/60594 for the
/// usage of PhantomData.
///
/// [`Arc`]: https://doc.rust-lang.org/stable/std/sync/struct.Arc.html
///
/// cbindgen:derive-eq=false
/// cbindgen:derive-neq=false
#[repr(C)]
pub struct Arc<T: ?Sized> {
p: ptr::NonNull<ArcInner<T>>,
phantom: PhantomData<T>,
}
/// An `Arc` that is known to be uniquely owned
///
/// When `Arc`s are constructed, they are known to be
/// uniquely owned. In such a case it is safe to mutate
/// the contents of the `Arc`. Normally, one would just handle
/// this by mutating the data on the stack before allocating the
/// `Arc`, however it's possible the data is large or unsized
/// and you need to heap-allocate it earlier in such a way
/// that it can be freely converted into a regular `Arc` once you're
/// done.
///
/// `UniqueArc` exists for this purpose, when constructed it performs
/// the same allocations necessary for an `Arc`, however it allows mutable access.
/// Once the mutation is finished, you can call `.shareable()` and get a regular `Arc`
/// out of it.
///
/// Ignore the doctest below there's no way to skip building with refcount
/// logging during doc tests (see rust-lang/rust#45599).
///
/// ```rust,ignore
/// # use servo_arc::UniqueArc;
/// let data = [1, 2, 3, 4, 5];
/// let mut x = UniqueArc::new(data);
/// x[4] = 7; // mutate!
/// let y = x.shareable(); // y is an Arc<T>
/// ```
pub struct UniqueArc<T: ?Sized>(Arc<T>);
impl<T> UniqueArc<T> {
#[inline]
/// Construct a new UniqueArc
pub fn new(data: T) -> Self {
UniqueArc(Arc::new(data))
}
/// Construct an uninitialized arc
#[inline]
pub fn new_uninit() -> UniqueArc<mem::MaybeUninit<T>> {
unsafe {
let layout = Layout::new::<ArcInner<mem::MaybeUninit<T>>>();
let ptr = alloc::alloc(layout);
let mut p = ptr::NonNull::new(ptr)
.unwrap_or_else(|| alloc::handle_alloc_error(layout))
.cast::<ArcInner<mem::MaybeUninit<T>>>();
ptr::write(&mut p.as_mut().count, atomic::AtomicUsize::new(1));
#[cfg(feature = "gecko_refcount_logging")]
{
NS_LogCtor(p.as_ptr() as *mut _, b"ServoArc\0".as_ptr() as *const _, 8)
}
UniqueArc(Arc {
p,
phantom: PhantomData,
})
}
}
#[inline]
/// Convert to a shareable Arc<T> once we're done mutating it
pub fn shareable(self) -> Arc<T> {
self.0
}
}
impl<T> UniqueArc<mem::MaybeUninit<T>> {
/// Convert to an initialized Arc.
#[inline]
pub unsafe fn assume_init(this: Self) -> UniqueArc<T> {
UniqueArc(Arc {
p: mem::ManuallyDrop::new(this).0.p.cast(),
phantom: PhantomData,
})
}
}
impl<T> Deref for UniqueArc<T> {
type Target = T;
fn deref(&self) -> &T {
&*self.0
}
}
impl<T> DerefMut for UniqueArc<T> {
fn deref_mut(&mut self) -> &mut T {
// We know this to be uniquely owned
unsafe { &mut (*self.0.ptr()).data }
}
}
unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
/// The object allocated by an Arc<T>
#[repr(C)]
struct ArcInner<T: ?Sized> {
count: atomic::AtomicUsize,
data: T,
}
unsafe impl<T: ?Sized + Sync + Send> Send for ArcInner<T> {}
unsafe impl<T: ?Sized + Sync + Send> Sync for ArcInner<T> {}
/// Computes the offset of the data field within ArcInner.
fn data_offset<T>() -> usize {
let size = size_of::<ArcInner<()>>();
let align = align_of::<T>();
// https://github.com/rust-lang/rust/blob/1.36.0/src/libcore/alloc.rs#L187-L207
size.wrapping_add(align).wrapping_sub(1) & !align.wrapping_sub(1)
}
impl<T> Arc<T> {
/// Construct an `Arc<T>`
#[inline]
pub fn new(data: T) -> Self {
let ptr = Box::into_raw(Box::new(ArcInner {
count: atomic::AtomicUsize::new(1),
data,
}));
#[cfg(feature = "gecko_refcount_logging")]
unsafe {
// FIXME(emilio): Would be so amazing to have
// std::intrinsics::type_name() around, so that we could also report
// a real size.
NS_LogCtor(ptr as *mut _, b"ServoArc\0".as_ptr() as *const _, 8);
}
unsafe {
Arc {
p: ptr::NonNull::new_unchecked(ptr),
phantom: PhantomData,
}
}
}
/// Construct an intentionally-leaked arc.
#[inline]
pub fn new_leaked(data: T) -> Self {
let arc = Self::new(data);
arc.mark_as_intentionally_leaked();
arc
}
/// Convert the Arc<T> to a raw pointer, suitable for use across FFI
///
/// Note: This returns a pointer to the data T, which is offset in the allocation.
///
/// It is recommended to use RawOffsetArc for this.
#[inline]
fn into_raw(this: Self) -> *const T {
let ptr = unsafe { &((*this.ptr()).data) as *const _ };
mem::forget(this);
ptr
}
/// Reconstruct the Arc<T> from a raw pointer obtained from into_raw()
///
/// Note: This raw pointer will be offset in the allocation and must be preceded
/// by the atomic count.
///
/// It is recommended to use RawOffsetArc for this
#[inline]
unsafe fn from_raw(ptr: *const T) -> Self {
// To find the corresponding pointer to the `ArcInner` we need
// to subtract the offset of the `data` field from the pointer.
let ptr = (ptr as *const u8).sub(data_offset::<T>());
Arc {
p: ptr::NonNull::new_unchecked(ptr as *mut ArcInner<T>),
phantom: PhantomData,
}
}
/// Create a new static Arc<T> (one that won't reference count the object)
/// and place it in the allocation provided by the specified `alloc`
/// function.
///
/// `alloc` must return a pointer into a static allocation suitable for
/// storing data with the `Layout` passed into it. The pointer returned by
/// `alloc` will not be freed.
#[inline]
pub unsafe fn new_static<F>(alloc: F, data: T) -> Arc<T>
where
F: FnOnce(Layout) -> *mut u8,
{
let ptr = alloc(Layout::new::<ArcInner<T>>()) as *mut ArcInner<T>;
let x = ArcInner {
count: atomic::AtomicUsize::new(STATIC_REFCOUNT),
data,
};
ptr::write(ptr, x);
Arc {
p: ptr::NonNull::new_unchecked(ptr),
phantom: PhantomData,
}
}
/// Produce a pointer to the data that can be converted back
/// to an Arc. This is basically an `&Arc<T>`, without the extra indirection.
/// It has the benefits of an `&T` but also knows about the underlying refcount
/// and can be converted into more `Arc<T>`s if necessary.
#[inline]
pub fn borrow_arc<'a>(&'a self) -> ArcBorrow<'a, T> {
ArcBorrow(&**self)
}
/// Temporarily converts |self| into a bonafide RawOffsetArc and exposes it to the
/// provided callback. The refcount is not modified.
#[inline(always)]
pub fn with_raw_offset_arc<F, U>(&self, f: F) -> U
where
F: FnOnce(&RawOffsetArc<T>) -> U,
{
// Synthesize transient Arc, which never touches the refcount of the ArcInner.
let transient = unsafe { NoDrop::new(Arc::into_raw_offset(ptr::read(self))) };
// Expose the transient Arc to the callback, which may clone it if it wants.
let result = f(&transient);
// Forget the transient Arc to leave the refcount untouched.
mem::forget(transient);
// Forward the result.
result
}
/// Returns the address on the heap of the Arc itself -- not the T within it -- for memory
/// reporting.
///
/// If this is a static reference, this returns null.
pub fn heap_ptr(&self) -> *const c_void {
if self.inner().count.load(Relaxed) == STATIC_REFCOUNT {
ptr::null()
} else {
self.p.as_ptr() as *const ArcInner<T> as *const c_void
}
}
}
impl<T: ?Sized> Arc<T> {
#[inline]
fn inner(&self) -> &ArcInner<T> {
// This unsafety is ok because while this arc is alive we're guaranteed
// that the inner pointer is valid. Furthermore, we know that the
// `ArcInner` structure itself is `Sync` because the inner data is
// `Sync` as well, so we're ok loaning out an immutable pointer to these
// contents.
unsafe { &*self.ptr() }
}
#[inline(always)]
fn record_drop(&self) {
#[cfg(feature = "gecko_refcount_logging")]
unsafe {
NS_LogDtor(self.ptr() as *mut _, b"ServoArc\0".as_ptr() as *const _, 8);
}
}
/// Marks this `Arc` as intentionally leaked for the purposes of refcount
/// logging.
///
/// It's a logic error to call this more than once, but it's not unsafe, as
/// it'd just report negative leaks.
#[inline(always)]
pub fn mark_as_intentionally_leaked(&self) {
self.record_drop();
}
// Non-inlined part of `drop`. Just invokes the destructor and calls the
// refcount logging machinery if enabled.
#[inline(never)]
unsafe fn drop_slow(&mut self) {
self.record_drop();
let _ = Box::from_raw(self.ptr());
}
/// Test pointer equality between the two Arcs, i.e. they must be the _same_
/// allocation
#[inline]
pub fn ptr_eq(this: &Self, other: &Self) -> bool {
this.ptr() == other.ptr()
}
fn ptr(&self) -> *mut ArcInner<T> {
self.p.as_ptr()
}
}
#[cfg(feature = "gecko_refcount_logging")]
extern "C" {
fn NS_LogCtor(
aPtr: *mut std::os::raw::c_void,
aTypeName: *const std::os::raw::c_char,
aSize: u32,
);
fn NS_LogDtor(
aPtr: *mut std::os::raw::c_void,
aTypeName: *const std::os::raw::c_char,
aSize: u32,
);
}
impl<T: ?Sized> Clone for Arc<T> {
#[inline]
fn clone(&self) -> Self {
// NOTE(emilio): If you change anything here, make sure that the
// implementation in layout/style/ServoStyleConstsInlines.h matches!
//
// Using a relaxed ordering to check for STATIC_REFCOUNT is safe, since
// `count` never changes between STATIC_REFCOUNT and other values.
if self.inner().count.load(Relaxed) != STATIC_REFCOUNT {
// Using a relaxed ordering is alright here, as knowledge of the
// original reference prevents other threads from erroneously deleting
// the object.
//
// As explained in the [Boost documentation][1], Increasing the
// reference counter can always be done with memory_order_relaxed: New
// references to an object can only be formed from an existing
// reference, and passing an existing reference from one thread to
// another must already provide any required synchronization.
//
// [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
let old_size = self.inner().count.fetch_add(1, Relaxed);
// However we need to guard against massive refcounts in case someone
// is `mem::forget`ing Arcs. If we don't do this the count can overflow
// and users will use-after free. We racily saturate to `isize::MAX` on
// the assumption that there aren't ~2 billion threads incrementing
// the reference count at once. This branch will never be taken in
// any realistic program.
//
// We abort because such a program is incredibly degenerate, and we
// don't care to support it.
if old_size > MAX_REFCOUNT {
process::abort();
}
}
unsafe {
Arc {
p: ptr::NonNull::new_unchecked(self.ptr()),
phantom: PhantomData,
}
}
}
}
impl<T: ?Sized> Deref for Arc<T> {
type Target = T;
#[inline]
fn deref(&self) -> &T {
&self.inner().data
}
}
impl<T: Clone> Arc<T> {
/// Makes a mutable reference to the `Arc`, cloning if necessary
///
/// This is functionally equivalent to [`Arc::make_mut`][mm] from the standard library.
///
/// If this `Arc` is uniquely owned, `make_mut()` will provide a mutable
/// reference to the contents. If not, `make_mut()` will create a _new_ `Arc`
/// with a copy of the contents, update `this` to point to it, and provide
/// a mutable reference to its contents.
///
/// This is useful for implementing copy-on-write schemes where you wish to
/// avoid copying things if your `Arc` is not shared.
///
/// [mm]: https://doc.rust-lang.org/stable/std/sync/struct.Arc.html#method.make_mut
#[inline]
pub fn make_mut(this: &mut Self) -> &mut T {
if !this.is_unique() {
// Another pointer exists; clone
*this = Arc::new((**this).clone());
}
unsafe {
// This unsafety is ok because we're guaranteed that the pointer
// returned is the *only* pointer that will ever be returned to T. Our
// reference count is guaranteed to be 1 at this point, and we required
// the Arc itself to be `mut`, so we're returning the only possible
// reference to the inner data.
&mut (*this.ptr()).data
}
}
}
impl<T: ?Sized> Arc<T> {
/// Provides mutable access to the contents _if_ the `Arc` is uniquely owned.
#[inline]
pub fn get_mut(this: &mut Self) -> Option<&mut T> {
if this.is_unique() {
unsafe {
// See make_mut() for documentation of the threadsafety here.
Some(&mut (*this.ptr()).data)
}
} else {
None
}
}
/// Whether or not the `Arc` is a static reference.
#[inline]
pub fn is_static(&self) -> bool {
// Using a relaxed ordering to check for STATIC_REFCOUNT is safe, since
// `count` never changes between STATIC_REFCOUNT and other values.
self.inner().count.load(Relaxed) == STATIC_REFCOUNT
}
/// Whether or not the `Arc` is uniquely owned (is the refcount 1?) and not
/// a static reference.
#[inline]
pub fn is_unique(&self) -> bool {
// See the extensive discussion in [1] for why this needs to be Acquire.
//
// [1] https://github.com/servo/servo/issues/21186
self.inner().count.load(Acquire) == 1
}
}
impl<T: ?Sized> Drop for Arc<T> {
#[inline]
fn drop(&mut self) {
// NOTE(emilio): If you change anything here, make sure that the
// implementation in layout/style/ServoStyleConstsInlines.h matches!
if self.is_static() {
return;
}
// Because `fetch_sub` is already atomic, we do not need to synchronize
// with other threads unless we are going to delete the object.
if self.inner().count.fetch_sub(1, Release) != 1 {
return;
}
// FIXME(bholley): Use the updated comment when [2] is merged.
//
// This load is needed to prevent reordering of use of the data and
// deletion of the data. Because it is marked `Release`, the decreasing
// of the reference count synchronizes with this `Acquire` load. This
// means that use of the data happens before decreasing the reference
// count, which happens before this load, which happens before the
// deletion of the data.
//
// As explained in the [Boost documentation][1],
//
// > It is important to enforce any possible access to the object in one
// > thread (through an existing reference) to *happen before* deleting
// > the object in a different thread. This is achieved by a "release"
// > operation after dropping a reference (any access to the object
// > through this reference must obviously happened before), and an
// > "acquire" operation before deleting the object.
//
// [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
// [2]: https://github.com/rust-lang/rust/pull/41714
self.inner().count.load(Acquire);
unsafe {
self.drop_slow();
}
}
}
impl<T: ?Sized + PartialEq> PartialEq for Arc<T> {
fn eq(&self, other: &Arc<T>) -> bool {
Self::ptr_eq(self, other) || *(*self) == *(*other)
}
fn ne(&self, other: &Arc<T>) -> bool {
!Self::ptr_eq(self, other) && *(*self) != *(*other)
}
}
impl<T: ?Sized + PartialOrd> PartialOrd for Arc<T> {
fn partial_cmp(&self, other: &Arc<T>) -> Option<Ordering> {
(**self).partial_cmp(&**other)
}
fn lt(&self, other: &Arc<T>) -> bool {
*(*self) < *(*other)
}
fn le(&self, other: &Arc<T>) -> bool {
*(*self) <= *(*other)
}
fn gt(&self, other: &Arc<T>) -> bool {
*(*self) > *(*other)
}
fn ge(&self, other: &Arc<T>) -> bool {
*(*self) >= *(*other)
}
}
impl<T: ?Sized + Ord> Ord for Arc<T> {
fn cmp(&self, other: &Arc<T>) -> Ordering {
(**self).cmp(&**other)
}
}
impl<T: ?Sized + Eq> Eq for Arc<T> {}
impl<T: ?Sized + fmt::Display> fmt::Display for Arc<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(&**self, f)
}
}
impl<T: ?Sized + fmt::Debug> fmt::Debug for Arc<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
impl<T: ?Sized> fmt::Pointer for Arc<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Pointer::fmt(&self.ptr(), f)
}
}
impl<T: Default> Default for Arc<T> {
fn default() -> Arc<T> {
Arc::new(Default::default())
}
}
impl<T: ?Sized + Hash> Hash for Arc<T> {
fn hash<H: Hasher>(&self, state: &mut H) {
(**self).hash(state)
}
}
impl<T> From<T> for Arc<T> {
#[inline]
fn from(t: T) -> Self {
Arc::new(t)
}
}
impl<T: ?Sized> borrow::Borrow<T> for Arc<T> {
#[inline]
fn borrow(&self) -> &T {
&**self
}
}
impl<T: ?Sized> AsRef<T> for Arc<T> {
#[inline]
fn as_ref(&self) -> &T {
&**self
}
}
unsafe impl<T: ?Sized> StableDeref for Arc<T> {}
unsafe impl<T: ?Sized> CloneStableDeref for Arc<T> {}
#[cfg(feature = "servo")]
impl<'de, T: Deserialize<'de>> Deserialize<'de> for Arc<T> {
fn deserialize<D>(deserializer: D) -> Result<Arc<T>, D::Error>
where
D: ::serde::de::Deserializer<'de>,
{
T::deserialize(deserializer).map(Arc::new)
}
}
#[cfg(feature = "servo")]
impl<T: Serialize> Serialize for Arc<T> {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: ::serde::ser::Serializer,
{
(**self).serialize(serializer)
}
}
/// Structure to allow Arc-managing some fixed-sized data and a variably-sized
/// slice in a single allocation.
#[derive(Debug, Eq, PartialEq, PartialOrd)]
#[repr(C)]
pub struct HeaderSlice<H, T: ?Sized> {
/// The fixed-sized data.
pub header: H,
/// The dynamically-sized data.
pub slice: T,
}
#[inline(always)]
fn divide_rounding_up(dividend: usize, divisor: usize) -> usize {
(dividend + divisor - 1) / divisor
}
impl<H, T> Arc<HeaderSlice<H, [T]>> {
/// Creates an Arc for a HeaderSlice using the given header struct and
/// iterator to generate the slice.
///
/// `is_static` indicates whether to create a static Arc.
///
/// `alloc` is used to get a pointer to the memory into which the
/// dynamically sized ArcInner<HeaderSlice<H, T>> value will be
/// written. If `is_static` is true, then `alloc` must return a
/// pointer into some static memory allocation. If it is false,
/// then `alloc` must return an allocation that can be dellocated
/// by calling Box::from_raw::<ArcInner<HeaderSlice<H, T>>> on it.
#[inline]
fn from_header_and_iter_alloc<F, I>(alloc: F, header: H, mut items: I, is_static: bool) -> Self
where
F: FnOnce(Layout) -> *mut u8,
I: Iterator<Item = T> + ExactSizeIterator,
{
assert_ne!(size_of::<T>(), 0, "Need to think about ZST");
let inner_align = align_of::<ArcInner<HeaderSlice<H, [T; 0]>>>();
debug_assert!(inner_align >= align_of::<T>());
// Compute the required size for the allocation.
let num_items = items.len();
let size = {
// Next, synthesize a totally garbage (but properly aligned) pointer
// to a sequence of T.
let fake_slice_ptr = inner_align as *const T;
// Convert that sequence to a fat pointer. The address component of
// the fat pointer will be garbage, but the length will be correct.
let fake_slice = unsafe { slice::from_raw_parts(fake_slice_ptr, num_items) };
// Pretend the garbage address points to our allocation target (with
// a trailing sequence of T), rather than just a sequence of T.
let fake_ptr = fake_slice as *const [T] as *const ArcInner<HeaderSlice<H, [T]>>;
let fake_ref: &ArcInner<HeaderSlice<H, [T]>> = unsafe { &*fake_ptr };
// Use size_of_val, which will combine static information about the
// type with the length from the fat pointer. The garbage address
// will not be used.
mem::size_of_val(fake_ref)
};
let ptr: *mut ArcInner<HeaderSlice<H, [T]>>;
unsafe {
// Allocate the buffer.
let layout = if inner_align <= align_of::<usize>() {
Layout::from_size_align_unchecked(size, align_of::<usize>())
} else if inner_align <= align_of::<u64>() {
// On 32-bit platforms <T> may have 8 byte alignment while usize
// has 4 byte aligment. Use u64 to avoid over-alignment.
// This branch will compile away in optimized builds.
Layout::from_size_align_unchecked(size, align_of::<u64>())
} else {
panic!("Over-aligned type not handled");
};
let buffer = alloc(layout);
// Synthesize the fat pointer. We do this by claiming we have a direct
// pointer to a [T], and then changing the type of the borrow. The key
// point here is that the length portion of the fat pointer applies
// only to the number of elements in the dynamically-sized portion of
// the type, so the value will be the same whether it points to a [T]
// or something else with a [T] as its last member.
let fake_slice: &mut [T] = slice::from_raw_parts_mut(buffer as *mut T, num_items);
ptr = fake_slice as *mut [T] as *mut ArcInner<HeaderSlice<H, [T]>>;
// Write the data.
//
// Note that any panics here (i.e. from the iterator) are safe, since
// we'll just leak the uninitialized memory.
let count = if is_static {
atomic::AtomicUsize::new(STATIC_REFCOUNT)
} else {
atomic::AtomicUsize::new(1)
};
ptr::write(&mut ((*ptr).count), count);
ptr::write(&mut ((*ptr).data.header), header);
if num_items != 0 {
let mut current: *mut T = &mut (*ptr).data.slice[0];
for _ in 0..num_items {
ptr::write(
current,
items
.next()
.expect("ExactSizeIterator over-reported length"),
);
current = current.offset(1);
}
// We should have consumed the buffer exactly, maybe accounting
// for some padding from the alignment.
debug_assert!(
(buffer.add(size) as usize - current as *mut u8 as usize) <
inner_align
);
}
assert!(
items.next().is_none(),
"ExactSizeIterator under-reported length"
);
}
#[cfg(feature = "gecko_refcount_logging")]
unsafe {
if !is_static {
// FIXME(emilio): Would be so amazing to have
// std::intrinsics::type_name() around.
NS_LogCtor(ptr as *mut _, b"ServoArc\0".as_ptr() as *const _, 8)
}
}
// Return the fat Arc.
assert_eq!(
size_of::<Self>(),
size_of::<usize>() * 2,
"The Arc will be fat"
);
unsafe {
Arc {
p: ptr::NonNull::new_unchecked(ptr),
phantom: PhantomData,
}
}
}
/// Creates an Arc for a HeaderSlice using the given header struct and
/// iterator to generate the slice. The resulting Arc will be fat.
#[inline]
pub fn from_header_and_iter<I>(header: H, items: I) -> Self
where
I: Iterator<Item = T> + ExactSizeIterator,
{
Arc::from_header_and_iter_alloc(
|layout| {
// align will only ever be align_of::<usize>() or align_of::<u64>()
let align = layout.align();
unsafe {
if align == mem::align_of::<usize>() {
Self::allocate_buffer::<usize>(layout.size())
} else {
assert_eq!(align, mem::align_of::<u64>());
Self::allocate_buffer::<u64>(layout.size())
}
}
},
header,
items,
/* is_static = */ false,
)
}
#[inline]
unsafe fn allocate_buffer<W>(size: usize) -> *mut u8 {
// We use Vec because the underlying allocation machinery isn't
// available in stable Rust. To avoid alignment issues, we allocate
// words rather than bytes, rounding up to the nearest word size.
let words_to_allocate = divide_rounding_up(size, mem::size_of::<W>());
let mut vec = Vec::<W>::with_capacity(words_to_allocate);
vec.set_len(words_to_allocate);
Box::into_raw(vec.into_boxed_slice()) as *mut W as *mut u8
}
}
/// Header data with an inline length. Consumers that use HeaderWithLength as the
/// Header type in HeaderSlice can take advantage of ThinArc.
#[derive(Debug, Eq, PartialEq, PartialOrd)]
#[repr(C)]
pub struct HeaderWithLength<H> {
/// The fixed-sized data.
pub header: H,
/// The slice length.
length: usize,
}
impl<H> HeaderWithLength<H> {
/// Creates a new HeaderWithLength.
pub fn new(header: H, length: usize) -> Self {
HeaderWithLength {
header,
length,
}
}
}
type HeaderSliceWithLength<H, T> = HeaderSlice<HeaderWithLength<H>, T>;
/// A "thin" `Arc` containing dynamically sized data
///
/// This is functionally equivalent to Arc<(H, [T])>
///
/// When you create an `Arc` containing a dynamically sized type
/// like `HeaderSlice<H, [T]>`, the `Arc` is represented on the stack
/// as a "fat pointer", where the length of the slice is stored
/// alongside the `Arc`'s pointer. In some situations you may wish to
/// have a thin pointer instead, perhaps for FFI compatibility
/// or space efficiency.
///
/// Note that we use `[T; 0]` in order to have the right alignment for `T`.
///
/// `ThinArc` solves this by storing the length in the allocation itself,
/// via `HeaderSliceWithLength`.
#[repr(C)]
pub struct ThinArc<H, T> {
ptr: ptr::NonNull<ArcInner<HeaderSliceWithLength<H, [T; 0]>>>,
phantom: PhantomData<(H, T)>,
}
impl<H: fmt::Debug, T: fmt::Debug> fmt::Debug for ThinArc<H, T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(self.deref(), f)
}
}
unsafe impl<H: Sync + Send, T: Sync + Send> Send for ThinArc<H, T> {}
unsafe impl<H: Sync + Send, T: Sync + Send> Sync for ThinArc<H, T> {}
// Synthesize a fat pointer from a thin pointer.
//
// See the comment around the analogous operation in from_header_and_iter.
fn thin_to_thick<H, T>(
thin: *mut ArcInner<HeaderSliceWithLength<H, [T; 0]>>,
) -> *mut ArcInner<HeaderSliceWithLength<H, [T]>> {
let len = unsafe { (*thin).data.header.length };
let fake_slice: *mut [T] = unsafe { slice::from_raw_parts_mut(thin as *mut T, len) };
fake_slice as *mut ArcInner<HeaderSliceWithLength<H, [T]>>
}
impl<H, T> ThinArc<H, T> {
/// Temporarily converts |self| into a bonafide Arc and exposes it to the
/// provided callback. The refcount is not modified.
#[inline]
pub fn with_arc<F, U>(&self, f: F) -> U
where
F: FnOnce(&Arc<HeaderSliceWithLength<H, [T]>>) -> U,
{
// Synthesize transient Arc, which never touches the refcount of the ArcInner.
let transient = unsafe {
NoDrop::new(Arc {
p: ptr::NonNull::new_unchecked(thin_to_thick(self.ptr.as_ptr())),
phantom: PhantomData,
})
};
// Expose the transient Arc to the callback, which may clone it if it wants.
let result = f(&transient);
// Forget the transient Arc to leave the refcount untouched.
// XXXManishearth this can be removed when unions stabilize,
// since then NoDrop becomes zero overhead
mem::forget(transient);
// Forward the result.
result
}
/// Creates a `ThinArc` for a HeaderSlice using the given header struct and
/// iterator to generate the slice.
pub fn from_header_and_iter<I>(header: H, items: I) -> Self
where
I: Iterator<Item = T> + ExactSizeIterator,
{
let header = HeaderWithLength::new(header, items.len());
Arc::into_thin(Arc::from_header_and_iter(header, items))
}
/// Create a static `ThinArc` for a HeaderSlice using the given header
/// struct and iterator to generate the slice, placing it in the allocation
/// provided by the specified `alloc` function.
///
/// `alloc` must return a pointer into a static allocation suitable for
/// storing data with the `Layout` passed into it. The pointer returned by
/// `alloc` will not be freed.
pub unsafe fn static_from_header_and_iter<F, I>(alloc: F, header: H, items: I) -> Self
where
F: FnOnce(Layout) -> *mut u8,
I: Iterator<Item = T> + ExactSizeIterator,
{
let header = HeaderWithLength::new(header, items.len());
Arc::into_thin(Arc::from_header_and_iter_alloc(
alloc, header, items, /* is_static = */ true,
))
}
/// Returns the address on the heap of the ThinArc itself -- not the T
/// within it -- for memory reporting, and bindings.
#[inline]
pub fn ptr(&self) -> *const c_void {
self.ptr.as_ptr() as *const ArcInner<T> as *const c_void
}
/// If this is a static ThinArc, this returns null.
#[inline]
pub fn heap_ptr(&self) -> *const c_void {
let is_static =
ThinArc::with_arc(self, |a| a.inner().count.load(Relaxed) == STATIC_REFCOUNT);
if is_static {
ptr::null()
} else {
self.ptr()
}
}
}
impl<H, T> Deref for ThinArc<H, T> {
type Target = HeaderSliceWithLength<H, [T]>;
#[inline]
fn deref(&self) -> &Self::Target {
unsafe { &(*thin_to_thick(self.ptr.as_ptr())).data }
}
}
impl<H, T> Clone for ThinArc<H, T> {
#[inline]
fn clone(&self) -> Self {
ThinArc::with_arc(self, |a| Arc::into_thin(a.clone()))
}
}
impl<H, T> Drop for ThinArc<H, T> {
#[inline]
fn drop(&mut self) {
let _ = Arc::from_thin(ThinArc {
ptr: self.ptr,
phantom: PhantomData,
});
}
}
impl<H, T> Arc<HeaderSliceWithLength<H, [T]>> {
/// Converts an `Arc` into a `ThinArc`. This consumes the `Arc`, so the refcount
/// is not modified.
#[inline]
pub fn into_thin(a: Self) -> ThinArc<H, T> {
assert_eq!(
a.header.length,
a.slice.len(),
"Length needs to be correct for ThinArc to work"
);
let fat_ptr: *mut ArcInner<HeaderSliceWithLength<H, [T]>> = a.ptr();
mem::forget(a);
let thin_ptr = fat_ptr as *mut [usize] as *mut usize;
ThinArc {
ptr: unsafe {
ptr::NonNull::new_unchecked(
thin_ptr as *mut ArcInner<HeaderSliceWithLength<H, [T; 0]>>,
)
},
phantom: PhantomData,
}
}
/// Converts a `ThinArc` into an `Arc`. This consumes the `ThinArc`, so the refcount
/// is not modified.
#[inline]
pub fn from_thin(a: ThinArc<H, T>) -> Self {
let ptr = thin_to_thick(a.ptr.as_ptr());
mem::forget(a);
unsafe {
Arc {
p: ptr::NonNull::new_unchecked(ptr),
phantom: PhantomData,
}
}
}
}
impl<H: PartialEq, T: PartialEq> PartialEq for ThinArc<H, T> {
#[inline]
fn eq(&self, other: &ThinArc<H, T>) -> bool {
ThinArc::with_arc(self, |a| ThinArc::with_arc(other, |b| *a == *b))
}
}
impl<H: Eq, T: Eq> Eq for ThinArc<H, T> {}
/// An `Arc`, except it holds a pointer to the T instead of to the
/// entire ArcInner. This struct is FFI-compatible.
///
/// ```text
/// Arc<T> RawOffsetArc<T>
/// | |
/// v v
/// ---------------------
/// | RefCount | T (data) | [ArcInner<T>]
/// ---------------------
/// ```
///
/// This means that this is a direct pointer to
/// its contained data (and can be read from by both C++ and Rust),
/// but we can also convert it to a "regular" Arc<T> by removing the offset.
///
/// This is very useful if you have an Arc-containing struct shared between Rust and C++,
/// and wish for C++ to be able to read the data behind the `Arc` without incurring
/// an FFI call overhead.
#[derive(Eq)]
#[repr(C)]
pub struct RawOffsetArc<T> {
ptr: ptr::NonNull<T>,
}
unsafe impl<T: Sync + Send> Send for RawOffsetArc<T> {}
unsafe impl<T: Sync + Send> Sync for RawOffsetArc<T> {}
impl<T> Deref for RawOffsetArc<T> {
type Target = T;
fn deref(&self) -> &Self::Target {
unsafe { &*self.ptr.as_ptr() }
}
}
impl<T> Clone for RawOffsetArc<T> {
#[inline]
fn clone(&self) -> Self {
Arc::into_raw_offset(self.clone_arc())
}
}
impl<T> Drop for RawOffsetArc<T> {
fn drop(&mut self) {
let _ = Arc::from_raw_offset(RawOffsetArc {
ptr: self.ptr,
});
}
}
impl<T: fmt::Debug> fmt::Debug for RawOffsetArc<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
impl<T: PartialEq> PartialEq for RawOffsetArc<T> {
fn eq(&self, other: &RawOffsetArc<T>) -> bool {
*(*self) == *(*other)
}
fn ne(&self, other: &RawOffsetArc<T>) -> bool {
*(*self) != *(*other)
}
}
impl<T> RawOffsetArc<T> {
/// Temporarily converts |self| into a bonafide Arc and exposes it to the
/// provided callback. The refcount is not modified.
#[inline]
pub fn with_arc<F, U>(&self, f: F) -> U
where
F: FnOnce(&Arc<T>) -> U,
{
// Synthesize transient Arc, which never touches the refcount of the ArcInner.
let transient = unsafe { NoDrop::new(Arc::from_raw(self.ptr.as_ptr())) };
// Expose the transient Arc to the callback, which may clone it if it wants.
let result = f(&transient);
// Forget the transient Arc to leave the refcount untouched.
// XXXManishearth this can be removed when unions stabilize,
// since then NoDrop becomes zero overhead
mem::forget(transient);
// Forward the result.
result
}
/// If uniquely owned, provide a mutable reference
/// Else create a copy, and mutate that
///
/// This is functionally the same thing as `Arc::make_mut`
#[inline]
pub fn make_mut(&mut self) -> &mut T
where
T: Clone,
{
unsafe {
// extract the RawOffsetArc as an owned variable
let this = ptr::read(self);
// treat it as a real Arc
let mut arc = Arc::from_raw_offset(this);
// obtain the mutable reference. Cast away the lifetime
// This may mutate `arc`
let ret = Arc::make_mut(&mut arc) as *mut _;
// Store the possibly-mutated arc back inside, after converting
// it to a RawOffsetArc again
ptr::write(self, Arc::into_raw_offset(arc));
&mut *ret
}
}
/// Clone it as an `Arc`
#[inline]
pub fn clone_arc(&self) -> Arc<T> {
RawOffsetArc::with_arc(self, |a| a.clone())
}
/// Produce a pointer to the data that can be converted back
/// to an `Arc`
#[inline]
pub fn borrow_arc<'a>(&'a self) -> ArcBorrow<'a, T> {
ArcBorrow(&**self)
}
}
impl<T> Arc<T> {
/// Converts an `Arc` into a `RawOffsetArc`. This consumes the `Arc`, so the refcount
/// is not modified.
#[inline]
pub fn into_raw_offset(a: Self) -> RawOffsetArc<T> {
unsafe {
RawOffsetArc {
ptr: ptr::NonNull::new_unchecked(Arc::into_raw(a) as *mut T),
}
}
}
/// Converts a `RawOffsetArc` into an `Arc`. This consumes the `RawOffsetArc`, so the refcount
/// is not modified.
#[inline]
pub fn from_raw_offset(a: RawOffsetArc<T>) -> Self {
let ptr = a.ptr.as_ptr();
mem::forget(a);
unsafe { Arc::from_raw(ptr) }
}
}
/// A "borrowed `Arc`". This is a pointer to
/// a T that is known to have been allocated within an
/// `Arc`.
///
/// This is equivalent in guarantees to `&Arc<T>`, however it is
/// a bit more flexible. To obtain an `&Arc<T>` you must have
/// an `Arc<T>` instance somewhere pinned down until we're done with it.
/// It's also a direct pointer to `T`, so using this involves less pointer-chasing
///
/// However, C++ code may hand us refcounted things as pointers to T directly,
/// so we have to conjure up a temporary `Arc` on the stack each time. The
/// same happens for when the object is managed by a `RawOffsetArc`.
///
/// `ArcBorrow` lets us deal with borrows of known-refcounted objects
/// without needing to worry about where the `Arc<T>` is.
#[derive(Debug, Eq, PartialEq)]
pub struct ArcBorrow<'a, T: 'a>(&'a T);
impl<'a, T> Copy for ArcBorrow<'a, T> {}
impl<'a, T> Clone for ArcBorrow<'a, T> {
#[inline]
fn clone(&self) -> Self {
*self
}
}
impl<'a, T> ArcBorrow<'a, T> {
/// Clone this as an `Arc<T>`. This bumps the refcount.
#[inline]
pub fn clone_arc(&self) -> Arc<T> {
let arc = unsafe { Arc::from_raw(self.0) };
// addref it!
mem::forget(arc.clone());
arc
}
/// For constructing from a reference known to be Arc-backed,
/// e.g. if we obtain such a reference over FFI
#[inline]
pub unsafe fn from_ref(r: &'a T) -> Self {
ArcBorrow(r)
}
/// Compare two `ArcBorrow`s via pointer equality. Will only return
/// true if they come from the same allocation
pub fn ptr_eq(this: &Self, other: &Self) -> bool {
this.0 as *const T == other.0 as *const T
}
/// Temporarily converts |self| into a bonafide Arc and exposes it to the
/// provided callback. The refcount is not modified.
#[inline]
pub fn with_arc<F, U>(&self, f: F) -> U
where
F: FnOnce(&Arc<T>) -> U,
T: 'static,
{
// Synthesize transient Arc, which never touches the refcount.
let transient = unsafe { NoDrop::new(Arc::from_raw(self.0)) };
// Expose the transient Arc to the callback, which may clone it if it wants.
let result = f(&transient);
// Forget the transient Arc to leave the refcount untouched.
// XXXManishearth this can be removed when unions stabilize,
// since then NoDrop becomes zero overhead
mem::forget(transient);
// Forward the result.
result
}
/// Similar to deref, but uses the lifetime |a| rather than the lifetime of
/// self, which is incompatible with the signature of the Deref trait.
#[inline]
pub fn get(&self) -> &'a T {
self.0
}
}
impl<'a, T> Deref for ArcBorrow<'a, T> {
type Target = T;
#[inline]
fn deref(&self) -> &T {
self.0
}
}
/// A tagged union that can represent `Arc<A>` or `Arc<B>` while only consuming a
/// single word. The type is also `NonNull`, and thus can be stored in an Option
/// without increasing size.
///
/// This is functionally equivalent to
/// `enum ArcUnion<A, B> { First(Arc<A>), Second(Arc<B>)` but only takes up
/// up a single word of stack space.
///
/// This could probably be extended to support four types if necessary.
pub struct ArcUnion<A, B> {
p: ptr::NonNull<()>,
phantom_a: PhantomData<A>,
phantom_b: PhantomData<B>,
}
unsafe impl<A: Sync + Send, B: Send + Sync> Send for ArcUnion<A, B> {}
unsafe impl<A: Sync + Send, B: Send + Sync> Sync for ArcUnion<A, B> {}
impl<A: PartialEq, B: PartialEq> PartialEq for ArcUnion<A, B> {
fn eq(&self, other: &Self) -> bool {
use crate::ArcUnionBorrow::*;
match (self.borrow(), other.borrow()) {
(First(x), First(y)) => x == y,
(Second(x), Second(y)) => x == y,
(_, _) => false,
}
}
}
/// This represents a borrow of an `ArcUnion`.
#[derive(Debug)]
pub enum ArcUnionBorrow<'a, A: 'a, B: 'a> {
First(ArcBorrow<'a, A>),
Second(ArcBorrow<'a, B>),
}
impl<A, B> ArcUnion<A, B> {
unsafe fn new(ptr: *mut ()) -> Self {
ArcUnion {
p: ptr::NonNull::new_unchecked(ptr),
phantom_a: PhantomData,
phantom_b: PhantomData,
}
}
/// Returns true if the two values are pointer-equal.
#[inline]
pub fn ptr_eq(this: &Self, other: &Self) -> bool {
this.p == other.p
}
#[inline]
pub fn ptr(&self) -> ptr::NonNull<()> {
self.p
}
/// Returns an enum representing a borrow of either A or B.
#[inline]
pub fn borrow(&self) -> ArcUnionBorrow<A, B> {
if self.is_first() {
let ptr = self.p.as_ptr() as *const A;
let borrow = unsafe { ArcBorrow::from_ref(&*ptr) };
ArcUnionBorrow::First(borrow)
} else {
let ptr = ((self.p.as_ptr() as usize) & !0x1) as *const B;
let borrow = unsafe { ArcBorrow::from_ref(&*ptr) };
ArcUnionBorrow::Second(borrow)
}
}
/// Creates an `ArcUnion` from an instance of the first type.
pub fn from_first(other: Arc<A>) -> Self {
unsafe { Self::new(Arc::into_raw(other) as *mut _) }
}
/// Creates an `ArcUnion` from an instance of the second type.
pub fn from_second(other: Arc<B>) -> Self {
unsafe { Self::new(((Arc::into_raw(other) as usize) | 0x1) as *mut _) }
}
/// Returns true if this `ArcUnion` contains the first type.
pub fn is_first(&self) -> bool {
self.p.as_ptr() as usize & 0x1 == 0
}
/// Returns true if this `ArcUnion` contains the second type.
pub fn is_second(&self) -> bool {
!self.is_first()
}
/// Returns a borrow of the first type if applicable, otherwise `None`.
pub fn as_first(&self) -> Option<ArcBorrow<A>> {
match self.borrow() {
ArcUnionBorrow::First(x) => Some(x),
ArcUnionBorrow::Second(_) => None,
}
}
/// Returns a borrow of the second type if applicable, otherwise None.
pub fn as_second(&self) -> Option<ArcBorrow<B>> {
match self.borrow() {
ArcUnionBorrow::First(_) => None,
ArcUnionBorrow::Second(x) => Some(x),
}
}
}
impl<A, B> Clone for ArcUnion<A, B> {
fn clone(&self) -> Self {
match self.borrow() {
ArcUnionBorrow::First(x) => ArcUnion::from_first(x.clone_arc()),
ArcUnionBorrow::Second(x) => ArcUnion::from_second(x.clone_arc()),
}
}
}
impl<A, B> Drop for ArcUnion<A, B> {
fn drop(&mut self) {
match self.borrow() {
ArcUnionBorrow::First(x) => unsafe {
let _ = Arc::from_raw(&*x);
},
ArcUnionBorrow::Second(x) => unsafe {
let _ = Arc::from_raw(&*x);
},
}
}
}
impl<A: fmt::Debug, B: fmt::Debug> fmt::Debug for ArcUnion<A, B> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&self.borrow(), f)
}
}
#[cfg(test)]
mod tests {
use super::{Arc, HeaderWithLength, ThinArc};
use std::clone::Clone;
use std::ops::Drop;
use std::sync::atomic;
use std::sync::atomic::Ordering::{Acquire, SeqCst};
#[derive(PartialEq)]
struct Canary(*mut atomic::AtomicUsize);
impl Drop for Canary {
fn drop(&mut self) {
unsafe {
(*self.0).fetch_add(1, SeqCst);
}
}
}
#[test]
fn empty_thin() {
let header = HeaderWithLength::new(100u32, 0);
let x = Arc::from_header_and_iter(header, std::iter::empty::<i32>());
let y = Arc::into_thin(x.clone());
assert_eq!(y.header.header, 100);
assert!(y.slice.is_empty());
assert_eq!(x.header.header, 100);
assert!(x.slice.is_empty());
}
#[test]
fn thin_assert_padding() {
#[derive(Clone, Default)]
#[repr(C)]
struct Padded {
i: u16,
}
// The header will have more alignment than `Padded`
let header = HeaderWithLength::new(0i32, 2);
let items = vec![Padded { i: 0xdead }, Padded { i: 0xbeef }];
let a = ThinArc::from_header_and_iter(header, items.into_iter());
assert_eq!(a.slice.len(), 2);
assert_eq!(a.slice[0].i, 0xdead);
assert_eq!(a.slice[1].i, 0xbeef);
}
#[test]
fn slices_and_thin() {
let mut canary = atomic::AtomicUsize::new(0);
let c = Canary(&mut canary as *mut atomic::AtomicUsize);
let v = vec![5, 6];
let header = HeaderWithLength::new(c, v.len());
{
let x = Arc::into_thin(Arc::from_header_and_iter(header, v.into_iter()));
let y = ThinArc::with_arc(&x, |q| q.clone());
let _ = y.clone();
let _ = x == x;
Arc::from_thin(x.clone());
}
assert_eq!(canary.load(Acquire), 1);
}
}