gecko-dev/dom/webscheduling/WebTaskScheduler.cpp

384 строки
12 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "nsTHashMap.h"
#include "WebTaskScheduler.h"
#include "WebTaskSchedulerWorker.h"
#include "WebTaskSchedulerMainThread.h"
#include "TaskSignal.h"
#include "nsGlobalWindowInner.h"
#include "mozilla/dom/WorkerPrivate.h"
#include "mozilla/dom/TimeoutManager.h"
namespace mozilla::dom {
inline void ImplCycleCollectionTraverse(
nsCycleCollectionTraversalCallback& aCallback, WebTaskQueue& aQueue,
const char* aName, uint32_t aFlags = 0) {
ImplCycleCollectionTraverse(aCallback, aQueue.Tasks(), aName, aFlags);
}
NS_IMPL_CYCLE_COLLECTION_CLASS(WebTask)
NS_IMPL_CYCLE_COLLECTION_TRAVERSE_BEGIN(WebTask)
NS_IMPL_CYCLE_COLLECTION_TRAVERSE(mCallback)
NS_IMPL_CYCLE_COLLECTION_TRAVERSE(mPromise)
NS_IMPL_CYCLE_COLLECTION_TRAVERSE_END
NS_IMPL_CYCLE_COLLECTION_UNLINK_BEGIN(WebTask)
NS_IMPL_CYCLE_COLLECTION_UNLINK(mCallback)
NS_IMPL_CYCLE_COLLECTION_UNLINK(mPromise)
NS_IMPL_CYCLE_COLLECTION_UNLINK_WEAK_PTR
NS_IMPL_CYCLE_COLLECTION_UNLINK_END
NS_IMPL_CYCLE_COLLECTING_ADDREF(WebTask)
NS_IMPL_CYCLE_COLLECTING_RELEASE(WebTask)
NS_INTERFACE_MAP_BEGIN_CYCLE_COLLECTION(WebTask)
NS_INTERFACE_MAP_ENTRY(nsISupports)
NS_INTERFACE_MAP_END
NS_IMPL_CYCLE_COLLECTION(DelayedWebTaskHandler)
NS_INTERFACE_MAP_BEGIN_CYCLE_COLLECTION(DelayedWebTaskHandler)
NS_INTERFACE_MAP_ENTRY(nsISupports)
NS_INTERFACE_MAP_END
NS_IMPL_CYCLE_COLLECTING_ADDREF(DelayedWebTaskHandler)
NS_IMPL_CYCLE_COLLECTING_RELEASE(DelayedWebTaskHandler)
void WebTask::RunAbortAlgorithm() {
// no-op if WebTask::Run has been called already
if (mPromise->State() == Promise::PromiseState::Pending) {
// There are two things that can keep a WebTask alive, either the abort
// signal or WebTaskQueue.
// It's possible that this task get cleared out from the WebTaskQueue first,
// and then the abort signal get aborted. For example, the callback function
// was async and there's a signal.abort() call in the callback.
if (isInList()) {
remove();
}
AutoJSAPI jsapi;
if (!jsapi.Init(mPromise->GetGlobalObject())) {
mPromise->MaybeReject(NS_ERROR_UNEXPECTED);
} else {
JSContext* cx = jsapi.cx();
JS::Rooted<JS::Value> reason(cx);
Signal()->GetReason(cx, &reason);
mPromise->MaybeReject(reason);
}
}
MOZ_ASSERT(!isInList());
}
bool WebTask::Run() {
MOZ_ASSERT(HasScheduled());
MOZ_ASSERT(mOwnerQueue);
remove();
mOwnerQueue->RemoveEntryFromTaskQueueMapIfNeeded();
mOwnerQueue = nullptr;
// At this point mOwnerQueue is destructed and this is fine.
// The caller of WebTask::Run keeps it alive.
ErrorResult error;
nsIGlobalObject* global = mPromise->GetGlobalObject();
if (!global || global->IsDying()) {
return false;
}
AutoJSAPI jsapi;
if (!jsapi.Init(global)) {
return false;
}
JS::Rooted<JS::Value> returnVal(jsapi.cx());
MOZ_ASSERT(mPromise->State() == Promise::PromiseState::Pending);
MOZ_KnownLive(mCallback)->Call(&returnVal, error, "WebTask",
CallbackFunction::eRethrowExceptions);
error.WouldReportJSException();
#ifdef DEBUG
Promise::PromiseState promiseState = mPromise->State();
// If the state is Rejected, it means the above Call triggers the
// RunAbortAlgorithm method and rejected the promise
MOZ_ASSERT_IF(promiseState != Promise::PromiseState::Pending,
promiseState == Promise::PromiseState::Rejected);
#endif
if (error.Failed()) {
if (!error.IsUncatchableException()) {
mPromise->MaybeReject(std::move(error));
} else {
error.SuppressException();
}
} else {
mPromise->MaybeResolve(returnVal);
}
MOZ_ASSERT(!isInList());
return true;
}
NS_IMPL_CYCLE_COLLECTION_WRAPPERCACHE(WebTaskScheduler, mParent,
mStaticPriorityTaskQueues,
mDynamicPriorityTaskQueues)
/* static */
already_AddRefed<WebTaskSchedulerMainThread>
WebTaskScheduler::CreateForMainThread(nsGlobalWindowInner* aWindow) {
RefPtr<WebTaskSchedulerMainThread> scheduler =
new WebTaskSchedulerMainThread(aWindow->AsGlobal());
return scheduler.forget();
}
already_AddRefed<WebTaskSchedulerWorker> WebTaskScheduler::CreateForWorker(
WorkerPrivate* aWorkerPrivate) {
aWorkerPrivate->AssertIsOnWorkerThread();
RefPtr<WebTaskSchedulerWorker> scheduler =
new WebTaskSchedulerWorker(aWorkerPrivate);
return scheduler.forget();
}
WebTaskScheduler::WebTaskScheduler(nsIGlobalObject* aParent)
: mParent(aParent), mNextEnqueueOrder(1) {
MOZ_ASSERT(aParent);
}
JSObject* WebTaskScheduler::WrapObject(JSContext* cx,
JS::Handle<JSObject*> aGivenProto) {
return Scheduler_Binding::Wrap(cx, this, aGivenProto);
}
already_AddRefed<Promise> WebTaskScheduler::PostTask(
SchedulerPostTaskCallback& aCallback,
const SchedulerPostTaskOptions& aOptions) {
const Optional<OwningNonNull<AbortSignal>>& taskSignal = aOptions.mSignal;
const Optional<TaskPriority>& taskPriority = aOptions.mPriority;
ErrorResult rv;
// Instead of making WebTaskScheduler::PostTask throws, we always
// create the promise and return it. This is because we need to
// create the promise explicitly to be able to reject it with
// signal's reason.
RefPtr<Promise> promise = Promise::Create(mParent, rv);
if (rv.Failed()) {
return nullptr;
}
nsIGlobalObject* global = GetParentObject();
if (!global || global->IsDying()) {
promise->MaybeRejectWithNotSupportedError("Current window is detached");
return promise.forget();
}
if (taskSignal.WasPassed()) {
AbortSignal& signalValue = taskSignal.Value();
if (signalValue.Aborted()) {
AutoJSAPI jsapi;
if (!jsapi.Init(global)) {
promise->MaybeReject(NS_ERROR_UNEXPECTED);
return promise.forget();
}
JSContext* cx = jsapi.cx();
JS::Rooted<JS::Value> reason(cx);
signalValue.GetReason(cx, &reason);
promise->MaybeReject(reason);
return promise.forget();
}
}
// Let queue be the result of selecting the scheduler task queue for scheduler
// given signal and priority.
WebTaskQueue& taskQueue = SelectTaskQueue(taskSignal, taskPriority);
uint64_t delay = aOptions.mDelay;
RefPtr<WebTask> task = CreateTask(taskQueue, taskSignal, aCallback, promise);
if (delay > 0) {
nsresult rv = SetTimeoutForDelayedTask(task, delay);
if (NS_FAILED(rv)) {
promise->MaybeRejectWithUnknownError(
"Failed to setup timeout for delayed task");
}
return promise.forget();
}
if (!QueueTask(task)) {
MOZ_ASSERT(task->isInList());
task->remove();
promise->MaybeRejectWithNotSupportedError("Unable to queue the task");
return promise.forget();
}
return promise.forget();
}
already_AddRefed<WebTask> WebTaskScheduler::CreateTask(
WebTaskQueue& aQueue, const Optional<OwningNonNull<AbortSignal>>& aSignal,
SchedulerPostTaskCallback& aCallback, Promise* aPromise) {
uint32_t nextEnqueueOrder = mNextEnqueueOrder;
++mNextEnqueueOrder;
RefPtr<WebTask> task = new WebTask(nextEnqueueOrder, aCallback, aPromise);
aQueue.AddTask(task);
if (aSignal.WasPassed()) {
AbortSignal& signalValue = aSignal.Value();
task->Follow(&signalValue);
}
return task.forget();
}
bool WebTaskScheduler::QueueTask(WebTask* aTask) {
if (!DispatchEventLoopRunnable()) {
return false;
}
MOZ_ASSERT(!aTask->HasScheduled());
aTask->SetHasScheduled(true);
return true;
}
WebTask* WebTaskScheduler::GetNextTask() const {
// We first combine queues from both mStaticPriorityTaskQueues and
// mDynamicPriorityTaskQueues into a single hash map which the
// keys are the priorities and the values are all the queues that
// belong to this priority.
//
// Then From the queues which
// 1. Have scheduled tasks
// 2. Its priority is not less than any other queues' priority
// We pick the task which has the smallest enqueue order.
nsTHashMap<nsUint32HashKey, nsTArray<WebTaskQueue*>> allQueues;
for (auto iter = mStaticPriorityTaskQueues.ConstIter(); !iter.Done();
iter.Next()) {
const auto& queue = iter.Data();
if (!queue->Tasks().isEmpty() && queue->GetFirstScheduledTask()) {
nsTArray<WebTaskQueue*>& queuesForThisPriority =
allQueues.LookupOrInsert(static_cast<uint32_t>(iter.Key()));
queuesForThisPriority.AppendElement(queue.get());
}
}
for (auto iter = mDynamicPriorityTaskQueues.ConstIter(); !iter.Done();
iter.Next()) {
const auto& queue = iter.Data();
if (!queue->Tasks().isEmpty() && queue->GetFirstScheduledTask()) {
nsTArray<WebTaskQueue*>& queuesForThisPriority = allQueues.LookupOrInsert(
static_cast<uint32_t>(iter.Key()->Priority()));
queuesForThisPriority.AppendElement(queue.get());
}
}
if (allQueues.IsEmpty()) {
return nullptr;
}
for (uint32_t priority = static_cast<uint32_t>(TaskPriority::User_blocking);
priority < static_cast<uint32_t>(TaskPriority::EndGuard_); ++priority) {
if (auto queues = allQueues.Lookup(priority)) {
WebTaskQueue* oldestQueue = nullptr;
MOZ_ASSERT(!queues.Data().IsEmpty());
for (auto& webTaskQueue : queues.Data()) {
MOZ_ASSERT(webTaskQueue->GetFirstScheduledTask());
if (!oldestQueue) {
oldestQueue = webTaskQueue;
} else {
WebTask* firstScheduledRunnableForCurrentQueue =
webTaskQueue->GetFirstScheduledTask();
WebTask* firstScheduledRunnableForOldQueue =
oldestQueue->GetFirstScheduledTask();
if (firstScheduledRunnableForOldQueue->EnqueueOrder() >
firstScheduledRunnableForCurrentQueue->EnqueueOrder()) {
oldestQueue = webTaskQueue;
}
}
}
MOZ_ASSERT(oldestQueue);
return oldestQueue->GetFirstScheduledTask();
}
}
return nullptr;
}
void WebTaskScheduler::Disconnect() {
mStaticPriorityTaskQueues.Clear();
mDynamicPriorityTaskQueues.Clear();
}
void WebTaskScheduler::RunTaskSignalPriorityChange(TaskSignal* aTaskSignal) {
if (WebTaskQueue* const taskQueue =
mDynamicPriorityTaskQueues.Get(aTaskSignal)) {
taskQueue->SetPriority(aTaskSignal->Priority());
}
}
WebTaskQueue& WebTaskScheduler::SelectTaskQueue(
const Optional<OwningNonNull<AbortSignal>>& aSignal,
const Optional<TaskPriority>& aPriority) {
bool useSignal = !aPriority.WasPassed() && aSignal.WasPassed() &&
aSignal.Value().IsTaskSignal();
if (useSignal) {
TaskSignal* taskSignal = static_cast<TaskSignal*>(&(aSignal.Value()));
WebTaskQueue* const taskQueue =
mDynamicPriorityTaskQueues.GetOrInsertNew(taskSignal, taskSignal, this);
taskQueue->SetPriority(taskSignal->Priority());
taskSignal->SetWebTaskScheduler(this);
MOZ_ASSERT(mDynamicPriorityTaskQueues.Contains(taskSignal));
return *taskQueue;
}
TaskPriority taskPriority =
aPriority.WasPassed() ? aPriority.Value() : TaskPriority::User_visible;
uint32_t staticTaskQueueMapKey = static_cast<uint32_t>(taskPriority);
WebTaskQueue* const taskQueue = mStaticPriorityTaskQueues.GetOrInsertNew(
staticTaskQueueMapKey, staticTaskQueueMapKey, this);
taskQueue->SetPriority(taskPriority);
MOZ_ASSERT(
mStaticPriorityTaskQueues.Contains(static_cast<uint32_t>(taskPriority)));
return *taskQueue;
}
void WebTaskScheduler::DeleteEntryFromStaticQueueMap(uint32_t aKey) {
DebugOnly<bool> result = mStaticPriorityTaskQueues.Remove(aKey);
MOZ_ASSERT(result);
}
void WebTaskScheduler::DeleteEntryFromDynamicQueueMap(TaskSignal* aKey) {
DebugOnly<bool> result = mDynamicPriorityTaskQueues.Remove(aKey);
MOZ_ASSERT(result);
}
void WebTaskQueue::RemoveEntryFromTaskQueueMapIfNeeded() {
MOZ_ASSERT(mScheduler);
if (mTasks.isEmpty()) {
if (mOwnerKey.is<uint32_t>()) {
mScheduler->DeleteEntryFromStaticQueueMap(mOwnerKey.as<uint32_t>());
} else {
MOZ_ASSERT(mOwnerKey.is<TaskSignal*>());
mScheduler->DeleteEntryFromDynamicQueueMap(mOwnerKey.as<TaskSignal*>());
}
}
}
} // namespace mozilla::dom