gecko-dev/gfx/layers/LayersTypes.h

453 строки
15 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef GFX_LAYERSTYPES_H
#define GFX_LAYERSTYPES_H
#include <stdint.h> // for uint32_t
#include "Units.h"
#include "mozilla/DefineEnum.h" // for MOZ_DEFINE_ENUM
#include "mozilla/gfx/Point.h" // for IntPoint
#include "mozilla/Maybe.h"
#include "mozilla/TimeStamp.h" // for TimeStamp
#include "mozilla/TypedEnumBits.h"
#include "nsRegion.h"
#include "nsStyleConsts.h"
#include <stdio.h> // FILE
#include "mozilla/Logging.h" // for PR_LOG
#ifndef MOZ_LAYERS_HAVE_LOG
# define MOZ_LAYERS_HAVE_LOG
#endif
#define MOZ_LAYERS_LOG(_args) \
MOZ_LOG(LayerManager::GetLog(), LogLevel::Debug, _args)
#define MOZ_LAYERS_LOG_IF_SHADOWABLE(layer, _args) \
do { \
if (layer->AsShadowableLayer()) { \
MOZ_LOG(LayerManager::GetLog(), LogLevel::Debug, _args); \
} \
} while (0)
#define INVALID_OVERLAY -1
//#define ENABLE_FRAME_LATENCY_LOG
namespace IPC {
template <typename T>
struct ParamTraits;
} // namespace IPC
namespace mozilla {
namespace layers {
class TextureHost;
#undef NONE
#undef OPAQUE
struct LayersId {
uint64_t mId;
bool IsValid() const { return mId != 0; }
// Allow explicit cast to a uint64_t for now
explicit operator uint64_t() const { return mId; }
// Implement some operators so this class can be used as a key in
// stdlib classes.
bool operator<(const LayersId& aOther) const { return mId < aOther.mId; }
bool operator==(const LayersId& aOther) const { return mId == aOther.mId; }
bool operator!=(const LayersId& aOther) const { return !(*this == aOther); }
// Helper struct that allow this class to be used as a key in
// std::unordered_map like so:
// std::unordered_map<LayersId, ValueType, LayersId::HashFn> myMap;
struct HashFn {
std::size_t operator()(const LayersId& aKey) const {
return std::hash<uint64_t>{}(aKey.mId);
}
};
};
template <typename T>
struct BaseTransactionId {
uint64_t mId = 0;
bool IsValid() const { return mId != 0; }
MOZ_MUST_USE BaseTransactionId<T> Next() const {
return BaseTransactionId<T>{mId + 1};
}
MOZ_MUST_USE BaseTransactionId<T> Prev() const {
return BaseTransactionId<T>{mId - 1};
}
int64_t operator-(const BaseTransactionId<T>& aOther) const {
return mId - aOther.mId;
}
// Allow explicit cast to a uint64_t for now
explicit operator uint64_t() const { return mId; }
bool operator<(const BaseTransactionId<T>& aOther) const {
return mId < aOther.mId;
}
bool operator<=(const BaseTransactionId<T>& aOther) const {
return mId <= aOther.mId;
}
bool operator>(const BaseTransactionId<T>& aOther) const {
return mId > aOther.mId;
}
bool operator>=(const BaseTransactionId<T>& aOther) const {
return mId >= aOther.mId;
}
bool operator==(const BaseTransactionId<T>& aOther) const {
return mId == aOther.mId;
}
};
class TransactionIdType {};
typedef BaseTransactionId<TransactionIdType> TransactionId;
struct LayersObserverEpoch {
uint64_t mId;
MOZ_MUST_USE LayersObserverEpoch Next() const {
return LayersObserverEpoch{mId + 1};
}
bool operator<=(const LayersObserverEpoch& aOther) const {
return mId <= aOther.mId;
}
bool operator>=(const LayersObserverEpoch& aOther) const {
return mId >= aOther.mId;
}
bool operator==(const LayersObserverEpoch& aOther) const {
return mId == aOther.mId;
}
bool operator!=(const LayersObserverEpoch& aOther) const {
return mId != aOther.mId;
}
};
enum class LayersBackend : int8_t {
LAYERS_NONE = 0,
LAYERS_BASIC,
LAYERS_OPENGL,
LAYERS_D3D11,
LAYERS_CLIENT,
LAYERS_WR,
LAYERS_LAST
};
enum class BufferMode : int8_t { BUFFER_NONE, BUFFERED };
enum class DrawRegionClip : int8_t { DRAW, NONE };
enum class SurfaceMode : int8_t {
SURFACE_NONE = 0,
SURFACE_OPAQUE,
SURFACE_SINGLE_CHANNEL_ALPHA,
SURFACE_COMPONENT_ALPHA
};
// clang-format off
MOZ_DEFINE_ENUM_CLASS_WITH_BASE(
ScaleMode, int8_t, (
SCALE_NONE,
STRETCH
// Unimplemented - PRESERVE_ASPECT_RATIO_CONTAIN
));
// clang-format on
struct EventRegions {
// The hit region for a layer contains all areas on the layer that are
// sensitive to events. This region is an over-approximation and may
// contain regions that are not actually sensitive, but any such regions
// will be included in the mDispatchToContentHitRegion.
nsIntRegion mHitRegion;
// The mDispatchToContentHitRegion for a layer contains all areas for
// which the main-thread must be consulted before responding to events.
// This region will be a subregion of mHitRegion.
nsIntRegion mDispatchToContentHitRegion;
// The following regions represent the touch-action areas of this layer.
// All of these regions are approximations to the true region, but any
// variance between the approximation and the true region is guaranteed
// to be included in the mDispatchToContentHitRegion.
nsIntRegion mNoActionRegion;
nsIntRegion mHorizontalPanRegion;
nsIntRegion mVerticalPanRegion;
// Set to true if events targeting the dispatch-to-content region
// require target confirmation.
// See CompositorHitTestFlags::eRequiresTargetConfirmation.
// We don't bother tracking a separate region for this (which would
// be a sub-region of the dispatch-to-content region), because the added
// overhead of region computations is not worth it, and because
// EventRegions are going to be deprecated anyways.
bool mDTCRequiresTargetConfirmation;
EventRegions() : mDTCRequiresTargetConfirmation(false) {}
explicit EventRegions(nsIntRegion aHitRegion)
: mHitRegion(aHitRegion), mDTCRequiresTargetConfirmation(false) {}
// This constructor takes the maybe-hit region and uses it to update the
// hit region and dispatch-to-content region. It is useful from converting
// from the display item representation to the layer representation.
EventRegions(const nsIntRegion& aHitRegion,
const nsIntRegion& aMaybeHitRegion,
const nsIntRegion& aDispatchToContentRegion,
const nsIntRegion& aNoActionRegion,
const nsIntRegion& aHorizontalPanRegion,
const nsIntRegion& aVerticalPanRegion,
bool aDTCRequiresTargetConfirmation);
bool operator==(const EventRegions& aRegions) const {
return mHitRegion == aRegions.mHitRegion &&
mDispatchToContentHitRegion ==
aRegions.mDispatchToContentHitRegion &&
mNoActionRegion == aRegions.mNoActionRegion &&
mHorizontalPanRegion == aRegions.mHorizontalPanRegion &&
mVerticalPanRegion == aRegions.mVerticalPanRegion &&
mDTCRequiresTargetConfirmation ==
aRegions.mDTCRequiresTargetConfirmation;
}
bool operator!=(const EventRegions& aRegions) const {
return !(*this == aRegions);
}
void ApplyTranslationAndScale(float aXTrans, float aYTrans, float aXScale,
float aYScale) {
mHitRegion.ScaleRoundOut(aXScale, aYScale);
mDispatchToContentHitRegion.ScaleRoundOut(aXScale, aYScale);
mNoActionRegion.ScaleRoundOut(aXScale, aYScale);
mHorizontalPanRegion.ScaleRoundOut(aXScale, aYScale);
mVerticalPanRegion.ScaleRoundOut(aXScale, aYScale);
mHitRegion.MoveBy(aXTrans, aYTrans);
mDispatchToContentHitRegion.MoveBy(aXTrans, aYTrans);
mNoActionRegion.MoveBy(aXTrans, aYTrans);
mHorizontalPanRegion.MoveBy(aXTrans, aYTrans);
mVerticalPanRegion.MoveBy(aXTrans, aYTrans);
}
void Transform(const gfx::Matrix4x4& aTransform) {
mHitRegion.Transform(aTransform);
mDispatchToContentHitRegion.Transform(aTransform);
mNoActionRegion.Transform(aTransform);
mHorizontalPanRegion.Transform(aTransform);
mVerticalPanRegion.Transform(aTransform);
}
void OrWith(const EventRegions& aOther) {
mHitRegion.OrWith(aOther.mHitRegion);
mDispatchToContentHitRegion.OrWith(aOther.mDispatchToContentHitRegion);
// See the comment in nsDisplayList::AddFrame, where the touch action
// regions are handled. The same thing applies here.
bool alreadyHadRegions = !mNoActionRegion.IsEmpty() ||
!mHorizontalPanRegion.IsEmpty() ||
!mVerticalPanRegion.IsEmpty();
mNoActionRegion.OrWith(aOther.mNoActionRegion);
mHorizontalPanRegion.OrWith(aOther.mHorizontalPanRegion);
mVerticalPanRegion.OrWith(aOther.mVerticalPanRegion);
if (alreadyHadRegions) {
nsIntRegion combinedActionRegions;
combinedActionRegions.Or(mHorizontalPanRegion, mVerticalPanRegion);
combinedActionRegions.OrWith(mNoActionRegion);
mDispatchToContentHitRegion.OrWith(combinedActionRegions);
}
mDTCRequiresTargetConfirmation |= aOther.mDTCRequiresTargetConfirmation;
}
bool IsEmpty() const {
return mHitRegion.IsEmpty() && mDispatchToContentHitRegion.IsEmpty() &&
mNoActionRegion.IsEmpty() && mHorizontalPanRegion.IsEmpty() &&
mVerticalPanRegion.IsEmpty();
}
void SetEmpty() {
mHitRegion.SetEmpty();
mDispatchToContentHitRegion.SetEmpty();
mNoActionRegion.SetEmpty();
mHorizontalPanRegion.SetEmpty();
mVerticalPanRegion.SetEmpty();
}
nsCString ToString() const {
nsCString result = mHitRegion.ToString();
result.AppendLiteral(";dispatchToContent=");
result.Append(mDispatchToContentHitRegion.ToString());
return result;
}
};
// Bit flags that go on a RefLayer and override the
// event regions in the entire subtree below. This is needed for propagating
// various flags across processes since the child-process layout code doesn't
// know about parent-process listeners or CSS rules.
enum EventRegionsOverride {
// The default, no flags set
NoOverride = 0,
// Treat all hit regions in the subtree as dispatch-to-content
ForceDispatchToContent = (1 << 0),
// Treat all hit regions in the subtree as empty
ForceEmptyHitRegion = (1 << 1),
// OR union of all valid bit flags, for use in BitFlagsEnumSerializer
ALL_BITS = (1 << 2) - 1
};
MOZ_ALWAYS_INLINE EventRegionsOverride operator|(EventRegionsOverride a,
EventRegionsOverride b) {
return (EventRegionsOverride)((int)a | (int)b);
}
MOZ_ALWAYS_INLINE EventRegionsOverride& operator|=(EventRegionsOverride& a,
EventRegionsOverride b) {
a = a | b;
return a;
}
// Flags used as an argument to functions that dump textures.
enum TextureDumpMode {
Compress, // dump texture with LZ4 compression
DoNotCompress // dump texture uncompressed
};
typedef uint32_t TouchBehaviorFlags;
// Some specialized typedefs of Matrix4x4Typed.
typedef gfx::Matrix4x4Typed<LayerPixel, CSSTransformedLayerPixel>
CSSTransformMatrix;
// Several different async transforms can contribute to a layer's transform
// (specifically, an async animation can contribute a transform, and each APZC
// that scrolls a layer can contribute async scroll/zoom and overscroll
// transforms).
// To try to model this with typed units, we represent individual async
// transforms as ParentLayer -> ParentLayer transforms (aliased as
// AsyncTransformComponentMatrix), and we represent the product of all of them
// as a CSSTransformLayer -> ParentLayer transform (aliased as
// AsyncTransformMatrix). To create an AsyncTransformMatrix from component
// matrices, a ViewAs operation is needed. A MultipleAsyncTransforms
// PixelCastJustification is provided for this purpose.
typedef gfx::Matrix4x4Typed<ParentLayerPixel, ParentLayerPixel>
AsyncTransformComponentMatrix;
typedef gfx::Matrix4x4Typed<CSSTransformedLayerPixel, ParentLayerPixel>
AsyncTransformMatrix;
typedef Array<gfx::Color, 4> BorderColors;
typedef Array<LayerSize, 4> BorderCorners;
typedef Array<LayerCoord, 4> BorderWidths;
typedef Array<StyleBorderStyle, 4> BorderStyles;
typedef Maybe<LayerRect> MaybeLayerRect;
// This is used to communicate Layers across IPC channels. The Handle is valid
// for layers in the same PLayerTransaction. Handles are created by
// ClientLayerManager, and are cached in LayerTransactionParent on first use.
class LayerHandle final {
friend struct IPC::ParamTraits<mozilla::layers::LayerHandle>;
public:
LayerHandle() : mHandle(0) {}
LayerHandle(const LayerHandle& aOther) : mHandle(aOther.mHandle) {}
explicit LayerHandle(uint64_t aHandle) : mHandle(aHandle) {}
bool IsValid() const { return mHandle != 0; }
explicit operator bool() const { return IsValid(); }
bool operator==(const LayerHandle& aOther) const {
return mHandle == aOther.mHandle;
}
uint64_t Value() const { return mHandle; }
private:
uint64_t mHandle;
};
// This is used to communicate Compositables across IPC channels. The Handle is
// valid for layers in the same PLayerTransaction or PImageBridge. Handles are
// created by ClientLayerManager or ImageBridgeChild, and are cached in the
// parent side on first use.
class CompositableHandle final {
friend struct IPC::ParamTraits<mozilla::layers::CompositableHandle>;
public:
CompositableHandle() : mHandle(0) {}
CompositableHandle(const CompositableHandle& aOther)
: mHandle(aOther.mHandle) {}
explicit CompositableHandle(uint64_t aHandle) : mHandle(aHandle) {}
bool IsValid() const { return mHandle != 0; }
explicit operator bool() const { return IsValid(); }
bool operator==(const CompositableHandle& aOther) const {
return mHandle == aOther.mHandle;
}
uint64_t Value() const { return mHandle; }
private:
uint64_t mHandle;
};
// clang-format off
MOZ_DEFINE_ENUM_CLASS_WITH_BASE(ScrollDirection, uint32_t, (
eVertical,
eHorizontal
));
MOZ_DEFINE_ENUM_CLASS_WITH_BASE(CompositionPayloadType, uint8_t, (
/**
* A |CompositionPayload| with this type indicates a key press happened
* before composition and will be used to determine latency between key press
* and presentation in |mozilla::Telemetry::KEYPRESS_PRESENT_LATENCY|
*/
eKeyPress,
/**
* A |CompositionPayload| with this type indicates that an APZ scroll event
* occurred that will be included in the composition.
*/
eAPZScroll,
/**
* A |CompositionPayload| with this type indicates that an APZ pinch-to-zoom
* event occurred that will be included in the composition.
*/
eAPZPinchZoom,
/**
* A |CompositionPayload| with this type indicates that content was painted
* that will be included in the composition.
*/
eContentPaint
));
// clang-format on
struct CompositionPayload {
bool operator==(const CompositionPayload& aOther) const {
return mType == aOther.mType && mTimeStamp == aOther.mTimeStamp;
}
/* The type of payload that is in this composition */
CompositionPayloadType mType;
/* When this payload was generated */
TimeStamp mTimeStamp;
};
} // namespace layers
} // namespace mozilla
#endif /* GFX_LAYERSTYPES_H */