gecko-dev/xpcom/threads/IdlePeriodState.h

197 строки
7.6 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef mozilla_IdlePeriodState_h
#define mozilla_IdlePeriodState_h
/**
* A class for tracking the state of our idle period. This includes keeping
* track of both the state of our process-local idle period estimate and, for
* content processes, managing communication with the parent process for
* cross-pprocess idle detection.
*/
#include "mozilla/MemoryReporting.h"
#include "mozilla/Mutex.h"
#include "mozilla/RefPtr.h"
#include "mozilla/TimeStamp.h"
#include "nsCOMPtr.h"
#include <stdint.h>
class nsIIdlePeriod;
namespace mozilla {
class TaskManager;
namespace ipc {
class IdleSchedulerChild;
} // namespace ipc
class IdlePeriodState {
public:
explicit IdlePeriodState(already_AddRefed<nsIIdlePeriod>&& aIdlePeriod);
~IdlePeriodState();
// Integration with memory reporting.
size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const;
// Notification that whoever we are tracking idle state for has found a
// non-idle task to process.
//
// Must not be called while holding any locks.
void FlagNotIdle();
// Notification that whoever we are tracking idle state for has no more
// tasks (idle or not) to process.
//
// aProofOfUnlock is the proof that our caller unlocked its mutex.
void RanOutOfTasks(const MutexAutoUnlock& aProofOfUnlock);
// Notification that whoever we are tracking idle state has idle tasks that
// they are considering ready to run and that we should keep claiming they are
// ready to run until they call ForgetPendingTaskGuarantee().
void EnforcePendingTaskGuarantee() {
mHasPendingEventsPromisedIdleEvent = true;
}
// Notification that whoever we are tracking idle state for is done with our
// "we have an idle event ready to run" guarantee. When this happens, we can
// reset mHasPendingEventsPromisedIdleEvent to false, because we have
// fulfilled our contract.
void ForgetPendingTaskGuarantee() {
mHasPendingEventsPromisedIdleEvent = false;
}
// Update our cached idle deadline so consumers can use it while holding
// locks. Consumers must ClearCachedIdleDeadline() once they are done.
void UpdateCachedIdleDeadline(const MutexAutoUnlock& aProofOfUnlock) {
mCachedIdleDeadline = GetIdleDeadlineInternal(false, aProofOfUnlock);
}
// If we have local idle deadline, but don't have an idle token, this will
// request such from the parent process when this is called in a child
// process.
void RequestIdleDeadlineIfNeeded(const MutexAutoUnlock& aProofOfUnlock) {
GetIdleDeadlineInternal(false, aProofOfUnlock);
}
// Reset our cached idle deadline, so we stop allowing idle runnables to run.
void ClearCachedIdleDeadline() { mCachedIdleDeadline = TimeStamp(); }
// Get the current cached idle deadline. This may return a null timestamp.
TimeStamp GetCachedIdleDeadline() { return mCachedIdleDeadline; }
// Peek our current idle deadline into mCachedIdleDeadline. This can cause
// mCachedIdleDeadline to be a null timestamp (which means we are not idle
// right now). This method does not have any side-effects on our state, apart
// from guaranteeing that if it returns non-null then GetDeadlineForIdleTask
// will return non-null until ForgetPendingTaskGuarantee() is called, and its
// effects on mCachedIdleDeadline.
//
// aProofOfUnlock is the proof that our caller unlocked its mutex.
void CachePeekedIdleDeadline(const MutexAutoUnlock& aProofOfUnlock) {
mCachedIdleDeadline = GetIdleDeadlineInternal(true, aProofOfUnlock);
}
void SetIdleToken(uint64_t aId, TimeDuration aDuration);
bool IsActive() { return mActive; }
protected:
void EnsureIsActive() {
if (!mActive) {
SetActive();
}
}
void EnsureIsPaused(const MutexAutoUnlock& aProofOfUnlock) {
if (mActive) {
SetPaused(aProofOfUnlock);
}
}
// Returns a null TimeStamp if we're not in the idle period.
TimeStamp GetLocalIdleDeadline(bool& aShuttingDown,
const MutexAutoUnlock& aProofOfUnlock);
// Gets the idle token, which is the end time of the idle period.
//
// aProofOfUnlock is the proof that our caller unlocked its mutex.
TimeStamp GetIdleToken(TimeStamp aLocalIdlePeriodHint,
const MutexAutoUnlock& aProofOfUnlock);
// In case of child processes, requests idle time from the cross-process
// idle scheduler.
void RequestIdleToken(TimeStamp aLocalIdlePeriodHint);
// Mark that we don't have idle time to use, nor are expecting to get an idle
// token from the idle scheduler. This must be called while not holding any
// locks, but some of the callers aren't holding locks to start with, so
// consumers just need to make sure they are not holding locks when they call
// this.
void ClearIdleToken();
// SetActive should be called when the event queue is running any type of
// tasks.
void SetActive();
// SetPaused should be called once the event queue doesn't have more
// tasks to process, or is waiting for the idle token.
//
// aProofOfUnlock is the proof that our caller unlocked its mutex.
void SetPaused(const MutexAutoUnlock& aProofOfUnlock);
// Get or peek our idle deadline. When peeking, we generally don't change any
// of our internal state. When getting, we may request an idle token as
// needed.
//
// aProofOfUnlock is the proof that our caller unlocked its mutex.
TimeStamp GetIdleDeadlineInternal(bool aIsPeek,
const MutexAutoUnlock& aProofOfUnlock);
// Whether we should be getting an idle token (i.e. are a content process
// and are using cross process idle scheduling).
bool ShouldGetIdleToken();
// Set to true if we have claimed we have a ready-to-run idle task when asked.
// In that case, we will ensure that we allow at least one task to run when
// someone tries to run a task, even if we have run out of idle period at that
// point. This ensures that we never fail to produce a task to run if we
// claim we have a task ready to run.
bool mHasPendingEventsPromisedIdleEvent = false;
// mIdlePeriod keeps track of the current idle period. Calling
// mIdlePeriod->GetIdlePeriodHint() will give an estimate of when
// the current idle period will end.
nsCOMPtr<nsIIdlePeriod> mIdlePeriod;
// If non-null, this timestamp represents the end time of the idle period. An
// idle period starts when we get the idle token from the parent process and
// ends when either there are no more things we want to run at idle priority
// or mIdleToken < TimeStamp::Now(), so we have reached our idle deadline.
TimeStamp mIdleToken;
// The id of the last idle request to the cross-process idle scheduler.
uint64_t mIdleRequestId = 0;
// If we're in a content process, we use mIdleScheduler to communicate with
// the parent process for purposes of cross-process idle tracking.
RefPtr<mozilla::ipc::IdleSchedulerChild> mIdleScheduler;
// Our cached idle deadline. This is set by UpdateCachedIdleDeadline() and
// cleared by ClearCachedIdleDeadline(). Consumers should do the former while
// not holding any locks, but may do the latter while holding locks.
TimeStamp mCachedIdleDeadline;
// mActive is true when the PrioritizedEventQueue or TaskController we are
// associated with is running tasks.
bool mActive = true;
};
} // namespace mozilla
#endif // mozilla_IdlePeriodState_h