gecko-dev/netwerk/protocol/http/nsHttpConnection.cpp

2758 строки
93 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=4 sw=2 sts=2 et cin: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
// HttpLog.h should generally be included first
#include "HttpLog.h"
// Log on level :5, instead of default :4.
#undef LOG
#define LOG(args) LOG5(args)
#undef LOG_ENABLED
#define LOG_ENABLED() LOG5_ENABLED()
#define TLS_EARLY_DATA_NOT_AVAILABLE 0
#define TLS_EARLY_DATA_AVAILABLE_BUT_NOT_USED 1
#define TLS_EARLY_DATA_AVAILABLE_AND_USED 2
#define ESNI_SUCCESSFUL 0
#define ESNI_FAILED 1
#define NO_ESNI_SUCCESSFUL 2
#define NO_ESNI_FAILED 3
#include "ASpdySession.h"
#include "mozilla/ChaosMode.h"
#include "mozilla/Telemetry.h"
#include "nsHttpConnection.h"
#include "nsHttpHandler.h"
#include "nsHttpRequestHead.h"
#include "nsHttpResponseHead.h"
#include "nsIClassOfService.h"
#include "nsIOService.h"
#include "nsISocketTransport.h"
#include "nsSocketTransportService2.h"
#include "nsISSLSocketControl.h"
#include "nsISupportsPriority.h"
#include "nsITransportSecurityInfo.h"
#include "nsPreloadedStream.h"
#include "nsProxyRelease.h"
#include "nsSocketTransport2.h"
#include "nsStringStream.h"
#include "nsITransportSecurityInfo.h"
#include "mozpkix/pkixnss.h"
#include "sslt.h"
#include "NSSErrorsService.h"
#include "TunnelUtils.h"
#include "TCPFastOpenLayer.h"
namespace mozilla {
namespace net {
//-----------------------------------------------------------------------------
// nsHttpConnection <public>
//-----------------------------------------------------------------------------
nsHttpConnection::nsHttpConnection()
: mSocketInCondition(NS_ERROR_NOT_INITIALIZED),
mSocketOutCondition(NS_ERROR_NOT_INITIALIZED),
mHttpHandler(gHttpHandler),
mLastReadTime(0),
mLastWriteTime(0),
mMaxHangTime(0),
mConsiderReusedAfterInterval(0),
mConsiderReusedAfterEpoch(0),
mCurrentBytesRead(0),
mMaxBytesRead(0),
mTotalBytesRead(0),
mContentBytesWritten(0),
mUrgentStartPreferred(false),
mUrgentStartPreferredKnown(false),
mConnectedTransport(false),
mKeepAlive(true) // assume to keep-alive by default
,
mKeepAliveMask(true),
mDontReuse(false),
mIsReused(false),
mCompletedProxyConnect(false),
mLastTransactionExpectedNoContent(false),
mIdleMonitoring(false),
mProxyConnectInProgress(false),
mInSpdyTunnel(false),
mForcePlainText(false),
mTrafficCount(0),
mTrafficStamp(false),
mHttp1xTransactionCount(0),
mRemainingConnectionUses(0xffffffff),
mNPNComplete(false),
mSetupSSLCalled(false),
mUsingSpdyVersion(SpdyVersion::NONE),
mPriority(nsISupportsPriority::PRIORITY_NORMAL),
mReportedSpdy(false),
mEverUsedSpdy(false),
mLastHttpResponseVersion(HttpVersion::v1_1),
mDefaultTimeoutFactor(1),
mResponseTimeoutEnabled(false),
mTCPKeepaliveConfig(kTCPKeepaliveDisabled),
mForceSendPending(false),
m0RTTChecked(false),
mWaitingFor0RTTResponse(false),
mContentBytesWritten0RTT(0),
mEarlyDataNegotiated(false),
mDid0RTTSpdy(false),
mFastOpen(false),
mFastOpenStatus(TFO_NOT_SET),
mForceSendDuringFastOpenPending(false),
mReceivedSocketWouldBlockDuringFastOpen(false),
mCheckNetworkStallsWithTFO(false),
mLastRequestBytesSentTime(0) {
LOG(("Creating nsHttpConnection @%p\n", this));
// the default timeout is for when this connection has not yet processed a
// transaction
static const PRIntervalTime k5Sec = PR_SecondsToInterval(5);
mIdleTimeout = (k5Sec < gHttpHandler->IdleTimeout())
? k5Sec
: gHttpHandler->IdleTimeout();
mThroughCaptivePortal = gHttpHandler->GetThroughCaptivePortal();
}
nsHttpConnection::~nsHttpConnection() {
LOG(("Destroying nsHttpConnection @%p\n", this));
if (!mEverUsedSpdy) {
LOG(("nsHttpConnection %p performed %d HTTP/1.x transactions\n", this,
mHttp1xTransactionCount));
Telemetry::Accumulate(Telemetry::HTTP_REQUEST_PER_CONN,
mHttp1xTransactionCount);
nsHttpConnectionInfo* ci = nullptr;
if (mTransaction) {
ci = mTransaction->ConnectionInfo();
}
if (!ci) {
ci = mConnInfo;
}
MOZ_ASSERT(ci);
if (ci->GetIsTrrServiceChannel()) {
Telemetry::Accumulate(Telemetry::DNS_TRR_REQUEST_PER_CONN,
mHttp1xTransactionCount);
}
}
if (mTotalBytesRead) {
uint32_t totalKBRead = static_cast<uint32_t>(mTotalBytesRead >> 10);
LOG(("nsHttpConnection %p read %dkb on connection spdy=%d\n", this,
totalKBRead, mEverUsedSpdy));
Telemetry::Accumulate(mEverUsedSpdy ? Telemetry::SPDY_KBREAD_PER_CONN2
: Telemetry::HTTP_KBREAD_PER_CONN2,
totalKBRead);
}
if (mThroughCaptivePortal) {
if (mTotalBytesRead || mTotalBytesWritten) {
auto total =
Clamp<uint32_t>((mTotalBytesRead >> 10) + (mTotalBytesWritten >> 10),
0, std::numeric_limits<uint32_t>::max());
Telemetry::ScalarAdd(
Telemetry::ScalarID::NETWORKING_DATA_TRANSFERRED_CAPTIVE_PORTAL,
total);
}
Telemetry::ScalarAdd(
Telemetry::ScalarID::NETWORKING_HTTP_CONNECTIONS_CAPTIVE_PORTAL, 1);
}
if (mForceSendTimer) {
mForceSendTimer->Cancel();
mForceSendTimer = nullptr;
}
if ((mFastOpenStatus != TFO_FAILED) && (mFastOpenStatus != TFO_HTTP) &&
(((mFastOpenStatus > TFO_DISABLED_CONNECT) &&
(mFastOpenStatus < TFO_BACKUP_CONN)) ||
gHttpHandler->UseFastOpen())) {
// TFO_FAILED will be reported in the replacement connection with more
// details.
// Otherwise report only if TFO is enabled and supported.
// If TFO is disabled, report only connections ha cause it to be disabled,
// e.g. TFO_FAILED_NET_TIMEOUT, etc.
Telemetry::Accumulate(Telemetry::TCP_FAST_OPEN_3, mFastOpenStatus);
}
}
nsresult nsHttpConnection::Init(
nsHttpConnectionInfo* info, uint16_t maxHangTime,
nsISocketTransport* transport, nsIAsyncInputStream* instream,
nsIAsyncOutputStream* outstream, bool connectedTransport,
nsIInterfaceRequestor* callbacks, PRIntervalTime rtt) {
LOG1(("nsHttpConnection::Init this=%p sockettransport=%p", this, transport));
NS_ENSURE_ARG_POINTER(info);
NS_ENSURE_TRUE(!mConnInfo, NS_ERROR_ALREADY_INITIALIZED);
mConnectedTransport = connectedTransport;
mConnInfo = info;
MOZ_ASSERT(mConnInfo);
mLastWriteTime = mLastReadTime = PR_IntervalNow();
mRtt = rtt;
mMaxHangTime = PR_SecondsToInterval(maxHangTime);
mSocketTransport = transport;
mSocketIn = instream;
mSocketOut = outstream;
// See explanation for non-strictness of this operation in
// SetSecurityCallbacks.
mCallbacks = new nsMainThreadPtrHolder<nsIInterfaceRequestor>(
"nsHttpConnection::mCallbacks", callbacks, false);
mSocketTransport->SetEventSink(this, nullptr);
mSocketTransport->SetSecurityCallbacks(this);
return NS_OK;
}
nsresult nsHttpConnection::TryTakeSubTransactions(
nsTArray<RefPtr<nsAHttpTransaction> >& list) {
nsresult rv = mTransaction->TakeSubTransactions(list);
if (rv == NS_ERROR_ALREADY_OPENED) {
// Has the interface for TakeSubTransactions() changed?
LOG(
("TakeSubTransactions somehow called after "
"nsAHttpTransaction began processing\n"));
MOZ_ASSERT(false,
"TakeSubTransactions somehow called after "
"nsAHttpTransaction began processing");
mTransaction->Close(NS_ERROR_ABORT);
return rv;
}
if (NS_FAILED(rv) && rv != NS_ERROR_NOT_IMPLEMENTED) {
// Has the interface for TakeSubTransactions() changed?
LOG(("unexpected rv from nnsAHttpTransaction::TakeSubTransactions()"));
MOZ_ASSERT(false,
"unexpected result from "
"nsAHttpTransaction::TakeSubTransactions()");
mTransaction->Close(NS_ERROR_ABORT);
return rv;
}
return rv;
}
nsresult nsHttpConnection::MoveTransactionsToSpdy(
nsresult status, nsTArray<RefPtr<nsAHttpTransaction> >& list) {
if (NS_FAILED(status)) { // includes NS_ERROR_NOT_IMPLEMENTED
MOZ_ASSERT(list.IsEmpty(), "sub transaction list not empty");
// This is ok - treat mTransaction as a single real request.
// Wrap the old http transaction into the new spdy session
// as the first stream.
LOG(
("nsHttpConnection::MoveTransactionsToSpdy moves single transaction %p "
"into SpdySession %p\n",
mTransaction.get(), mSpdySession.get()));
nsresult rv = AddTransaction(mTransaction, mPriority);
if (NS_FAILED(rv)) {
return rv;
}
} else {
int32_t count = list.Length();
LOG(
("nsHttpConnection::MoveTransactionsToSpdy moving transaction list "
"len=%d "
"into SpdySession %p\n",
count, mSpdySession.get()));
if (!count) {
mTransaction->Close(NS_ERROR_ABORT);
return NS_ERROR_ABORT;
}
for (int32_t index = 0; index < count; ++index) {
nsresult rv = AddTransaction(list[index], mPriority);
if (NS_FAILED(rv)) {
return rv;
}
}
}
return NS_OK;
}
void nsHttpConnection::Start0RTTSpdy(SpdyVersion spdyVersion) {
LOG(("nsHttpConnection::Start0RTTSpdy [this=%p]", this));
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
mDid0RTTSpdy = true;
mUsingSpdyVersion = spdyVersion;
mSpdySession =
ASpdySession::NewSpdySession(spdyVersion, mSocketTransport, true);
nsTArray<RefPtr<nsAHttpTransaction> > list;
nsresult rv = TryTakeSubTransactions(list);
if (NS_FAILED(rv) && rv != NS_ERROR_NOT_IMPLEMENTED) {
LOG(
("nsHttpConnection::Start0RTTSpdy [this=%p] failed taking "
"subtransactions rv=%" PRIx32,
this, static_cast<uint32_t>(rv)));
return;
}
rv = MoveTransactionsToSpdy(rv, list);
if (NS_FAILED(rv)) {
LOG(
("nsHttpConnection::Start0RTTSpdy [this=%p] failed moving "
"transactions rv=%" PRIx32,
this, static_cast<uint32_t>(rv)));
return;
}
mTransaction = mSpdySession;
}
void nsHttpConnection::StartSpdy(nsISSLSocketControl* sslControl,
SpdyVersion spdyVersion) {
LOG(("nsHttpConnection::StartSpdy [this=%p, mDid0RTTSpdy=%d]\n", this,
mDid0RTTSpdy));
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
MOZ_ASSERT(!mSpdySession || mDid0RTTSpdy);
mUsingSpdyVersion = spdyVersion;
mEverUsedSpdy = true;
if (sslControl) {
sslControl->SetDenyClientCert(true);
}
if (!mDid0RTTSpdy) {
mSpdySession =
ASpdySession::NewSpdySession(spdyVersion, mSocketTransport, false);
}
if (!mReportedSpdy) {
mReportedSpdy = true;
gHttpHandler->ConnMgr()->ReportSpdyConnection(this, true);
}
// Setting the connection as reused allows some transactions that fail
// with NS_ERROR_NET_RESET to be restarted and SPDY uses that code
// to handle clean rejections (such as those that arrived after
// a server goaway was generated).
mIsReused = true;
// If mTransaction is a muxed object it might represent
// several requests. If so, we need to unpack that and
// pack them all into a new spdy session.
nsTArray<RefPtr<nsAHttpTransaction> > list;
nsresult status = NS_OK;
if (!mDid0RTTSpdy) {
status = TryTakeSubTransactions(list);
if (NS_FAILED(status) && status != NS_ERROR_NOT_IMPLEMENTED) {
return;
}
}
if (NeedSpdyTunnel()) {
LOG3(
("nsHttpConnection::StartSpdy %p Connecting To a HTTP/2 "
"Proxy and Need Connect",
this));
MOZ_ASSERT(mProxyConnectStream);
mProxyConnectStream = nullptr;
mCompletedProxyConnect = true;
mProxyConnectInProgress = false;
}
nsresult rv = NS_OK;
bool spdyProxy = mConnInfo->UsingHttpsProxy() && !mTLSFilter;
if (spdyProxy) {
RefPtr<nsHttpConnectionInfo> wildCardProxyCi;
rv = mConnInfo->CreateWildCard(getter_AddRefs(wildCardProxyCi));
MOZ_ASSERT(NS_SUCCEEDED(rv));
gHttpHandler->ConnMgr()->MoveToWildCardConnEntry(mConnInfo, wildCardProxyCi,
this);
mConnInfo = wildCardProxyCi;
MOZ_ASSERT(mConnInfo);
}
if (!mDid0RTTSpdy) {
rv = MoveTransactionsToSpdy(status, list);
if (NS_FAILED(rv)) {
return;
}
}
// Disable TCP Keepalives - use SPDY ping instead.
rv = DisableTCPKeepalives();
if (NS_FAILED(rv)) {
LOG(
("nsHttpConnection::StartSpdy [%p] DisableTCPKeepalives failed "
"rv[0x%" PRIx32 "]",
this, static_cast<uint32_t>(rv)));
}
mIdleTimeout = gHttpHandler->SpdyTimeout() * mDefaultTimeoutFactor;
if (!mTLSFilter) {
mTransaction = mSpdySession;
} else {
rv = mTLSFilter->SetProxiedTransaction(mSpdySession);
if (NS_FAILED(rv)) {
LOG(
("nsHttpConnection::StartSpdy [%p] SetProxiedTransaction failed"
" rv[0x%x]",
this, static_cast<uint32_t>(rv)));
}
}
if (mDontReuse) {
mSpdySession->DontReuse();
}
}
bool nsHttpConnection::EnsureNPNComplete(nsresult& aOut0RTTWriteHandshakeValue,
uint32_t& aOut0RTTBytesWritten) {
// If for some reason the components to check on NPN aren't available,
// this function will just return true to continue on and disable SPDY
aOut0RTTWriteHandshakeValue = NS_OK;
aOut0RTTBytesWritten = 0;
MOZ_ASSERT(mSocketTransport);
if (!mSocketTransport) {
// this cannot happen
mNPNComplete = true;
return true;
}
if (mNPNComplete) {
return true;
}
nsresult rv = NS_OK;
nsCOMPtr<nsISupports> securityInfo;
nsCOMPtr<nsITransportSecurityInfo> info;
nsCOMPtr<nsISSLSocketControl> ssl;
nsAutoCString negotiatedNPN;
// This is neede for telemetry
bool handshakeSucceeded = false;
GetSecurityInfo(getter_AddRefs(securityInfo));
if (!securityInfo) {
goto npnComplete;
}
ssl = do_QueryInterface(securityInfo, &rv);
if (NS_FAILED(rv)) goto npnComplete;
info = do_QueryInterface(securityInfo, &rv);
if (NS_FAILED(rv)) goto npnComplete;
if (!m0RTTChecked) {
// We reuse m0RTTChecked. We want to send this status only once.
mTransaction->OnTransportStatus(mSocketTransport,
NS_NET_STATUS_TLS_HANDSHAKE_STARTING, 0);
}
rv = info->GetNegotiatedNPN(negotiatedNPN);
if (!m0RTTChecked && (rv == NS_ERROR_NOT_CONNECTED) &&
!mConnInfo->UsingProxy()) {
// There is no ALPN info (yet!). We need to consider doing 0RTT. We
// will do so if there is ALPN information from a previous session
// (AlpnEarlySelection), we are using HTTP/1, and the request data can
// be safely retried.
m0RTTChecked = true;
nsresult rvEarlyAlpn = ssl->GetAlpnEarlySelection(mEarlyNegotiatedALPN);
if (NS_FAILED(rvEarlyAlpn)) {
// if ssl->DriveHandshake() has never been called the value
// for AlpnEarlySelection is still not set. So call it here and
// check again.
LOG1(
("nsHttpConnection::EnsureNPNComplete %p - "
"early selected alpn not available, we will try one more time.",
this));
// Let's do DriveHandshake again.
rv = ssl->DriveHandshake();
if (NS_FAILED(rv) && rv != NS_BASE_STREAM_WOULD_BLOCK) {
goto npnComplete;
}
// Check NegotiatedNPN first.
rv = info->GetNegotiatedNPN(negotiatedNPN);
if (rv == NS_ERROR_NOT_CONNECTED) {
rvEarlyAlpn = ssl->GetAlpnEarlySelection(mEarlyNegotiatedALPN);
}
}
if (NS_FAILED(rvEarlyAlpn)) {
LOG1(
("nsHttpConnection::EnsureNPNComplete %p - "
"early selected alpn not available",
this));
mEarlyDataNegotiated = false;
} else {
LOG1(
("nsHttpConnection::EnsureNPNComplete %p -"
"early selected alpn: %s",
this, mEarlyNegotiatedALPN.get()));
uint32_t infoIndex;
const SpdyInformation* info = gHttpHandler->SpdyInfo();
if (NS_FAILED(info->GetNPNIndex(mEarlyNegotiatedALPN, &infoIndex))) {
// This is the HTTP/1 case.
// Check if early-data is allowed for this transaction.
if (mTransaction->Do0RTT()) {
LOG(
("nsHttpConnection::EnsureNPNComplete [this=%p] - We "
"can do 0RTT (http/1)!",
this));
mWaitingFor0RTTResponse = true;
}
} else {
// We have h2, we can at least 0-RTT the preamble and opening
// SETTINGS, etc, and maybe some of the first request
LOG(
("nsHttpConnection::EnsureNPNComplete [this=%p] - Starting "
"0RTT for h2!",
this));
mWaitingFor0RTTResponse = true;
Start0RTTSpdy(info->Version[infoIndex]);
}
mEarlyDataNegotiated = true;
}
}
if (rv == NS_ERROR_NOT_CONNECTED) {
if (mWaitingFor0RTTResponse) {
aOut0RTTWriteHandshakeValue = mTransaction->ReadSegments(
this, nsIOService::gDefaultSegmentSize, &aOut0RTTBytesWritten);
if (NS_FAILED(aOut0RTTWriteHandshakeValue) &&
aOut0RTTWriteHandshakeValue != NS_BASE_STREAM_WOULD_BLOCK) {
goto npnComplete;
}
LOG(
("nsHttpConnection::EnsureNPNComplete [this=%p] - written %d "
"bytes during 0RTT",
this, aOut0RTTBytesWritten));
mContentBytesWritten0RTT += aOut0RTTBytesWritten;
if (mSocketOutCondition == NS_BASE_STREAM_WOULD_BLOCK) {
mReceivedSocketWouldBlockDuringFastOpen = true;
}
}
rv = ssl->DriveHandshake();
if (NS_FAILED(rv) && rv != NS_BASE_STREAM_WOULD_BLOCK) {
goto npnComplete;
}
return false;
}
if (NS_SUCCEEDED(rv)) {
LOG1(("nsHttpConnection::EnsureNPNComplete %p [%s] negotiated to '%s'%s\n",
this, mConnInfo->HashKey().get(), negotiatedNPN.get(),
mTLSFilter ? " [Double Tunnel]" : ""));
handshakeSucceeded = true;
int16_t tlsVersion;
ssl->GetSSLVersionUsed(&tlsVersion);
mConnInfo->SetLessThanTls13(
(tlsVersion < nsISSLSocketControl::TLS_VERSION_1_3) &&
(tlsVersion != nsISSLSocketControl::SSL_VERSION_UNKNOWN));
bool earlyDataAccepted = false;
if (mWaitingFor0RTTResponse) {
// Check if early data has been accepted.
nsresult rvEarlyData = ssl->GetEarlyDataAccepted(&earlyDataAccepted);
LOG(
("nsHttpConnection::EnsureNPNComplete [this=%p] - early data "
"that was sent during 0RTT %s been accepted [rv=%" PRIx32 "].",
this, earlyDataAccepted ? "has" : "has not",
static_cast<uint32_t>(rv)));
if (NS_FAILED(rvEarlyData) ||
NS_FAILED(mTransaction->Finish0RTT(
!earlyDataAccepted, negotiatedNPN != mEarlyNegotiatedALPN))) {
LOG(
("nsHttpConection::EnsureNPNComplete [this=%p] closing transaction "
"%p",
this, mTransaction.get()));
mTransaction->Close(NS_ERROR_NET_RESET);
goto npnComplete;
}
}
// Send the 0RTT telemetry only for tls1.3
if (tlsVersion > nsISSLSocketControl::TLS_VERSION_1_2) {
Telemetry::Accumulate(
Telemetry::TLS_EARLY_DATA_NEGOTIATED,
(!mEarlyDataNegotiated)
? TLS_EARLY_DATA_NOT_AVAILABLE
: ((mWaitingFor0RTTResponse)
? TLS_EARLY_DATA_AVAILABLE_AND_USED
: TLS_EARLY_DATA_AVAILABLE_BUT_NOT_USED));
if (mWaitingFor0RTTResponse) {
Telemetry::Accumulate(Telemetry::TLS_EARLY_DATA_ACCEPTED,
earlyDataAccepted);
}
if (earlyDataAccepted) {
Telemetry::Accumulate(Telemetry::TLS_EARLY_DATA_BYTES_WRITTEN,
mContentBytesWritten0RTT);
}
}
mWaitingFor0RTTResponse = false;
if (!earlyDataAccepted) {
LOG(
("nsHttpConnection::EnsureNPNComplete [this=%p] early data not "
"accepted",
this));
if (mTransaction->QueryNullTransaction() &&
(mBootstrappedTimings.secureConnectionStart.IsNull() ||
mBootstrappedTimings.tcpConnectEnd.IsNull())) {
// if TFO is used some socket event will be sent after
// mBootstrappedTimings has been set. therefore we should
// update them.
mBootstrappedTimings.secureConnectionStart =
mTransaction->QueryNullTransaction()->GetSecureConnectionStart();
mBootstrappedTimings.tcpConnectEnd =
mTransaction->QueryNullTransaction()->GetTcpConnectEnd();
}
uint32_t infoIndex;
const SpdyInformation* info = gHttpHandler->SpdyInfo();
if (NS_SUCCEEDED(info->GetNPNIndex(negotiatedNPN, &infoIndex))) {
StartSpdy(ssl, info->Version[infoIndex]);
}
} else {
LOG(("nsHttpConnection::EnsureNPNComplete [this=%p] - %" PRId64 " bytes "
"has been sent during 0RTT.",
this, mContentBytesWritten0RTT));
mContentBytesWritten = mContentBytesWritten0RTT;
if (mSpdySession) {
// We had already started 0RTT-spdy, now we need to fully set up
// spdy, since we know we're sticking with it.
LOG(
("nsHttpConnection::EnsureNPNComplete [this=%p] - finishing "
"StartSpdy for 0rtt spdy session %p",
this, mSpdySession.get()));
StartSpdy(ssl, mSpdySession->SpdyVersion());
}
}
Telemetry::Accumulate(Telemetry::SPDY_NPN_CONNECT, UsingSpdy());
}
npnComplete:
LOG(("nsHttpConnection::EnsureNPNComplete [this=%p] setting complete to true",
this));
mNPNComplete = true;
mTransaction->OnTransportStatus(mSocketTransport,
NS_NET_STATUS_TLS_HANDSHAKE_ENDED, 0);
// this is happening after the bootstrap was originally written to. so update
// it.
if (mTransaction->QueryNullTransaction() &&
(mBootstrappedTimings.secureConnectionStart.IsNull() ||
mBootstrappedTimings.tcpConnectEnd.IsNull())) {
// if TFO is used some socket event will be sent after
// mBootstrappedTimings has been set. therefore we should
// update them.
mBootstrappedTimings.secureConnectionStart =
mTransaction->QueryNullTransaction()->GetSecureConnectionStart();
mBootstrappedTimings.tcpConnectEnd =
mTransaction->QueryNullTransaction()->GetTcpConnectEnd();
}
if (securityInfo) {
mBootstrappedTimings.connectEnd = TimeStamp::Now();
}
if (mWaitingFor0RTTResponse) {
// Didn't get 0RTT OK, back out of the "attempting 0RTT" state
mWaitingFor0RTTResponse = false;
LOG(("nsHttpConnection::EnsureNPNComplete [this=%p] 0rtt failed", this));
if (NS_FAILED(mTransaction->Finish0RTT(
true, negotiatedNPN != mEarlyNegotiatedALPN))) {
mTransaction->Close(NS_ERROR_NET_RESET);
}
mContentBytesWritten0RTT = 0;
}
if (mDid0RTTSpdy && negotiatedNPN != mEarlyNegotiatedALPN) {
// Reset the work done by Start0RTTSpdy
LOG((
"nsHttpConnection::EnsureNPNComplete [this=%p] resetting Start0RTTSpdy",
this));
mUsingSpdyVersion = SpdyVersion::NONE;
mTransaction = nullptr;
mSpdySession = nullptr;
// We have to reset this here, just in case we end up starting spdy again,
// so it can actually do everything it needs to do.
mDid0RTTSpdy = false;
}
if (ssl) {
// Telemetry for tls failure rate with and without esni;
bool esni = false;
rv = mSocketTransport->GetEsniUsed(&esni);
if (NS_SUCCEEDED(rv)) {
Telemetry::Accumulate(
Telemetry::ESNI_NOESNI_TLS_SUCCESS_RATE,
(esni)
? ((handshakeSucceeded) ? ESNI_SUCCESSFUL : ESNI_FAILED)
: ((handshakeSucceeded) ? NO_ESNI_SUCCESSFUL : NO_ESNI_FAILED));
}
}
if (rv == psm::GetXPCOMFromNSSError(
mozilla::pkix::MOZILLA_PKIX_ERROR_MITM_DETECTED)) {
gSocketTransportService->SetNotTrustedMitmDetected();
}
return true;
}
nsresult nsHttpConnection::OnTunnelNudged(TLSFilterTransaction* trans) {
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
LOG(("nsHttpConnection::OnTunnelNudged %p\n", this));
if (trans != mTLSFilter) {
return NS_OK;
}
LOG(("nsHttpConnection::OnTunnelNudged %p Calling OnSocketWritable\n", this));
return OnSocketWritable();
}
// called on the socket thread
nsresult nsHttpConnection::Activate(nsAHttpTransaction* trans, uint32_t caps,
int32_t pri) {
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
LOG1(("nsHttpConnection::Activate [this=%p trans=%p caps=%x]\n", this, trans,
caps));
if (!mExperienced && !trans->IsNullTransaction()) {
// For QUIC and TFO we have nsHttpConneciton before the actual connection
// has been establish so wait fo TFO and TLS handshake to be finished before
// we mark the connection 'experienced'.
if (!mFastOpen && mNPNComplete) {
mExperienced = true;
}
if (mBootstrappedTimingsSet) {
mBootstrappedTimingsSet = false;
nsHttpTransaction* hTrans = trans->QueryHttpTransaction();
if (hTrans) {
hTrans->BootstrapTimings(mBootstrappedTimings);
SetUrgentStartPreferred(hTrans->ClassOfService() &
nsIClassOfService::UrgentStart);
}
}
mBootstrappedTimings = TimingStruct();
}
if (caps & NS_HTTP_LARGE_KEEPALIVE) {
mDefaultTimeoutFactor = 10; // don't ever lower
}
mTransactionCaps = caps;
mPriority = pri;
if (mTransaction && (mUsingSpdyVersion != SpdyVersion::NONE)) {
return AddTransaction(trans, pri);
}
NS_ENSURE_ARG_POINTER(trans);
NS_ENSURE_TRUE(!mTransaction, NS_ERROR_IN_PROGRESS);
// If TCP fast Open has been used and conection was idle for some time
// we will be cautious and watch out for bug 1395494.
if (mNPNComplete && (mFastOpenStatus == TFO_DATA_SENT) &&
gHttpHandler
->CheckIfConnectionIsStalledOnlyIfIdleForThisAmountOfSeconds() &&
IdleTime() >=
gHttpHandler
->CheckIfConnectionIsStalledOnlyIfIdleForThisAmountOfSeconds()) {
// If a connection was using the TCP FastOpen and it was idle for a
// long time we should check for stalls like bug 1395494.
mCheckNetworkStallsWithTFO = true;
// Also reset last write. We should start measuring a stall time only
// after we really write a request to the network.
mLastRequestBytesSentTime = 0;
}
// reset the read timers to wash away any idle time
mLastWriteTime = mLastReadTime = PR_IntervalNow();
// Connection failures are Activated() just like regular transacions.
// If we don't have a confirmation of a connected socket then test it
// with a write() to get relevant error code.
if (!mConnectedTransport) {
uint32_t count;
mSocketOutCondition = NS_ERROR_FAILURE;
if (mSocketOut) {
mSocketOutCondition = mSocketOut->Write("", 0, &count);
}
if (NS_FAILED(mSocketOutCondition) &&
mSocketOutCondition != NS_BASE_STREAM_WOULD_BLOCK) {
LOG(("nsHttpConnection::Activate [this=%p] Bad Socket %" PRIx32 "\n",
this, static_cast<uint32_t>(mSocketOutCondition)));
mSocketOut->AsyncWait(nullptr, 0, 0, nullptr);
mTransaction = trans;
CloseTransaction(mTransaction, mSocketOutCondition);
return mSocketOutCondition;
}
}
// Update security callbacks
nsCOMPtr<nsIInterfaceRequestor> callbacks;
trans->GetSecurityCallbacks(getter_AddRefs(callbacks));
SetSecurityCallbacks(callbacks);
SetupSSL();
// take ownership of the transaction
mTransaction = trans;
MOZ_ASSERT(!mIdleMonitoring, "Activating a connection with an Idle Monitor");
mIdleMonitoring = false;
// set mKeepAlive according to what will be requested
mKeepAliveMask = mKeepAlive = (caps & NS_HTTP_ALLOW_KEEPALIVE);
// need to handle HTTP CONNECT tunnels if this is the first time if
// we are tunneling through a proxy
nsresult rv = NS_OK;
if (mTransaction->ConnectionInfo()->UsingConnect() &&
!mCompletedProxyConnect) {
rv = SetupProxyConnect();
if (NS_FAILED(rv)) goto failed_activation;
mProxyConnectInProgress = true;
}
// Clear the per activation counter
mCurrentBytesRead = 0;
// The overflow state is not needed between activations
mInputOverflow = nullptr;
mResponseTimeoutEnabled = gHttpHandler->ResponseTimeoutEnabled() &&
mTransaction->ResponseTimeout() > 0 &&
mTransaction->ResponseTimeoutEnabled();
rv = StartShortLivedTCPKeepalives();
if (NS_FAILED(rv)) {
LOG(
("nsHttpConnection::Activate [%p] "
"StartShortLivedTCPKeepalives failed rv[0x%" PRIx32 "]",
this, static_cast<uint32_t>(rv)));
}
if (mTLSFilter) {
RefPtr<NullHttpTransaction> baseTrans(do_QueryReferent(mWeakTrans));
rv = mTLSFilter->SetProxiedTransaction(trans, baseTrans);
NS_ENSURE_SUCCESS(rv, rv);
if (mTransaction->ConnectionInfo()->UsingConnect()) {
SpdyConnectTransaction* trans =
baseTrans ? baseTrans->QuerySpdyConnectTransaction() : nullptr;
if (trans && !trans->IsWebsocket()) {
// If we are here, the tunnel is already established. Let the
// transaction know that proxy connect is successful.
mTransaction->OnProxyConnectComplete(200);
}
}
mTransaction = mTLSFilter;
}
trans->OnActivated();
rv = OnOutputStreamReady(mSocketOut);
failed_activation:
if (NS_FAILED(rv)) {
mTransaction = nullptr;
}
return rv;
}
void nsHttpConnection::SetupSSL() {
LOG1(("nsHttpConnection::SetupSSL %p caps=0x%X %s\n", this, mTransactionCaps,
mConnInfo->HashKey().get()));
if (mSetupSSLCalled) // do only once
return;
mSetupSSLCalled = true;
if (mNPNComplete) return;
// we flip this back to false if SetNPNList succeeds at the end
// of this function
mNPNComplete = true;
if (!mConnInfo->FirstHopSSL() || mForcePlainText) {
return;
}
// if we are connected to the proxy with TLS, start the TLS
// flow immediately without waiting for a CONNECT sequence.
DebugOnly<nsresult> rv;
if (mInSpdyTunnel) {
rv = InitSSLParams(false, true);
} else {
bool usingHttpsProxy = mConnInfo->UsingHttpsProxy();
rv = InitSSLParams(usingHttpsProxy, usingHttpsProxy);
}
MOZ_ASSERT(NS_SUCCEEDED(rv));
}
// The naming of NPN is historical - this function creates the basic
// offer list for both NPN and ALPN. ALPN validation callbacks are made
// now before the handshake is complete, and NPN validation callbacks
// are made during the handshake.
nsresult nsHttpConnection::SetupNPNList(nsISSLSocketControl* ssl,
uint32_t caps) {
nsTArray<nsCString> protocolArray;
nsCString npnToken = mConnInfo->GetNPNToken();
if (npnToken.IsEmpty()) {
// The first protocol is used as the fallback if none of the
// protocols supported overlap with the server's list.
// When using ALPN the advertised preferences are protocolArray indicies
// {1, .., N, 0} in decreasing order.
// For NPN, In the case of overlap, matching priority is driven by
// the order of the server's advertisement - with index 0 used when
// there is no match.
protocolArray.AppendElement("http/1.1"_ns);
if (gHttpHandler->IsSpdyEnabled() && !(caps & NS_HTTP_DISALLOW_SPDY)) {
LOG(("nsHttpConnection::SetupSSL Allow SPDY NPN selection"));
const SpdyInformation* info = gHttpHandler->SpdyInfo();
for (uint32_t index = SpdyInformation::kCount; index > 0; --index) {
if (info->ProtocolEnabled(index - 1) &&
info->ALPNCallbacks[index - 1](ssl)) {
protocolArray.AppendElement(info->VersionString[index - 1]);
}
}
}
} else {
LOG(("nsHttpConnection::SetupSSL limiting NPN selection to %s",
npnToken.get()));
protocolArray.AppendElement(npnToken);
}
nsresult rv = ssl->SetNPNList(protocolArray);
LOG(("nsHttpConnection::SetupNPNList %p %" PRIx32 "\n", this,
static_cast<uint32_t>(rv)));
return rv;
}
nsresult nsHttpConnection::AddTransaction(nsAHttpTransaction* httpTransaction,
int32_t priority) {
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
MOZ_ASSERT(mSpdySession && (mUsingSpdyVersion != SpdyVersion::NONE),
"AddTransaction to live http connection without spdy/quic");
// If this is a wild card nshttpconnection (i.e. a spdy proxy) then
// it is important to start the stream using the specific connection
// info of the transaction to ensure it is routed on the right tunnel
nsHttpConnectionInfo* transCI = httpTransaction->ConnectionInfo();
bool needTunnel = transCI->UsingHttpsProxy();
needTunnel = needTunnel && !mTLSFilter;
needTunnel = needTunnel && transCI->UsingConnect();
needTunnel = needTunnel && httpTransaction->QueryHttpTransaction();
// Let the transaction know that the tunnel is already established and we
// don't need to setup the tunnel again.
if (transCI->UsingConnect() && mEverUsedSpdy && mTLSFilter) {
httpTransaction->OnProxyConnectComplete(200);
}
bool isWebsocket = false;
nsHttpTransaction* trans = httpTransaction->QueryHttpTransaction();
if (trans) {
isWebsocket = trans->IsWebsocketUpgrade();
MOZ_ASSERT(!isWebsocket || !needTunnel, "Websocket and tunnel?!");
}
LOG(("nsHttpConnection::AddTransaction [this=%p] for %s%s", this,
mSpdySession ? "SPDY" : "QUIC",
needTunnel ? " over tunnel" : (isWebsocket ? " websocket" : "")));
if (mSpdySession) {
if (!mSpdySession->AddStream(httpTransaction, priority, needTunnel,
isWebsocket, mCallbacks)) {
MOZ_ASSERT(false); // this cannot happen!
httpTransaction->Close(NS_ERROR_ABORT);
return NS_ERROR_FAILURE;
}
}
Unused << ResumeSend();
return NS_OK;
}
void nsHttpConnection::Close(nsresult reason, bool aIsShutdown) {
LOG(("nsHttpConnection::Close [this=%p reason=%" PRIx32 "]\n", this,
static_cast<uint32_t>(reason)));
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
// Ensure TCP keepalive timer is stopped.
if (mTCPKeepaliveTransitionTimer) {
mTCPKeepaliveTransitionTimer->Cancel();
mTCPKeepaliveTransitionTimer = nullptr;
}
if (mForceSendTimer) {
mForceSendTimer->Cancel();
mForceSendTimer = nullptr;
}
if (!mTrafficCategory.IsEmpty()) {
HttpTrafficAnalyzer* hta = gHttpHandler->GetHttpTrafficAnalyzer();
if (hta) {
hta->IncrementHttpConnection(std::move(mTrafficCategory));
MOZ_ASSERT(mTrafficCategory.IsEmpty());
}
}
if (NS_FAILED(reason)) {
if (mIdleMonitoring) EndIdleMonitoring();
mTLSFilter = nullptr;
// The connection and security errors clear out alt-svc mappings
// in case any previously validated ones are now invalid
if (((reason == NS_ERROR_NET_RESET) ||
(NS_ERROR_GET_MODULE(reason) == NS_ERROR_MODULE_SECURITY)) &&
mConnInfo && !(mTransactionCaps & NS_HTTP_ERROR_SOFTLY)) {
gHttpHandler->ClearHostMapping(mConnInfo);
}
if (mSocketTransport) {
mSocketTransport->SetEventSink(nullptr, nullptr);
// If there are bytes sitting in the input queue then read them
// into a junk buffer to avoid generating a tcp rst by closing a
// socket with data pending. TLS is a classic case of this where
// a Alert record might be superfulous to a clean HTTP/SPDY shutdown.
// Never block to do this and limit it to a small amount of data.
// During shutdown just be fast!
if (mSocketIn && !aIsShutdown) {
char buffer[4000];
uint32_t count, total = 0;
nsresult rv;
do {
rv = mSocketIn->Read(buffer, 4000, &count);
if (NS_SUCCEEDED(rv)) total += count;
} while (NS_SUCCEEDED(rv) && count > 0 && total < 64000);
LOG(("nsHttpConnection::Close drained %d bytes\n", total));
}
mSocketTransport->SetSecurityCallbacks(nullptr);
mSocketTransport->Close(reason);
if (mSocketOut) mSocketOut->AsyncWait(nullptr, 0, 0, nullptr);
}
mKeepAlive = false;
}
}
// called on the socket thread
nsresult nsHttpConnection::InitSSLParams(bool connectingToProxy,
bool proxyStartSSL) {
LOG(("nsHttpConnection::InitSSLParams [this=%p] connectingToProxy=%d\n", this,
connectingToProxy));
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
nsresult rv;
nsCOMPtr<nsISupports> securityInfo;
GetSecurityInfo(getter_AddRefs(securityInfo));
if (!securityInfo) {
return NS_ERROR_FAILURE;
}
nsCOMPtr<nsISSLSocketControl> ssl = do_QueryInterface(securityInfo, &rv);
if (NS_FAILED(rv)) {
return rv;
}
if (proxyStartSSL) {
rv = ssl->ProxyStartSSL();
if (NS_FAILED(rv)) {
return rv;
}
}
if (NS_SUCCEEDED(SetupNPNList(ssl, mTransactionCaps))) {
LOG(("InitSSLParams Setting up SPDY Negotiation OK"));
mNPNComplete = false;
}
return NS_OK;
}
void nsHttpConnection::DontReuse() {
LOG(("nsHttpConnection::DontReuse %p spdysession=%p\n", this,
mSpdySession.get()));
mKeepAliveMask = false;
mKeepAlive = false;
mDontReuse = true;
mIdleTimeout = 0;
if (mSpdySession) {
mSpdySession->DontReuse();
}
}
bool nsHttpConnection::TestJoinConnection(const nsACString& hostname,
int32_t port) {
if (mSpdySession && CanDirectlyActivate()) {
return mSpdySession->TestJoinConnection(hostname, port);
}
return false;
}
bool nsHttpConnection::JoinConnection(const nsACString& hostname,
int32_t port) {
if (mSpdySession && CanDirectlyActivate()) {
return mSpdySession->JoinConnection(hostname, port);
}
return false;
}
bool nsHttpConnection::CanReuse() {
if (mDontReuse || !mRemainingConnectionUses) {
return false;
}
if ((mTransaction ? (mTransaction->IsDone() ? 0U : 1U) : 0U) >=
mRemainingConnectionUses) {
return false;
}
bool canReuse;
if (mSpdySession) {
canReuse = mSpdySession->CanReuse();
} else {
canReuse = IsKeepAlive();
}
canReuse = canReuse && (IdleTime() < mIdleTimeout) && IsAlive();
// An idle persistent connection should not have data waiting to be read
// before a request is sent. Data here is likely a 408 timeout response
// which we would deal with later on through the restart logic, but that
// path is more expensive than just closing the socket now.
uint64_t dataSize;
if (canReuse && mSocketIn && (mUsingSpdyVersion == SpdyVersion::NONE) &&
mHttp1xTransactionCount &&
NS_SUCCEEDED(mSocketIn->Available(&dataSize)) && dataSize) {
LOG(
("nsHttpConnection::CanReuse %p %s"
"Socket not reusable because read data pending (%" PRIu64 ") on it.\n",
this, mConnInfo->Origin(), dataSize));
canReuse = false;
}
return canReuse;
}
bool nsHttpConnection::CanDirectlyActivate() {
// return true if a new transaction can be addded to ths connection at any
// time through Activate(). In practice this means this is a healthy SPDY
// connection with room for more concurrent streams.
return UsingSpdy() && CanReuse() && mSpdySession &&
mSpdySession->RoomForMoreStreams();
}
PRIntervalTime nsHttpConnection::IdleTime() {
return mSpdySession ? mSpdySession->IdleTime()
: (PR_IntervalNow() - mLastReadTime);
}
// returns the number of seconds left before the allowable idle period
// expires, or 0 if the period has already expied.
uint32_t nsHttpConnection::TimeToLive() {
LOG(("nsHttpConnection::TTL: %p %s idle %d timeout %d\n", this,
mConnInfo->Origin(), IdleTime(), mIdleTimeout));
if (IdleTime() >= mIdleTimeout) {
return 0;
}
uint32_t timeToLive = PR_IntervalToSeconds(mIdleTimeout - IdleTime());
// a positive amount of time can be rounded to 0. Because 0 is used
// as the expiration signal, round all values from 0 to 1 up to 1.
if (!timeToLive) {
timeToLive = 1;
}
return timeToLive;
}
bool nsHttpConnection::IsAlive() {
if (!mSocketTransport || !mConnectedTransport) return false;
// SocketTransport::IsAlive can run the SSL state machine, so make sure
// the NPN options are set before that happens.
SetupSSL();
bool alive;
nsresult rv = mSocketTransport->IsAlive(&alive);
if (NS_FAILED(rv)) alive = false;
//#define TEST_RESTART_LOGIC
#ifdef TEST_RESTART_LOGIC
if (!alive) {
LOG(("pretending socket is still alive to test restart logic\n"));
alive = true;
}
#endif
return alive;
}
void nsHttpConnection::SetUrgentStartPreferred(bool urgent) {
if (mExperienced && !mUrgentStartPreferredKnown) {
// Set only according the first ever dispatched non-null transaction
mUrgentStartPreferredKnown = true;
mUrgentStartPreferred = urgent;
LOG(("nsHttpConnection::SetUrgentStartPreferred [this=%p urgent=%d]", this,
urgent));
}
}
//----------------------------------------------------------------------------
// nsHttpConnection::nsAHttpConnection compatible methods
//----------------------------------------------------------------------------
nsresult nsHttpConnection::OnHeadersAvailable(nsAHttpTransaction* trans,
nsHttpRequestHead* requestHead,
nsHttpResponseHead* responseHead,
bool* reset) {
LOG(
("nsHttpConnection::OnHeadersAvailable [this=%p trans=%p "
"response-head=%p]\n",
this, trans, responseHead));
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
NS_ENSURE_ARG_POINTER(trans);
MOZ_ASSERT(responseHead, "No response head?");
if (mInSpdyTunnel) {
DebugOnly<nsresult> rv =
responseHead->SetHeader(nsHttp::X_Firefox_Spdy_Proxy, "true"_ns);
MOZ_ASSERT(NS_SUCCEEDED(rv));
}
// we won't change our keep-alive policy unless the server has explicitly
// told us to do so.
// inspect the connection headers for keep-alive info provided the
// transaction completed successfully. In the case of a non-sensical close
// and keep-alive favor the close out of conservatism.
bool explicitKeepAlive = false;
bool explicitClose =
responseHead->HasHeaderValue(nsHttp::Connection, "close") ||
responseHead->HasHeaderValue(nsHttp::Proxy_Connection, "close");
if (!explicitClose)
explicitKeepAlive =
responseHead->HasHeaderValue(nsHttp::Connection, "keep-alive") ||
responseHead->HasHeaderValue(nsHttp::Proxy_Connection, "keep-alive");
// deal with 408 Server Timeouts
uint16_t responseStatus = responseHead->Status();
static const PRIntervalTime k1000ms = PR_MillisecondsToInterval(1000);
if (responseStatus == 408) {
// If this error could be due to a persistent connection reuse then
// we pass an error code of NS_ERROR_NET_RESET to
// trigger the transaction 'restart' mechanism. We tell it to reset its
// response headers so that it will be ready to receive the new response.
if (mIsReused && ((PR_IntervalNow() - mLastWriteTime) < k1000ms)) {
Close(NS_ERROR_NET_RESET);
*reset = true;
return NS_OK;
}
// timeouts that are not caused by persistent connection reuse should
// not be retried for browser compatibility reasons. bug 907800. The
// server driven close is implicit in the 408.
explicitClose = true;
explicitKeepAlive = false;
}
if ((responseHead->Version() < HttpVersion::v1_1) ||
(requestHead->Version() < HttpVersion::v1_1)) {
// HTTP/1.0 connections are by default NOT persistent
if (explicitKeepAlive)
mKeepAlive = true;
else
mKeepAlive = false;
} else {
// HTTP/1.1 connections are by default persistent
mKeepAlive = !explicitClose;
}
mKeepAliveMask = mKeepAlive;
// if this connection is persistent, then the server may send a "Keep-Alive"
// header specifying the maximum number of times the connection can be
// reused as well as the maximum amount of time the connection can be idle
// before the server will close it. we ignore the max reuse count, because
// a "keep-alive" connection is by definition capable of being reused, and
// we only care about being able to reuse it once. if a timeout is not
// specified then we use our advertized timeout value.
bool foundKeepAliveMax = false;
if (mKeepAlive) {
nsAutoCString keepAlive;
Unused << responseHead->GetHeader(nsHttp::Keep_Alive, keepAlive);
if (mUsingSpdyVersion == SpdyVersion::NONE) {
const char* cp = PL_strcasestr(keepAlive.get(), "timeout=");
if (cp)
mIdleTimeout = PR_SecondsToInterval((uint32_t)atoi(cp + 8));
else
mIdleTimeout = gHttpHandler->IdleTimeout() * mDefaultTimeoutFactor;
cp = PL_strcasestr(keepAlive.get(), "max=");
if (cp) {
int maxUses = atoi(cp + 4);
if (maxUses > 0) {
foundKeepAliveMax = true;
mRemainingConnectionUses = static_cast<uint32_t>(maxUses);
}
}
}
LOG(("Connection can be reused [this=%p idle-timeout=%usec]\n", this,
PR_IntervalToSeconds(mIdleTimeout)));
}
if (!foundKeepAliveMax && mRemainingConnectionUses &&
(mUsingSpdyVersion == SpdyVersion::NONE)) {
--mRemainingConnectionUses;
}
// If we're doing a proxy connect, we need to check whether or not
// it was successful. If so, we have to reset the transaction and step-up
// the socket connection if using SSL. Finally, we have to wake up the
// socket write request.
bool itWasProxyConnect = !!mProxyConnectStream;
if (mProxyConnectStream) {
MOZ_ASSERT(mUsingSpdyVersion == SpdyVersion::NONE,
"SPDY NPN Complete while using proxy connect stream");
mProxyConnectStream = nullptr;
bool isHttps = mTransaction ? mTransaction->ConnectionInfo()->EndToEndSSL()
: mConnInfo->EndToEndSSL();
bool onlyConnect = mTransactionCaps & NS_HTTP_CONNECT_ONLY;
mTransaction->OnProxyConnectComplete(responseStatus);
if (responseStatus == 200) {
LOG(("proxy CONNECT succeeded! endtoendssl=%d onlyconnect=%d\n", isHttps,
onlyConnect));
// If we're only connecting, we don't need to reset the transaction
// state. We need to upgrade the socket now without doing the actual
// http request.
if (!onlyConnect) {
*reset = true;
}
nsresult rv;
// CONNECT only flag doesn't do the tls setup. https here only
// ensures a proxy tunnel was used not that tls is setup.
if (isHttps) {
if (!onlyConnect) {
if (mConnInfo->UsingHttpsProxy()) {
LOG(("%p new TLSFilterTransaction %s %d\n", this,
mConnInfo->Origin(), mConnInfo->OriginPort()));
SetupSecondaryTLS();
}
rv = InitSSLParams(false, true);
LOG(("InitSSLParams [rv=%" PRIx32 "]\n", static_cast<uint32_t>(rv)));
} else {
// We have an https protocol but the CONNECT only flag was
// specified. The consumer only wants a raw socket to the
// proxy. We have to mark this as complete to finish the
// transaction and be upgraded. OnSocketReadable() uses this
// to detect an inactive tunnel and blocks completion.
mNPNComplete = true;
}
}
mCompletedProxyConnect = true;
mProxyConnectInProgress = false;
rv = mSocketOut->AsyncWait(this, 0, 0, nullptr);
// XXX what if this fails -- need to handle this error
MOZ_ASSERT(NS_SUCCEEDED(rv), "mSocketOut->AsyncWait failed");
} else {
LOG(("proxy CONNECT failed! endtoendssl=%d onlyconnect=%d\n", isHttps,
onlyConnect));
mTransaction->SetProxyConnectFailed();
}
}
nsAutoCString upgradeReq;
bool hasUpgradeReq =
NS_SUCCEEDED(requestHead->GetHeader(nsHttp::Upgrade, upgradeReq));
// Don't use persistent connection for Upgrade unless there's an auth failure:
// some proxies expect to see auth response on persistent connection.
// Also allow persistent conn for h2, as we don't want to waste connections
// for multiplexed upgrades.
if (!itWasProxyConnect && hasUpgradeReq && responseStatus != 401 &&
responseStatus != 407 && !mSpdySession) {
LOG(("HTTP Upgrade in play - disable keepalive for http/1.x\n"));
DontReuse();
}
if (responseStatus == 101) {
nsAutoCString upgradeResp;
bool hasUpgradeResp =
NS_SUCCEEDED(responseHead->GetHeader(nsHttp::Upgrade, upgradeResp));
if (!hasUpgradeReq || !hasUpgradeResp ||
!nsHttp::FindToken(upgradeResp.get(), upgradeReq.get(),
HTTP_HEADER_VALUE_SEPS)) {
LOG(("HTTP 101 Upgrade header mismatch req = %s, resp = %s\n",
upgradeReq.get(),
!upgradeResp.IsEmpty() ? upgradeResp.get()
: "RESPONSE's nsHttp::Upgrade is empty"));
Close(NS_ERROR_ABORT);
} else {
LOG(("HTTP Upgrade Response to %s\n", upgradeResp.get()));
}
}
mLastHttpResponseVersion = responseHead->Version();
return NS_OK;
}
bool nsHttpConnection::IsReused() {
if (mIsReused) return true;
if (!mConsiderReusedAfterInterval) return false;
// ReusedAfter allows a socket to be consider reused only after a certain
// interval of time has passed
return (PR_IntervalNow() - mConsiderReusedAfterEpoch) >=
mConsiderReusedAfterInterval;
}
void nsHttpConnection::SetIsReusedAfter(uint32_t afterMilliseconds) {
mConsiderReusedAfterEpoch = PR_IntervalNow();
mConsiderReusedAfterInterval = PR_MillisecondsToInterval(afterMilliseconds);
}
nsresult nsHttpConnection::TakeTransport(nsISocketTransport** aTransport,
nsIAsyncInputStream** aInputStream,
nsIAsyncOutputStream** aOutputStream) {
if (mUsingSpdyVersion != SpdyVersion::NONE) return NS_ERROR_FAILURE;
if (mTransaction && !mTransaction->IsDone()) return NS_ERROR_IN_PROGRESS;
if (!(mSocketTransport && mSocketIn && mSocketOut))
return NS_ERROR_NOT_INITIALIZED;
if (mInputOverflow) mSocketIn = mInputOverflow.forget();
// Change TCP Keepalive frequency to long-lived if currently short-lived.
if (mTCPKeepaliveConfig == kTCPKeepaliveShortLivedConfig) {
if (mTCPKeepaliveTransitionTimer) {
mTCPKeepaliveTransitionTimer->Cancel();
mTCPKeepaliveTransitionTimer = nullptr;
}
nsresult rv = StartLongLivedTCPKeepalives();
LOG(
("nsHttpConnection::TakeTransport [%p] calling "
"StartLongLivedTCPKeepalives",
this));
if (NS_FAILED(rv)) {
LOG(
("nsHttpConnection::TakeTransport [%p] "
"StartLongLivedTCPKeepalives failed rv[0x%" PRIx32 "]",
this, static_cast<uint32_t>(rv)));
}
}
mSocketTransport->SetSecurityCallbacks(nullptr);
mSocketTransport->SetEventSink(nullptr, nullptr);
// The nsHttpConnection will go away soon, so if there is a TLS Filter
// being used (e.g. for wss CONNECT tunnel from a proxy connected to
// via https) that filter needs to take direct control of the
// streams
if (mTLSFilter) {
nsCOMPtr<nsIAsyncInputStream> ref1(mSocketIn);
nsCOMPtr<nsIAsyncOutputStream> ref2(mSocketOut);
mTLSFilter->newIODriver(ref1, ref2, getter_AddRefs(mSocketIn),
getter_AddRefs(mSocketOut));
mTLSFilter = nullptr;
}
mSocketTransport.forget(aTransport);
mSocketIn.forget(aInputStream);
mSocketOut.forget(aOutputStream);
return NS_OK;
}
uint32_t nsHttpConnection::ReadTimeoutTick(PRIntervalTime now) {
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
// make sure timer didn't tick before Activate()
if (!mTransaction) return UINT32_MAX;
// Spdy implements some timeout handling using the SPDY ping frame.
if (mSpdySession) {
return mSpdySession->ReadTimeoutTick(now);
}
uint32_t nextTickAfter = UINT32_MAX;
// Timeout if the response is taking too long to arrive.
if (mResponseTimeoutEnabled) {
NS_WARNING_ASSERTION(
gHttpHandler->ResponseTimeoutEnabled(),
"Timing out a response, but response timeout is disabled!");
PRIntervalTime initialResponseDelta = now - mLastWriteTime;
if (initialResponseDelta > mTransaction->ResponseTimeout()) {
LOG(("canceling transaction: no response for %ums: timeout is %dms\n",
PR_IntervalToMilliseconds(initialResponseDelta),
PR_IntervalToMilliseconds(mTransaction->ResponseTimeout())));
mResponseTimeoutEnabled = false;
// This will also close the connection
CloseTransaction(mTransaction, NS_ERROR_NET_TIMEOUT);
return UINT32_MAX;
}
nextTickAfter = PR_IntervalToSeconds(mTransaction->ResponseTimeout()) -
PR_IntervalToSeconds(initialResponseDelta);
nextTickAfter = std::max(nextTickAfter, 1U);
}
// Check for the TCP Fast Open related stalls.
if (mCheckNetworkStallsWithTFO && mLastRequestBytesSentTime) {
PRIntervalTime initialResponseDelta = now - mLastRequestBytesSentTime;
if (initialResponseDelta >= gHttpHandler->FastOpenStallsTimeout()) {
gHttpHandler->IncrementFastOpenStallsCounter();
mCheckNetworkStallsWithTFO = false;
} else {
uint32_t next =
PR_IntervalToSeconds(gHttpHandler->FastOpenStallsTimeout()) -
PR_IntervalToSeconds(initialResponseDelta);
nextTickAfter = std::min(nextTickAfter, next);
}
}
if (!mNPNComplete) {
// We can reuse mLastWriteTime here, because it is set when the
// connection is activated and only change when a transaction
// succesfullu write to the socket and this can only happen after
// the TLS handshake is done.
PRIntervalTime initialTLSDelta = now - mLastWriteTime;
if (initialTLSDelta >
PR_MillisecondsToInterval(gHttpHandler->TLSHandshakeTimeout())) {
LOG(
("canceling transaction: tls handshake takes too long: tls handshake "
"last %ums, timeout is %dms.",
PR_IntervalToMilliseconds(initialTLSDelta),
gHttpHandler->TLSHandshakeTimeout()));
// This will also close the connection
CloseTransaction(mTransaction, NS_ERROR_NET_TIMEOUT);
return UINT32_MAX;
}
}
return nextTickAfter;
}
void nsHttpConnection::UpdateTCPKeepalive(nsITimer* aTimer, void* aClosure) {
MOZ_ASSERT(aTimer);
MOZ_ASSERT(aClosure);
nsHttpConnection* self = static_cast<nsHttpConnection*>(aClosure);
if (NS_WARN_IF(self->mUsingSpdyVersion != SpdyVersion::NONE)) {
return;
}
// Do not reduce keepalive probe frequency for idle connections.
if (self->mIdleMonitoring) {
return;
}
nsresult rv = self->StartLongLivedTCPKeepalives();
if (NS_FAILED(rv)) {
LOG(
("nsHttpConnection::UpdateTCPKeepalive [%p] "
"StartLongLivedTCPKeepalives failed rv[0x%" PRIx32 "]",
self, static_cast<uint32_t>(rv)));
}
}
void nsHttpConnection::GetSecurityInfo(nsISupports** secinfo) {
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
LOG(("nsHttpConnection::GetSecurityInfo trans=%p tlsfilter=%p socket=%p\n",
mTransaction.get(), mTLSFilter.get(), mSocketTransport.get()));
if (mTransaction &&
NS_SUCCEEDED(mTransaction->GetTransactionSecurityInfo(secinfo))) {
return;
}
if (mTLSFilter &&
NS_SUCCEEDED(mTLSFilter->GetTransactionSecurityInfo(secinfo))) {
return;
}
if (mSocketTransport &&
NS_SUCCEEDED(mSocketTransport->GetSecurityInfo(secinfo))) {
return;
}
*secinfo = nullptr;
}
nsresult nsHttpConnection::PushBack(const char* data, uint32_t length) {
LOG(("nsHttpConnection::PushBack [this=%p, length=%d]\n", this, length));
if (mInputOverflow) {
NS_ERROR("nsHttpConnection::PushBack only one buffer supported");
return NS_ERROR_UNEXPECTED;
}
mInputOverflow = new nsPreloadedStream(mSocketIn, data, length);
return NS_OK;
}
class HttpConnectionForceIO : public Runnable {
public:
HttpConnectionForceIO(nsHttpConnection* aConn, bool doRecv,
bool isFastOpenForce)
: Runnable("net::HttpConnectionForceIO"),
mConn(aConn),
mDoRecv(doRecv),
mIsFastOpenForce(isFastOpenForce) {}
NS_IMETHOD Run() override {
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
if (mDoRecv) {
if (!mConn->mSocketIn) return NS_OK;
return mConn->OnInputStreamReady(mConn->mSocketIn);
}
// This runnable will be called when the ForceIO timer expires
// (mIsFastOpenForce==false) or during the TCP Fast Open to force
// writes (mIsFastOpenForce==true).
if (mIsFastOpenForce && !mConn->mWaitingFor0RTTResponse) {
// If we have exit the TCP Fast Open in the meantime we can skip
// this.
return NS_OK;
}
if (!mIsFastOpenForce) {
MOZ_ASSERT(mConn->mForceSendPending);
mConn->mForceSendPending = false;
}
if (!mConn->mSocketOut) {
return NS_OK;
}
return mConn->OnOutputStreamReady(mConn->mSocketOut);
}
private:
RefPtr<nsHttpConnection> mConn;
bool mDoRecv;
bool mIsFastOpenForce;
};
nsresult nsHttpConnection::ResumeSend() {
LOG(("nsHttpConnection::ResumeSend [this=%p]\n", this));
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
if (mSocketOut) {
nsresult rv = mSocketOut->AsyncWait(this, 0, 0, nullptr);
LOG(
("nsHttpConnection::ResumeSend [this=%p] "
"mWaitingFor0RTTResponse=%d mForceSendDuringFastOpenPending=%d "
"mReceivedSocketWouldBlockDuringFastOpen=%d\n",
this, mWaitingFor0RTTResponse, mForceSendDuringFastOpenPending,
mReceivedSocketWouldBlockDuringFastOpen));
if (mWaitingFor0RTTResponse && !mForceSendDuringFastOpenPending &&
!mReceivedSocketWouldBlockDuringFastOpen && NS_SUCCEEDED(rv)) {
// During TCP Fast Open, poll does not work properly so we will
// trigger writes manually.
mForceSendDuringFastOpenPending = true;
NS_DispatchToCurrentThread(new HttpConnectionForceIO(this, false, true));
}
return rv;
}
MOZ_ASSERT_UNREACHABLE("no socket output stream");
return NS_ERROR_UNEXPECTED;
}
nsresult nsHttpConnection::ResumeRecv() {
LOG(("nsHttpConnection::ResumeRecv [this=%p]\n", this));
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
if (mFastOpen) {
LOG(
("nsHttpConnection::ResumeRecv - do not waiting for read during "
"fast open! [this=%p]\n",
this));
return NS_OK;
}
// the mLastReadTime timestamp is used for finding slowish readers
// and can be pretty sensitive. For that reason we actually reset it
// when we ask to read (resume recv()) so that when we get called back
// with actual read data in OnSocketReadable() we are only measuring
// the latency between those two acts and not all the processing that
// may get done before the ResumeRecv() call
mLastReadTime = PR_IntervalNow();
if (mSocketIn) {
if (!mTLSFilter || !mTLSFilter->HasDataToRecv() || NS_FAILED(ForceRecv())) {
return mSocketIn->AsyncWait(this, 0, 0, nullptr);
}
return NS_OK;
}
MOZ_ASSERT_UNREACHABLE("no socket input stream");
return NS_ERROR_UNEXPECTED;
}
void nsHttpConnection::ForceSendIO(nsITimer* aTimer, void* aClosure) {
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
nsHttpConnection* self = static_cast<nsHttpConnection*>(aClosure);
MOZ_ASSERT(aTimer == self->mForceSendTimer);
self->mForceSendTimer = nullptr;
NS_DispatchToCurrentThread(new HttpConnectionForceIO(self, false, false));
}
nsresult nsHttpConnection::MaybeForceSendIO() {
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
// due to bug 1213084 sometimes real I/O events do not get serviced when
// NSPR derived I/O events are ready and this can cause a deadlock with
// https over https proxying. Normally we would expect the write callback to
// be invoked before this timer goes off, but set it at the old windows
// tick interval (kForceDelay) as a backup for those circumstances.
static const uint32_t kForceDelay = 17; // ms
if (mForceSendPending) {
return NS_OK;
}
MOZ_ASSERT(!mForceSendTimer);
mForceSendPending = true;
return NS_NewTimerWithFuncCallback(getter_AddRefs(mForceSendTimer),
nsHttpConnection::ForceSendIO, this,
kForceDelay, nsITimer::TYPE_ONE_SHOT,
"net::nsHttpConnection::MaybeForceSendIO");
}
// trigger an asynchronous read
nsresult nsHttpConnection::ForceRecv() {
LOG(("nsHttpConnection::ForceRecv [this=%p]\n", this));
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
return NS_DispatchToCurrentThread(
new HttpConnectionForceIO(this, true, false));
}
// trigger an asynchronous write
nsresult nsHttpConnection::ForceSend() {
LOG(("nsHttpConnection::ForceSend [this=%p]\n", this));
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
if (mTLSFilter) {
return mTLSFilter->NudgeTunnel(this);
}
return MaybeForceSendIO();
}
void nsHttpConnection::BeginIdleMonitoring() {
LOG(("nsHttpConnection::BeginIdleMonitoring [this=%p]\n", this));
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
MOZ_ASSERT(!mTransaction, "BeginIdleMonitoring() while active");
MOZ_ASSERT(mUsingSpdyVersion == SpdyVersion::NONE,
"Idle monitoring of spdy not allowed");
LOG(("Entering Idle Monitoring Mode [this=%p]", this));
mIdleMonitoring = true;
if (mSocketIn) mSocketIn->AsyncWait(this, 0, 0, nullptr);
}
void nsHttpConnection::EndIdleMonitoring() {
LOG(("nsHttpConnection::EndIdleMonitoring [this=%p]\n", this));
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
MOZ_ASSERT(!mTransaction, "EndIdleMonitoring() while active");
if (mIdleMonitoring) {
LOG(("Leaving Idle Monitoring Mode [this=%p]", this));
mIdleMonitoring = false;
if (mSocketIn) mSocketIn->AsyncWait(nullptr, 0, 0, nullptr);
}
}
HttpVersion nsHttpConnection::Version() {
if (mUsingSpdyVersion != SpdyVersion::NONE) {
return HttpVersion::v2_0;
}
return mLastHttpResponseVersion;
}
//-----------------------------------------------------------------------------
// nsHttpConnection <private>
//-----------------------------------------------------------------------------
void nsHttpConnection::CloseTransaction(nsAHttpTransaction* trans,
nsresult reason, bool aIsShutdown) {
LOG(("nsHttpConnection::CloseTransaction[this=%p trans=%p reason=%" PRIx32
"]\n",
this, trans, static_cast<uint32_t>(reason)));
MOZ_ASSERT((trans == mTransaction) ||
(mTLSFilter && !mTLSFilter->Transaction()) ||
(mTLSFilter && mTLSFilter->Transaction() == trans));
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
if (mCurrentBytesRead > mMaxBytesRead) mMaxBytesRead = mCurrentBytesRead;
// mask this error code because its not a real error.
if (reason == NS_BASE_STREAM_CLOSED) reason = NS_OK;
if (mUsingSpdyVersion != SpdyVersion::NONE) {
DontReuse();
// if !mSpdySession then mUsingSpdyVersion must be false for canreuse()
mSpdySession->SetCleanShutdown(aIsShutdown);
mUsingSpdyVersion = SpdyVersion::NONE;
mSpdySession = nullptr;
}
if (!mTransaction && mTLSFilter && gHttpHandler->Bug1556491()) {
// In case of a race when the transaction is being closed before the tunnel
// is established we need to carry closing status on the proxied
// transaction.
// Not doing this leads to use of this closed connection to activate the
// not closed transaction what will likely lead to a use of a closed ssl
// socket and may cause a crash because of an unexpected use.
//
// There can possibly be two states: the actual transaction is still hanging
// of off the filter, or has not even been assigned on it yet. In the
// latter case we simply must close the transaction given to us via the
// argument.
if (!mTLSFilter->Transaction()) {
if (trans) {
LOG((" closing transaction directly"));
trans->Close(reason);
}
} else {
LOG((" closing transactin hanging of off mTLSFilter"));
mTLSFilter->Close(reason);
}
}
if (mTransaction) {
LOG((" closing associated mTransaction"));
mHttp1xTransactionCount += mTransaction->Http1xTransactionCount();
mTransaction->Close(reason);
mTransaction = nullptr;
}
{
MutexAutoLock lock(mCallbacksLock);
mCallbacks = nullptr;
}
if (NS_FAILED(reason) && (reason != NS_BINDING_RETARGETED)) {
Close(reason, aIsShutdown);
}
// flag the connection as reused here for convenience sake. certainly
// it might be going away instead ;-)
mIsReused = true;
}
nsresult nsHttpConnection::ReadFromStream(nsIInputStream* input, void* closure,
const char* buf, uint32_t offset,
uint32_t count, uint32_t* countRead) {
// thunk for nsIInputStream instance
nsHttpConnection* conn = (nsHttpConnection*)closure;
return conn->OnReadSegment(buf, count, countRead);
}
nsresult nsHttpConnection::OnReadSegment(const char* buf, uint32_t count,
uint32_t* countRead) {
LOG(("nsHttpConnection::OnReadSegment [this=%p]\n", this));
if (count == 0) {
// some ReadSegments implementations will erroneously call the writer
// to consume 0 bytes worth of data. we must protect against this case
// or else we'd end up closing the socket prematurely.
NS_ERROR("bad ReadSegments implementation");
return NS_ERROR_FAILURE; // stop iterating
}
nsresult rv = mSocketOut->Write(buf, count, countRead);
if (NS_FAILED(rv))
mSocketOutCondition = rv;
else if (*countRead == 0)
mSocketOutCondition = NS_BASE_STREAM_CLOSED;
else {
mLastWriteTime = PR_IntervalNow();
mSocketOutCondition = NS_OK; // reset condition
if (!mProxyConnectInProgress) mTotalBytesWritten += *countRead;
}
return mSocketOutCondition;
}
nsresult nsHttpConnection::OnSocketWritable() {
LOG(("nsHttpConnection::OnSocketWritable [this=%p] host=%s\n", this,
mConnInfo->Origin()));
nsresult rv;
uint32_t transactionBytes;
bool again = true;
// Prevent STS thread from being blocked by single OnOutputStreamReady
// callback.
const uint32_t maxWriteAttempts = 128;
uint32_t writeAttempts = 0;
mForceSendDuringFastOpenPending = false;
if (mTransactionCaps & NS_HTTP_CONNECT_ONLY) {
if (!mCompletedProxyConnect && !mProxyConnectStream) {
// A CONNECT has been requested for this connection but will never
// be performed. This should never happen.
MOZ_ASSERT(false, "proxy connect will never happen");
LOG(("return failure because proxy connect will never happen\n"));
return NS_ERROR_FAILURE;
}
if (mCompletedProxyConnect) {
// Don't need to check this each write attempt since it is only
// updated after OnSocketWritable completes.
// We've already done primary tls (if needed) and sent our CONNECT.
// If we're doing a CONNECT only request there's no need to write
// the http transaction or do the SSL handshake here.
LOG(("return ok because proxy connect successful\n"));
return NS_OK;
}
}
do {
++writeAttempts;
rv = mSocketOutCondition = NS_OK;
transactionBytes = 0;
// The SSL handshake must be completed before the
// transaction->readsegments() processing can proceed because we need to
// know how to format the request differently for http/1, http/2, spdy,
// etc.. and that is negotiated with NPN/ALPN in the SSL handshake.
if (mConnInfo->UsingHttpsProxy() &&
!EnsureNPNComplete(rv, transactionBytes)) {
MOZ_ASSERT(!transactionBytes);
mSocketOutCondition = NS_BASE_STREAM_WOULD_BLOCK;
} else if (mProxyConnectStream) {
// If we're need an HTTP/1 CONNECT tunnel through a proxy
// send it before doing the SSL handshake
LOG((" writing CONNECT request stream\n"));
rv = mProxyConnectStream->ReadSegments(ReadFromStream, this,
nsIOService::gDefaultSegmentSize,
&transactionBytes);
} else if (!EnsureNPNComplete(rv, transactionBytes)) {
if (NS_SUCCEEDED(rv) && !transactionBytes &&
NS_SUCCEEDED(mSocketOutCondition)) {
mSocketOutCondition = NS_BASE_STREAM_WOULD_BLOCK;
}
} else if (!mTransaction) {
rv = NS_ERROR_FAILURE;
LOG((" No Transaction In OnSocketWritable\n"));
} else if (NS_SUCCEEDED(rv)) {
// for non spdy sessions let the connection manager know
if (!mReportedSpdy) {
mReportedSpdy = true;
MOZ_ASSERT(!mEverUsedSpdy);
gHttpHandler->ConnMgr()->ReportSpdyConnection(this, false);
}
LOG((" writing transaction request stream\n"));
mProxyConnectInProgress = false;
rv = mTransaction->ReadSegmentsAgain(
this, nsIOService::gDefaultSegmentSize, &transactionBytes, &again);
mContentBytesWritten += transactionBytes;
}
LOG(
("nsHttpConnection::OnSocketWritable %p "
"ReadSegments returned [rv=%" PRIx32 " read=%u "
"sock-cond=%" PRIx32 " again=%d]\n",
this, static_cast<uint32_t>(rv), transactionBytes,
static_cast<uint32_t>(mSocketOutCondition), again));
// XXX some streams return NS_BASE_STREAM_CLOSED to indicate EOF.
if (rv == NS_BASE_STREAM_CLOSED && !mTransaction->IsDone()) {
rv = NS_OK;
transactionBytes = 0;
}
if (!again && (mFastOpen || mWaitingFor0RTTResponse)) {
// Continue waiting;
rv = mSocketOut->AsyncWait(this, 0, 0, nullptr);
}
if (NS_FAILED(rv)) {
// if the transaction didn't want to write any more data, then
// wait for the transaction to call ResumeSend.
if (rv == NS_BASE_STREAM_WOULD_BLOCK) {
rv = NS_OK;
if (mFastOpen || mWaitingFor0RTTResponse) {
// Continue waiting;
rv = mSocketOut->AsyncWait(this, 0, 0, nullptr);
}
}
again = false;
} else if (NS_FAILED(mSocketOutCondition)) {
if (mSocketOutCondition == NS_BASE_STREAM_WOULD_BLOCK) {
if (mTLSFilter) {
LOG((" blocked tunnel (handshake?)\n"));
rv = mTLSFilter->NudgeTunnel(this);
} else {
rv = mSocketOut->AsyncWait(this, 0, 0, nullptr); // continue writing
}
} else {
rv = mSocketOutCondition;
}
again = false;
} else if (!transactionBytes) {
rv = NS_OK;
if (mWaitingFor0RTTResponse || mFastOpen) {
// Wait for tls handshake to finish or waiting for connect.
rv = mSocketOut->AsyncWait(this, 0, 0, nullptr);
} else if (mTransaction) { // in case the ReadSegments stack called
// CloseTransaction()
//
// at this point we've written out the entire transaction, and now we
// must wait for the server's response. we manufacture a status message
// here to reflect the fact that we are waiting. this message will be
// trumped (overwritten) if the server responds quickly.
//
mTransaction->OnTransportStatus(mSocketTransport,
NS_NET_STATUS_WAITING_FOR, 0);
if (mCheckNetworkStallsWithTFO) {
mLastRequestBytesSentTime = PR_IntervalNow();
}
rv = ResumeRecv(); // start reading
}
again = false;
} else if (writeAttempts >= maxWriteAttempts) {
LOG((" yield for other transactions\n"));
rv = mSocketOut->AsyncWait(this, 0, 0, nullptr); // continue writing
again = false;
}
// write more to the socket until error or end-of-request...
} while (again && gHttpHandler->Active());
return rv;
}
nsresult nsHttpConnection::OnWriteSegment(char* buf, uint32_t count,
uint32_t* countWritten) {
if (count == 0) {
// some WriteSegments implementations will erroneously call the reader
// to provide 0 bytes worth of data. we must protect against this case
// or else we'd end up closing the socket prematurely.
NS_ERROR("bad WriteSegments implementation");
return NS_ERROR_FAILURE; // stop iterating
}
if (ChaosMode::isActive(ChaosFeature::IOAmounts) &&
ChaosMode::randomUint32LessThan(2)) {
// read 1...count bytes
count = ChaosMode::randomUint32LessThan(count) + 1;
}
nsresult rv = mSocketIn->Read(buf, count, countWritten);
if (NS_FAILED(rv))
mSocketInCondition = rv;
else if (*countWritten == 0)
mSocketInCondition = NS_BASE_STREAM_CLOSED;
else
mSocketInCondition = NS_OK; // reset condition
mCheckNetworkStallsWithTFO = false;
return mSocketInCondition;
}
nsresult nsHttpConnection::OnSocketReadable() {
LOG(("nsHttpConnection::OnSocketReadable [this=%p]\n", this));
PRIntervalTime now = PR_IntervalNow();
PRIntervalTime delta = now - mLastReadTime;
// Reset mResponseTimeoutEnabled to stop response timeout checks.
mResponseTimeoutEnabled = false;
if ((mTransactionCaps & NS_HTTP_CONNECT_ONLY) && !mCompletedProxyConnect &&
!mProxyConnectStream) {
// A CONNECT has been requested for this connection but will never
// be performed. This should never happen.
MOZ_ASSERT(false, "proxy connect will never happen");
LOG(("return failure because proxy connect will never happen\n"));
return NS_ERROR_FAILURE;
}
if (mKeepAliveMask && (delta >= mMaxHangTime)) {
LOG(("max hang time exceeded!\n"));
// give the handler a chance to create a new persistent connection to
// this host if we've been busy for too long.
mKeepAliveMask = false;
Unused << gHttpHandler->ProcessPendingQ(mConnInfo);
}
// Reduce the estimate of the time since last read by up to 1 RTT to
// accommodate exhausted sender TCP congestion windows or minor I/O delays.
mLastReadTime = now;
nsresult rv;
uint32_t n;
bool again = true;
do {
if (!mProxyConnectInProgress && !mNPNComplete) {
// Unless we are setting up a tunnel via CONNECT, prevent reading
// from the socket until the results of NPN
// negotiation are known (which is determined from the write path).
// If the server speaks SPDY it is likely the readable data here is
// a spdy settings frame and without NPN it would be misinterpreted
// as HTTP/*
LOG(
("nsHttpConnection::OnSocketReadable %p return due to inactive "
"tunnel setup but incomplete NPN state\n",
this));
rv = NS_OK;
break;
}
mSocketInCondition = NS_OK;
rv = mTransaction->WriteSegmentsAgain(
this, nsIOService::gDefaultSegmentSize, &n, &again);
LOG(("nsHttpConnection::OnSocketReadable %p trans->ws rv=%" PRIx32
" n=%d socketin=%" PRIx32 "\n",
this, static_cast<uint32_t>(rv), n,
static_cast<uint32_t>(mSocketInCondition)));
if (NS_FAILED(rv)) {
// if the transaction didn't want to take any more data, then
// wait for the transaction to call ResumeRecv.
if (rv == NS_BASE_STREAM_WOULD_BLOCK) {
rv = NS_OK;
}
again = false;
} else {
mCurrentBytesRead += n;
mTotalBytesRead += n;
if (NS_FAILED(mSocketInCondition)) {
// continue waiting for the socket if necessary...
if (mSocketInCondition == NS_BASE_STREAM_WOULD_BLOCK) {
rv = ResumeRecv();
} else {
rv = mSocketInCondition;
}
again = false;
}
}
// read more from the socket until error...
} while (again && gHttpHandler->Active());
return rv;
}
void nsHttpConnection::SetupSecondaryTLS(
nsAHttpTransaction* aSpdyConnectTransaction) {
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
MOZ_ASSERT(!mTLSFilter);
LOG(
("nsHttpConnection %p SetupSecondaryTLS %s %d "
"aSpdyConnectTransaction=%p\n",
this, mConnInfo->Origin(), mConnInfo->OriginPort(),
aSpdyConnectTransaction));
nsHttpConnectionInfo* ci = nullptr;
if (mTransaction) {
ci = mTransaction->ConnectionInfo();
}
if (!ci) {
ci = mConnInfo;
}
MOZ_ASSERT(ci);
mTLSFilter = new TLSFilterTransaction(mTransaction, ci->Origin(),
ci->OriginPort(), this, this);
if (mTransaction) {
mTransaction = mTLSFilter;
}
mWeakTrans = do_GetWeakReference(aSpdyConnectTransaction);
}
void nsHttpConnection::SetInSpdyTunnel(bool arg) {
MOZ_ASSERT(mTLSFilter);
mInSpdyTunnel = arg;
// don't setup another tunnel :)
mProxyConnectStream = nullptr;
mCompletedProxyConnect = true;
mProxyConnectInProgress = false;
}
// static
nsresult nsHttpConnection::MakeConnectString(nsAHttpTransaction* trans,
nsHttpRequestHead* request,
nsACString& result, bool h2ws) {
result.Truncate();
if (!trans->ConnectionInfo()) {
return NS_ERROR_NOT_INITIALIZED;
}
DebugOnly<nsresult> rv;
rv = nsHttpHandler::GenerateHostPort(
nsDependentCString(trans->ConnectionInfo()->Origin()),
trans->ConnectionInfo()->OriginPort(), result);
MOZ_ASSERT(NS_SUCCEEDED(rv));
// CONNECT host:port HTTP/1.1
request->SetMethod("CONNECT"_ns);
request->SetVersion(gHttpHandler->HttpVersion());
if (h2ws) {
// HTTP/2 websocket CONNECT forms need the full request URI
nsAutoCString requestURI;
trans->RequestHead()->RequestURI(requestURI);
request->SetRequestURI(requestURI);
request->SetHTTPS(trans->RequestHead()->IsHTTPS());
} else {
request->SetRequestURI(result);
}
rv = request->SetHeader(nsHttp::User_Agent, gHttpHandler->UserAgent());
MOZ_ASSERT(NS_SUCCEEDED(rv));
// a CONNECT is always persistent
rv = request->SetHeader(nsHttp::Proxy_Connection, "keep-alive"_ns);
MOZ_ASSERT(NS_SUCCEEDED(rv));
rv = request->SetHeader(nsHttp::Connection, "keep-alive"_ns);
MOZ_ASSERT(NS_SUCCEEDED(rv));
// all HTTP/1.1 requests must include a Host header (even though it
// may seem redundant in this case; see bug 82388).
rv = request->SetHeader(nsHttp::Host, result);
MOZ_ASSERT(NS_SUCCEEDED(rv));
nsAutoCString val;
if (NS_SUCCEEDED(
trans->RequestHead()->GetHeader(nsHttp::Proxy_Authorization, val))) {
// we don't know for sure if this authorization is intended for the
// SSL proxy, so we add it just in case.
rv = request->SetHeader(nsHttp::Proxy_Authorization, val);
MOZ_ASSERT(NS_SUCCEEDED(rv));
}
if ((trans->Caps() & NS_HTTP_CONNECT_ONLY) &&
NS_SUCCEEDED(trans->RequestHead()->GetHeader(nsHttp::Upgrade, val))) {
// rfc7639 proposes using the ALPN header to indicate the protocol used
// in CONNECT when not used for TLS. The protocol is stored in Upgrade.
// We have to copy this header here since a new HEAD request is created
// for the CONNECT.
rv = request->SetHeader("ALPN"_ns, val);
MOZ_ASSERT(NS_SUCCEEDED(rv));
}
result.Truncate();
request->Flatten(result, false);
if (LOG1_ENABLED()) {
LOG(("nsHttpConnection::MakeConnectString for transaction=%p [",
trans->QueryHttpTransaction()));
LogHeaders(result.BeginReading());
LOG(("]"));
}
result.AppendLiteral("\r\n");
return NS_OK;
}
nsresult nsHttpConnection::SetupProxyConnect() {
LOG(("nsHttpConnection::SetupProxyConnect [this=%p]\n", this));
NS_ENSURE_TRUE(!mProxyConnectStream, NS_ERROR_ALREADY_INITIALIZED);
MOZ_ASSERT(mUsingSpdyVersion == SpdyVersion::NONE,
"SPDY NPN Complete while using proxy connect stream");
nsAutoCString buf;
nsHttpRequestHead request;
nsresult rv = MakeConnectString(mTransaction, &request, buf, false);
if (NS_FAILED(rv)) {
return rv;
}
return NS_NewCStringInputStream(getter_AddRefs(mProxyConnectStream),
std::move(buf));
}
nsresult nsHttpConnection::StartShortLivedTCPKeepalives() {
if (mUsingSpdyVersion != SpdyVersion::NONE) {
return NS_OK;
}
MOZ_ASSERT(mSocketTransport);
if (!mSocketTransport) {
return NS_ERROR_NOT_INITIALIZED;
}
nsresult rv = NS_OK;
int32_t idleTimeS = -1;
int32_t retryIntervalS = -1;
if (gHttpHandler->TCPKeepaliveEnabledForShortLivedConns()) {
// Set the idle time.
idleTimeS = gHttpHandler->GetTCPKeepaliveShortLivedIdleTime();
LOG(
("nsHttpConnection::StartShortLivedTCPKeepalives[%p] "
"idle time[%ds].",
this, idleTimeS));
retryIntervalS = std::max<int32_t>((int32_t)PR_IntervalToSeconds(mRtt), 1);
rv = mSocketTransport->SetKeepaliveVals(idleTimeS, retryIntervalS);
if (NS_FAILED(rv)) {
return rv;
}
rv = mSocketTransport->SetKeepaliveEnabled(true);
mTCPKeepaliveConfig = kTCPKeepaliveShortLivedConfig;
} else {
rv = mSocketTransport->SetKeepaliveEnabled(false);
mTCPKeepaliveConfig = kTCPKeepaliveDisabled;
}
if (NS_FAILED(rv)) {
return rv;
}
// Start a timer to move to long-lived keepalive config.
if (!mTCPKeepaliveTransitionTimer) {
mTCPKeepaliveTransitionTimer = NS_NewTimer();
}
if (mTCPKeepaliveTransitionTimer) {
int32_t time = gHttpHandler->GetTCPKeepaliveShortLivedTime();
// Adjust |time| to ensure a full set of keepalive probes can be sent
// at the end of the short-lived phase.
if (gHttpHandler->TCPKeepaliveEnabledForShortLivedConns()) {
if (NS_WARN_IF(!gSocketTransportService)) {
return NS_ERROR_NOT_INITIALIZED;
}
int32_t probeCount = -1;
rv = gSocketTransportService->GetKeepaliveProbeCount(&probeCount);
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
if (NS_WARN_IF(probeCount <= 0)) {
return NS_ERROR_UNEXPECTED;
}
// Add time for final keepalive probes, and 2 seconds for a buffer.
time += ((probeCount)*retryIntervalS) - (time % idleTimeS) + 2;
}
mTCPKeepaliveTransitionTimer->InitWithNamedFuncCallback(
nsHttpConnection::UpdateTCPKeepalive, this, (uint32_t)time * 1000,
nsITimer::TYPE_ONE_SHOT,
"net::nsHttpConnection::StartShortLivedTCPKeepalives");
} else {
NS_WARNING(
"nsHttpConnection::StartShortLivedTCPKeepalives failed to "
"create timer.");
}
return NS_OK;
}
nsresult nsHttpConnection::StartLongLivedTCPKeepalives() {
MOZ_ASSERT(mUsingSpdyVersion == SpdyVersion::NONE,
"Don't use TCP Keepalive with SPDY!");
if (NS_WARN_IF(mUsingSpdyVersion != SpdyVersion::NONE)) {
return NS_OK;
}
MOZ_ASSERT(mSocketTransport);
if (!mSocketTransport) {
return NS_ERROR_NOT_INITIALIZED;
}
nsresult rv = NS_OK;
if (gHttpHandler->TCPKeepaliveEnabledForLongLivedConns()) {
// Increase the idle time.
int32_t idleTimeS = gHttpHandler->GetTCPKeepaliveLongLivedIdleTime();
LOG(("nsHttpConnection::StartLongLivedTCPKeepalives[%p] idle time[%ds]",
this, idleTimeS));
int32_t retryIntervalS =
std::max<int32_t>((int32_t)PR_IntervalToSeconds(mRtt), 1);
rv = mSocketTransport->SetKeepaliveVals(idleTimeS, retryIntervalS);
if (NS_FAILED(rv)) {
return rv;
}
// Ensure keepalive is enabled, if current status is disabled.
if (mTCPKeepaliveConfig == kTCPKeepaliveDisabled) {
rv = mSocketTransport->SetKeepaliveEnabled(true);
if (NS_FAILED(rv)) {
return rv;
}
}
mTCPKeepaliveConfig = kTCPKeepaliveLongLivedConfig;
} else {
rv = mSocketTransport->SetKeepaliveEnabled(false);
mTCPKeepaliveConfig = kTCPKeepaliveDisabled;
}
if (NS_FAILED(rv)) {
return rv;
}
return NS_OK;
}
nsresult nsHttpConnection::DisableTCPKeepalives() {
MOZ_ASSERT(mSocketTransport);
if (!mSocketTransport) {
return NS_ERROR_NOT_INITIALIZED;
}
LOG(("nsHttpConnection::DisableTCPKeepalives [%p]", this));
if (mTCPKeepaliveConfig != kTCPKeepaliveDisabled) {
nsresult rv = mSocketTransport->SetKeepaliveEnabled(false);
if (NS_FAILED(rv)) {
return rv;
}
mTCPKeepaliveConfig = kTCPKeepaliveDisabled;
}
if (mTCPKeepaliveTransitionTimer) {
mTCPKeepaliveTransitionTimer->Cancel();
mTCPKeepaliveTransitionTimer = nullptr;
}
return NS_OK;
}
//-----------------------------------------------------------------------------
// nsHttpConnection::nsISupports
//-----------------------------------------------------------------------------
NS_IMPL_ADDREF(nsHttpConnection)
NS_IMPL_RELEASE(nsHttpConnection)
NS_INTERFACE_MAP_BEGIN(nsHttpConnection)
NS_INTERFACE_MAP_ENTRY(nsISupportsWeakReference)
NS_INTERFACE_MAP_ENTRY(nsIInputStreamCallback)
NS_INTERFACE_MAP_ENTRY(nsIOutputStreamCallback)
NS_INTERFACE_MAP_ENTRY(nsITransportEventSink)
NS_INTERFACE_MAP_ENTRY(nsIInterfaceRequestor)
NS_INTERFACE_MAP_ENTRY(HttpConnectionBase)
NS_INTERFACE_MAP_ENTRY_CONCRETE(nsHttpConnection)
NS_INTERFACE_MAP_END
//-----------------------------------------------------------------------------
// nsHttpConnection::nsIInputStreamCallback
//-----------------------------------------------------------------------------
// called on the socket transport thread
NS_IMETHODIMP
nsHttpConnection::OnInputStreamReady(nsIAsyncInputStream* in) {
MOZ_ASSERT(in == mSocketIn, "unexpected stream");
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
if (mIdleMonitoring) {
MOZ_ASSERT(!mTransaction, "Idle Input Event While Active");
// The only read event that is protocol compliant for an idle connection
// is an EOF, which we check for with CanReuse(). If the data is
// something else then just ignore it and suspend checking for EOF -
// our normal timers or protocol stack are the place to deal with
// any exception logic.
if (!CanReuse()) {
LOG(("Server initiated close of idle conn %p\n", this));
Unused << gHttpHandler->ConnMgr()->CloseIdleConnection(this);
return NS_OK;
}
LOG(("Input data on idle conn %p, but not closing yet\n", this));
return NS_OK;
}
// if the transaction was dropped...
if (!mTransaction) {
LOG((" no transaction; ignoring event\n"));
return NS_OK;
}
nsresult rv = OnSocketReadable();
if (NS_FAILED(rv)) CloseTransaction(mTransaction, rv);
return NS_OK;
}
//-----------------------------------------------------------------------------
// nsHttpConnection::nsIOutputStreamCallback
//-----------------------------------------------------------------------------
NS_IMETHODIMP
nsHttpConnection::OnOutputStreamReady(nsIAsyncOutputStream* out) {
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
MOZ_ASSERT(out == mSocketOut, "unexpected socket");
// if the transaction was dropped...
if (!mTransaction) {
LOG((" no transaction; ignoring event\n"));
return NS_OK;
}
nsresult rv = OnSocketWritable();
if (NS_FAILED(rv)) CloseTransaction(mTransaction, rv);
return NS_OK;
}
//-----------------------------------------------------------------------------
// nsHttpConnection::nsITransportEventSink
//-----------------------------------------------------------------------------
NS_IMETHODIMP
nsHttpConnection::OnTransportStatus(nsITransport* trans, nsresult status,
int64_t progress, int64_t progressMax) {
if (mTransaction) mTransaction->OnTransportStatus(trans, status, progress);
return NS_OK;
}
//-----------------------------------------------------------------------------
// nsHttpConnection::nsIInterfaceRequestor
//-----------------------------------------------------------------------------
// not called on the socket transport thread
NS_IMETHODIMP
nsHttpConnection::GetInterface(const nsIID& iid, void** result) {
// NOTE: This function is only called on the UI thread via sync proxy from
// the socket transport thread. If that weren't the case, then we'd
// have to worry about the possibility of mTransaction going away
// part-way through this function call. See CloseTransaction.
// NOTE - there is a bug here, the call to getinterface is proxied off the
// nss thread, not the ui thread as the above comment says. So there is
// indeed a chance of mTransaction going away. bug 615342
MOZ_ASSERT(!OnSocketThread(), "on socket thread");
nsCOMPtr<nsIInterfaceRequestor> callbacks;
{
MutexAutoLock lock(mCallbacksLock);
callbacks = mCallbacks;
}
if (callbacks) return callbacks->GetInterface(iid, result);
return NS_ERROR_NO_INTERFACE;
}
void nsHttpConnection::CheckForTraffic(bool check) {
if (check) {
LOG((" CheckForTraffic conn %p\n", this));
if (mSpdySession) {
if (PR_IntervalToMilliseconds(IdleTime()) >= 500) {
// Send a ping to verify it is still alive if it has been idle
// more than half a second, the network changed events are
// rate-limited to one per 1000 ms.
LOG((" SendPing\n"));
mSpdySession->SendPing();
} else {
LOG((" SendPing skipped due to network activity\n"));
}
} else {
// If not SPDY, Store snapshot amount of data right now
mTrafficCount = mTotalBytesWritten + mTotalBytesRead;
mTrafficStamp = true;
}
} else {
// mark it as not checked
mTrafficStamp = false;
}
}
nsAHttpTransaction*
nsHttpConnection::CloseConnectionFastOpenTakesTooLongOrError(
bool aCloseSocketTransport) {
MOZ_ASSERT(!mCurrentBytesRead);
MOZ_ASSERT(OnSocketThread(), "not on socket thread");
mFastOpenStatus = TFO_FAILED;
RefPtr<nsAHttpTransaction> trans;
DontReuse();
if (mUsingSpdyVersion != SpdyVersion::NONE) {
// If we have a http2 connection just restart it as if 0rtt failed.
// For http2 we do not need to do similar thing as for http1 because
// backup connection will pick immediately all this transaction anyway.
mUsingSpdyVersion = SpdyVersion::NONE;
if (mSpdySession) {
mTransaction->SetFastOpenStatus(TFO_FAILED);
Unused << mSpdySession->Finish0RTT(true, true);
}
mSpdySession = nullptr;
} else {
// For http1 we want to make this transaction an absolute priority to
// get the backup connection so we will return it from here.
if (NS_SUCCEEDED(mTransaction->RestartOnFastOpenError())) {
trans = mTransaction;
}
mTransaction->SetConnection(nullptr);
}
{
MutexAutoLock lock(mCallbacksLock);
mCallbacks = nullptr;
}
if (mSocketIn) {
mSocketIn->AsyncWait(nullptr, 0, 0, nullptr);
}
mTransaction = nullptr;
if (!aCloseSocketTransport) {
if (mSocketOut) {
mSocketOut->AsyncWait(nullptr, 0, 0, nullptr);
}
mSocketTransport->SetEventSink(nullptr, nullptr);
mSocketTransport->SetSecurityCallbacks(nullptr);
mSocketTransport = nullptr;
}
Close(NS_ERROR_NET_RESET);
return trans;
}
void nsHttpConnection::SetFastOpen(bool aFastOpen) {
mFastOpen = aFastOpen;
if (!mFastOpen && mTransaction && !mTransaction->IsNullTransaction()) {
mExperienced = true;
nsHttpTransaction* hTrans = mTransaction->QueryHttpTransaction();
if (hTrans) {
SetUrgentStartPreferred(hTrans->ClassOfService() &
nsIClassOfService::UrgentStart);
}
}
}
void nsHttpConnection::SetFastOpenStatus(uint8_t tfoStatus) {
mFastOpenStatus = tfoStatus;
if ((mFastOpenStatus >= TFO_FAILED_CONNECTION_REFUSED) &&
(mFastOpenStatus <=
TFO_FAILED_BACKUP_CONNECTION_TFO_DATA_COOKIE_NOT_ACCEPTED) &&
mSocketTransport) {
nsresult firstRetryError;
if (NS_SUCCEEDED(mSocketTransport->GetFirstRetryError(&firstRetryError)) &&
(NS_FAILED(firstRetryError))) {
if ((mFastOpenStatus >= TFO_FAILED_BACKUP_CONNECTION_TFO_NOT_TRIED) &&
(mFastOpenStatus <=
TFO_FAILED_BACKUP_CONNECTION_TFO_DATA_COOKIE_NOT_ACCEPTED)) {
mFastOpenStatus = TFO_FAILED_BACKUP_CONNECTION_NO_TFO_FAILED_TOO;
} else {
// We add +7 to tranform TFO_FAILED_CONNECTION_REFUSED into
// TFO_FAILED_CONNECTION_REFUSED_NO_TFO_FAILED_TOO, etc.
// If the list in TCPFastOpenLayer.h changes please addapt +7.
mFastOpenStatus = tfoStatus + 7;
}
}
}
}
void nsHttpConnection::SetEvent(nsresult aStatus) {
switch (aStatus) {
case NS_NET_STATUS_RESOLVING_HOST:
mBootstrappedTimings.domainLookupStart = TimeStamp::Now();
break;
case NS_NET_STATUS_RESOLVED_HOST:
mBootstrappedTimings.domainLookupEnd = TimeStamp::Now();
break;
case NS_NET_STATUS_CONNECTING_TO:
mBootstrappedTimings.connectStart = TimeStamp::Now();
break;
case NS_NET_STATUS_CONNECTED_TO: {
TimeStamp tnow = TimeStamp::Now();
mBootstrappedTimings.tcpConnectEnd = tnow;
mBootstrappedTimings.connectEnd = tnow;
if ((mFastOpenStatus != TFO_DATA_SENT) &&
!mBootstrappedTimings.secureConnectionStart.IsNull()) {
mBootstrappedTimings.secureConnectionStart = tnow;
}
break;
}
case NS_NET_STATUS_TLS_HANDSHAKE_STARTING:
mBootstrappedTimings.secureConnectionStart = TimeStamp::Now();
break;
case NS_NET_STATUS_TLS_HANDSHAKE_ENDED:
mBootstrappedTimings.connectEnd = TimeStamp::Now();
break;
default:
break;
}
}
bool nsHttpConnection::NoClientCertAuth() const {
if (!mSocketTransport) {
return false;
}
nsCOMPtr<nsISupports> secInfo;
mSocketTransport->GetSecurityInfo(getter_AddRefs(secInfo));
if (!secInfo) {
return false;
}
nsCOMPtr<nsISSLSocketControl> ssc(do_QueryInterface(secInfo));
if (!ssc) {
return false;
}
return !ssc->GetClientCertSent();
}
bool nsHttpConnection::CanAcceptWebsocket() {
if (!UsingSpdy()) {
return true;
}
return mSpdySession->CanAcceptWebsocket();
}
bool nsHttpConnection::IsProxyConnectInProgress() {
return mProxyConnectInProgress;
}
bool nsHttpConnection::LastTransactionExpectedNoContent() {
return mLastTransactionExpectedNoContent;
}
void nsHttpConnection::SetLastTransactionExpectedNoContent(bool val) {
mLastTransactionExpectedNoContent = val;
}
bool nsHttpConnection::IsPersistent() { return IsKeepAlive() && !mDontReuse; }
nsAHttpTransaction* nsHttpConnection::Transaction() { return mTransaction; }
} // namespace net
} // namespace mozilla