gecko-dev/tools/profiler/PseudoStack.h

432 строки
12 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef PROFILER_PSEUDO_STACK_H_
#define PROFILER_PSEUDO_STACK_H_
#include "mozilla/ArrayUtils.h"
#include "mozilla/NullPtr.h"
#include <stdint.h>
#include "js/ProfilingStack.h"
#include <stdlib.h>
#include <algorithm>
/* we duplicate this code here to avoid header dependencies
* which make it more difficult to include in other places */
#if defined(_M_X64) || defined(__x86_64__)
#define V8_HOST_ARCH_X64 1
#elif defined(_M_IX86) || defined(__i386__) || defined(__i386)
#define V8_HOST_ARCH_IA32 1
#elif defined(__ARMEL__)
#define V8_HOST_ARCH_ARM 1
#else
#warning Please add support for your architecture in chromium_types.h
#endif
// STORE_SEQUENCER: Because signals can interrupt our profile modification
// we need to make stores are not re-ordered by the compiler
// or hardware to make sure the profile is consistent at
// every point the signal can fire.
#ifdef V8_HOST_ARCH_ARM
// TODO Is there something cheaper that will prevent
// memory stores from being reordered
typedef void (*LinuxKernelMemoryBarrierFunc)(void);
LinuxKernelMemoryBarrierFunc pLinuxKernelMemoryBarrier __attribute__((weak)) =
(LinuxKernelMemoryBarrierFunc) 0xffff0fa0;
# define STORE_SEQUENCER() pLinuxKernelMemoryBarrier()
#elif defined(V8_HOST_ARCH_IA32) || defined(V8_HOST_ARCH_X64)
# if defined(_MSC_VER)
#if _MSC_VER > 1400
# include <intrin.h>
#else // _MSC_VER > 1400
// MSVC2005 has a name collision bug caused when both <intrin.h> and <winnt.h> are included together.
#ifdef _WINNT_
# define _interlockedbittestandreset _interlockedbittestandreset_NAME_CHANGED_TO_AVOID_MSVS2005_ERROR
# define _interlockedbittestandset _interlockedbittestandset_NAME_CHANGED_TO_AVOID_MSVS2005_ERROR
# include <intrin.h>
#else
# include <intrin.h>
# define _interlockedbittestandreset _interlockedbittestandreset_NAME_CHANGED_TO_AVOID_MSVS2005_ERROR
# define _interlockedbittestandset _interlockedbittestandset_NAME_CHANGED_TO_AVOID_MSVS2005_ERROR
#endif
// Even though MSVC2005 has the intrinsic _ReadWriteBarrier, it fails to link to it when it's
// not explicitly declared.
# pragma intrinsic(_ReadWriteBarrier)
#endif // _MSC_VER > 1400
# define STORE_SEQUENCER() _ReadWriteBarrier();
# elif defined(__INTEL_COMPILER)
# define STORE_SEQUENCER() __memory_barrier();
# elif __GNUC__
# define STORE_SEQUENCER() asm volatile("" ::: "memory");
# else
# error "Memory clobber not supported for your compiler."
# endif
#else
# error "Memory clobber not supported for your platform."
#endif
// A stack entry exists to allow the JS engine to inform SPS of the current
// backtrace, but also to instrument particular points in C++ in case stack
// walking is not available on the platform we are running on.
//
// Each entry has a descriptive string, a relevant stack address, and some extra
// information the JS engine might want to inform SPS of. This class inherits
// from the JS engine's version of the entry to ensure that the size and layout
// of the two representations are consistent.
class StackEntry : public js::ProfileEntry
{
public:
bool isCopyLabel() const volatile {
return !((uintptr_t)stackAddress() & 0x1);
}
void setStackAddressCopy(void *sparg, bool copy) volatile {
// Tagged pointer. Less significant bit used to track if mLabel needs a
// copy. Note that we don't need the last bit of the stack address for
// proper ordering. This is optimized for encoding within the JS engine's
// instrumentation, so we do the extra work here of encoding a bit.
// Last bit 1 = Don't copy, Last bit 0 = Copy.
if (copy) {
setStackAddress(reinterpret_cast<void*>(
reinterpret_cast<uintptr_t>(sparg) & ~0x1));
} else {
setStackAddress(reinterpret_cast<void*>(
reinterpret_cast<uintptr_t>(sparg) | 0x1));
}
}
};
class ProfilerMarkerPayload;
template<typename T>
class ProfilerLinkedList;
class JSAObjectBuilder;
class JSCustomArray;
class ThreadProfile;
class ProfilerMarker {
friend class ProfilerLinkedList<ProfilerMarker>;
public:
ProfilerMarker(const char* aMarkerName,
ProfilerMarkerPayload* aPayload = nullptr);
~ProfilerMarker();
const char* GetMarkerName() const {
return mMarkerName;
}
template<typename Builder> void
BuildJSObject(Builder& b, typename Builder::ArrayHandle markers) const;
void SetGeneration(int aGenID);
bool HasExpired(int aGenID) const {
return mGenID + 2 <= aGenID;
}
private:
char* mMarkerName;
ProfilerMarkerPayload* mPayload;
ProfilerMarker* mNext;
int mGenID;
};
// Foward declaration
typedef struct _UnwinderThreadBuffer UnwinderThreadBuffer;
/**
* This struct is used to add a mNext field to UnwinderThreadBuffer objects for
* use with ProfilerLinkedList. It is done this way so that UnwinderThreadBuffer
* may continue to be opaque with respect to code outside of UnwinderThread2.cpp
*/
struct LinkedUWTBuffer
{
LinkedUWTBuffer()
:mNext(nullptr)
{}
virtual ~LinkedUWTBuffer() {}
virtual UnwinderThreadBuffer* GetBuffer() = 0;
LinkedUWTBuffer* mNext;
};
template<typename T>
class ProfilerLinkedList {
public:
ProfilerLinkedList()
: mHead(nullptr)
, mTail(nullptr)
{}
void insert(T* elem)
{
if (!mTail) {
mHead = elem;
mTail = elem;
} else {
mTail->mNext = elem;
mTail = elem;
}
elem->mNext = nullptr;
}
T* popHead()
{
if (!mHead) {
MOZ_ASSERT(false);
return nullptr;
}
T* head = mHead;
mHead = head->mNext;
if (!mHead) {
mTail = nullptr;
}
return head;
}
const T* peek() {
return mHead;
}
private:
T* mHead;
T* mTail;
};
typedef ProfilerLinkedList<ProfilerMarker> ProfilerMarkerLinkedList;
typedef ProfilerLinkedList<LinkedUWTBuffer> UWTBufferLinkedList;
class PendingMarkers {
public:
PendingMarkers()
: mSignalLock(false)
{}
~PendingMarkers();
void addMarker(ProfilerMarker *aMarker);
void updateGeneration(int aGenID);
/**
* Track a marker which has been inserted into the ThreadProfile.
* This marker can safely be deleted once the generation has
* expired.
*/
void addStoredMarker(ProfilerMarker *aStoredMarker);
// called within signal. Function must be reentrant
ProfilerMarkerLinkedList* getPendingMarkers()
{
// if mSignalLock then the stack is inconsistent because it's being
// modified by the profiled thread. Post pone these markers
// for the next sample. The odds of a livelock are nearly impossible
// and would show up in a profile as many sample in 'addMarker' thus
// we ignore this scenario.
if (mSignalLock) {
return nullptr;
}
return &mPendingMarkers;
}
void clearMarkers()
{
while (mPendingMarkers.peek()) {
delete mPendingMarkers.popHead();
}
while (mStoredMarkers.peek()) {
delete mStoredMarkers.popHead();
}
}
private:
// Keep a list of active markers to be applied to the next sample taken
ProfilerMarkerLinkedList mPendingMarkers;
ProfilerMarkerLinkedList mStoredMarkers;
// If this is set then it's not safe to read mStackPointer from the signal handler
volatile bool mSignalLock;
// We don't want to modify _markers from within the signal so we allow
// it to queue a clear operation.
volatile mozilla::sig_safe_t mGenID;
};
class PendingUWTBuffers
{
public:
PendingUWTBuffers()
: mSignalLock(false)
{
}
void addLinkedUWTBuffer(LinkedUWTBuffer* aBuff)
{
MOZ_ASSERT(aBuff);
mSignalLock = true;
STORE_SEQUENCER();
mPendingUWTBuffers.insert(aBuff);
STORE_SEQUENCER();
mSignalLock = false;
}
// called within signal. Function must be reentrant
UWTBufferLinkedList* getLinkedUWTBuffers()
{
if (mSignalLock) {
return nullptr;
}
return &mPendingUWTBuffers;
}
private:
UWTBufferLinkedList mPendingUWTBuffers;
volatile bool mSignalLock;
};
// the PseudoStack members are read by signal
// handlers, so the mutation of them needs to be signal-safe.
struct PseudoStack
{
public:
PseudoStack()
: mStackPointer(0)
, mRuntime(nullptr)
, mStartJSSampling(false)
, mPrivacyMode(false)
{ }
~PseudoStack() {
if (mStackPointer != 0) {
// We're releasing the pseudostack while it's still in use.
// The label macros keep a non ref counted reference to the
// stack to avoid a TLS. If these are not all cleared we will
// get a use-after-free so better to crash now.
abort();
}
}
void addLinkedUWTBuffer(LinkedUWTBuffer* aBuff)
{
mPendingUWTBuffers.addLinkedUWTBuffer(aBuff);
}
UWTBufferLinkedList* getLinkedUWTBuffers()
{
return mPendingUWTBuffers.getLinkedUWTBuffers();
}
void addMarker(const char *aMarkerStr, ProfilerMarkerPayload *aPayload)
{
ProfilerMarker* marker = new ProfilerMarker(aMarkerStr, aPayload);
mPendingMarkers.addMarker(marker);
}
void addStoredMarker(ProfilerMarker *aStoredMarker) {
mPendingMarkers.addStoredMarker(aStoredMarker);
}
void updateGeneration(int aGenID) {
mPendingMarkers.updateGeneration(aGenID);
}
// called within signal. Function must be reentrant
ProfilerMarkerLinkedList* getPendingMarkers()
{
return mPendingMarkers.getPendingMarkers();
}
void push(const char *aName, uint32_t line)
{
push(aName, nullptr, false, line);
}
void push(const char *aName, void *aStackAddress, bool aCopy, uint32_t line)
{
if (size_t(mStackPointer) >= mozilla::ArrayLength(mStack)) {
mStackPointer++;
return;
}
// Make sure we increment the pointer after the name has
// been written such that mStack is always consistent.
mStack[mStackPointer].setLabel(aName);
mStack[mStackPointer].setStackAddressCopy(aStackAddress, aCopy);
mStack[mStackPointer].setLine(line);
// Prevent the optimizer from re-ordering these instructions
STORE_SEQUENCER();
mStackPointer++;
}
void pop()
{
mStackPointer--;
}
bool isEmpty()
{
return mStackPointer == 0;
}
uint32_t stackSize() const
{
return std::min<uint32_t>(mStackPointer, mozilla::sig_safe_t(mozilla::ArrayLength(mStack)));
}
void sampleRuntime(JSRuntime *runtime) {
mRuntime = runtime;
if (!runtime) {
// JS shut down
return;
}
JS_STATIC_ASSERT(sizeof(mStack[0]) == sizeof(js::ProfileEntry));
js::SetRuntimeProfilingStack(runtime,
(js::ProfileEntry*) mStack,
(uint32_t*) &mStackPointer,
uint32_t(mozilla::ArrayLength(mStack)));
if (mStartJSSampling)
enableJSSampling();
}
void enableJSSampling() {
if (mRuntime) {
js::EnableRuntimeProfilingStack(mRuntime, true);
mStartJSSampling = false;
} else {
mStartJSSampling = true;
}
}
void jsOperationCallback() {
if (mStartJSSampling)
enableJSSampling();
}
void disableJSSampling() {
mStartJSSampling = false;
if (mRuntime)
js::EnableRuntimeProfilingStack(mRuntime, false);
}
// Keep a list of active checkpoints
StackEntry volatile mStack[1024];
private:
// Keep a list of pending markers that must be moved
// to the circular buffer
PendingMarkers mPendingMarkers;
// List of LinkedUWTBuffers that must be processed on the next tick
PendingUWTBuffers mPendingUWTBuffers;
// This may exceed the length of mStack, so instead use the stackSize() method
// to determine the number of valid samples in mStack
mozilla::sig_safe_t mStackPointer;
public:
// The runtime which is being sampled
JSRuntime *mRuntime;
// Start JS Profiling when possible
bool mStartJSSampling;
bool mPrivacyMode;
};
#endif