зеркало из https://github.com/mozilla/gecko-dev.git
154 строки
6.3 KiB
C
154 строки
6.3 KiB
C
/* NOLINT(build/header_guard) */
|
|
/* Copyright 2013 Google Inc. All Rights Reserved.
|
|
|
|
Distributed under MIT license.
|
|
See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
|
|
*/
|
|
|
|
/* template parameters: EXPORT_FN, FN */
|
|
|
|
static BROTLI_NOINLINE void EXPORT_FN(CreateBackwardReferences)(
|
|
size_t num_bytes, size_t position,
|
|
const uint8_t* ringbuffer, size_t ringbuffer_mask,
|
|
const BrotliEncoderParams* params,
|
|
HasherHandle hasher, int* dist_cache, size_t* last_insert_len,
|
|
Command* commands, size_t* num_commands, size_t* num_literals) {
|
|
/* Set maximum distance, see section 9.1. of the spec. */
|
|
const size_t max_backward_limit = BROTLI_MAX_BACKWARD_LIMIT(params->lgwin);
|
|
|
|
const Command* const orig_commands = commands;
|
|
size_t insert_length = *last_insert_len;
|
|
const size_t pos_end = position + num_bytes;
|
|
const size_t store_end = num_bytes >= FN(StoreLookahead)() ?
|
|
position + num_bytes - FN(StoreLookahead)() + 1 : position;
|
|
|
|
/* For speed up heuristics for random data. */
|
|
const size_t random_heuristics_window_size =
|
|
LiteralSpreeLengthForSparseSearch(params);
|
|
size_t apply_random_heuristics = position + random_heuristics_window_size;
|
|
const size_t gap = 0;
|
|
|
|
/* Minimum score to accept a backward reference. */
|
|
const score_t kMinScore = BROTLI_SCORE_BASE + 100;
|
|
|
|
FN(PrepareDistanceCache)(hasher, dist_cache);
|
|
|
|
while (position + FN(HashTypeLength)() < pos_end) {
|
|
size_t max_length = pos_end - position;
|
|
size_t max_distance = BROTLI_MIN(size_t, position, max_backward_limit);
|
|
HasherSearchResult sr;
|
|
sr.len = 0;
|
|
sr.len_code_delta = 0;
|
|
sr.distance = 0;
|
|
sr.score = kMinScore;
|
|
FN(FindLongestMatch)(hasher, ¶ms->dictionary,
|
|
ringbuffer, ringbuffer_mask, dist_cache, position, max_length,
|
|
max_distance, gap, params->dist.max_distance, &sr);
|
|
if (sr.score > kMinScore) {
|
|
/* Found a match. Let's look for something even better ahead. */
|
|
int delayed_backward_references_in_row = 0;
|
|
--max_length;
|
|
for (;; --max_length) {
|
|
const score_t cost_diff_lazy = 175;
|
|
HasherSearchResult sr2;
|
|
sr2.len = params->quality < MIN_QUALITY_FOR_EXTENSIVE_REFERENCE_SEARCH ?
|
|
BROTLI_MIN(size_t, sr.len - 1, max_length) : 0;
|
|
sr2.len_code_delta = 0;
|
|
sr2.distance = 0;
|
|
sr2.score = kMinScore;
|
|
max_distance = BROTLI_MIN(size_t, position + 1, max_backward_limit);
|
|
FN(FindLongestMatch)(hasher,
|
|
¶ms->dictionary,
|
|
ringbuffer, ringbuffer_mask, dist_cache, position + 1, max_length,
|
|
max_distance, gap, params->dist.max_distance, &sr2);
|
|
if (sr2.score >= sr.score + cost_diff_lazy) {
|
|
/* Ok, let's just write one byte for now and start a match from the
|
|
next byte. */
|
|
++position;
|
|
++insert_length;
|
|
sr = sr2;
|
|
if (++delayed_backward_references_in_row < 4 &&
|
|
position + FN(HashTypeLength)() < pos_end) {
|
|
continue;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
apply_random_heuristics =
|
|
position + 2 * sr.len + random_heuristics_window_size;
|
|
max_distance = BROTLI_MIN(size_t, position, max_backward_limit);
|
|
{
|
|
/* The first 16 codes are special short-codes,
|
|
and the minimum offset is 1. */
|
|
size_t distance_code = ComputeDistanceCode(
|
|
sr.distance, max_distance + gap, dist_cache);
|
|
if ((sr.distance <= (max_distance + gap)) && distance_code > 0) {
|
|
dist_cache[3] = dist_cache[2];
|
|
dist_cache[2] = dist_cache[1];
|
|
dist_cache[1] = dist_cache[0];
|
|
dist_cache[0] = (int)sr.distance;
|
|
FN(PrepareDistanceCache)(hasher, dist_cache);
|
|
}
|
|
InitCommand(commands++, ¶ms->dist, insert_length,
|
|
sr.len, sr.len_code_delta, distance_code);
|
|
}
|
|
*num_literals += insert_length;
|
|
insert_length = 0;
|
|
/* Put the hash keys into the table, if there are enough bytes left.
|
|
Depending on the hasher implementation, it can push all positions
|
|
in the given range or only a subset of them.
|
|
Avoid hash poisoning with RLE data. */
|
|
{
|
|
size_t range_start = position + 2;
|
|
size_t range_end = BROTLI_MIN(size_t, position + sr.len, store_end);
|
|
if (sr.distance < (sr.len >> 2)) {
|
|
range_start = BROTLI_MIN(size_t, range_end, BROTLI_MAX(size_t,
|
|
range_start, position + sr.len - (sr.distance << 2)));
|
|
}
|
|
FN(StoreRange)(hasher, ringbuffer, ringbuffer_mask, range_start,
|
|
range_end);
|
|
}
|
|
position += sr.len;
|
|
} else {
|
|
++insert_length;
|
|
++position;
|
|
/* If we have not seen matches for a long time, we can skip some
|
|
match lookups. Unsuccessful match lookups are very very expensive
|
|
and this kind of a heuristic speeds up compression quite
|
|
a lot. */
|
|
if (position > apply_random_heuristics) {
|
|
/* Going through uncompressible data, jump. */
|
|
if (position >
|
|
apply_random_heuristics + 4 * random_heuristics_window_size) {
|
|
/* It is quite a long time since we saw a copy, so we assume
|
|
that this data is not compressible, and store hashes less
|
|
often. Hashes of non compressible data are less likely to
|
|
turn out to be useful in the future, too, so we store less of
|
|
them to not to flood out the hash table of good compressible
|
|
data. */
|
|
const size_t kMargin =
|
|
BROTLI_MAX(size_t, FN(StoreLookahead)() - 1, 4);
|
|
size_t pos_jump =
|
|
BROTLI_MIN(size_t, position + 16, pos_end - kMargin);
|
|
for (; position < pos_jump; position += 4) {
|
|
FN(Store)(hasher, ringbuffer, ringbuffer_mask, position);
|
|
insert_length += 4;
|
|
}
|
|
} else {
|
|
const size_t kMargin =
|
|
BROTLI_MAX(size_t, FN(StoreLookahead)() - 1, 2);
|
|
size_t pos_jump =
|
|
BROTLI_MIN(size_t, position + 8, pos_end - kMargin);
|
|
for (; position < pos_jump; position += 2) {
|
|
FN(Store)(hasher, ringbuffer, ringbuffer_mask, position);
|
|
insert_length += 2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
insert_length += pos_end - position;
|
|
*last_insert_len = insert_length;
|
|
*num_commands += (size_t)(commands - orig_commands);
|
|
}
|