зеркало из https://github.com/mozilla/gecko-dev.git
964 строки
30 KiB
C++
964 строки
30 KiB
C++
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "imgFrame.h"
|
|
#include "ImageRegion.h"
|
|
#include "ShutdownTracker.h"
|
|
#include "SurfaceCache.h"
|
|
|
|
#include "prenv.h"
|
|
|
|
#include "gfx2DGlue.h"
|
|
#include "gfxPlatform.h"
|
|
|
|
#include "gfxUtils.h"
|
|
|
|
#include "GeckoProfiler.h"
|
|
#include "MainThreadUtils.h"
|
|
#include "mozilla/CheckedInt.h"
|
|
#include "mozilla/gfx/gfxVars.h"
|
|
#include "mozilla/gfx/Tools.h"
|
|
#include "mozilla/gfx/SourceSurfaceRawData.h"
|
|
#include "mozilla/image/RecyclingSourceSurface.h"
|
|
#include "mozilla/layers/SourceSurfaceSharedData.h"
|
|
#include "mozilla/layers/SourceSurfaceVolatileData.h"
|
|
#include "mozilla/Likely.h"
|
|
#include "mozilla/MemoryReporting.h"
|
|
#include "nsMargin.h"
|
|
#include "nsRefreshDriver.h"
|
|
#include "nsThreadUtils.h"
|
|
|
|
namespace mozilla {
|
|
|
|
using namespace gfx;
|
|
|
|
namespace image {
|
|
|
|
static int32_t VolatileSurfaceStride(const IntSize& size,
|
|
SurfaceFormat format) {
|
|
// Stride must be a multiple of four or cairo will complain.
|
|
return (size.width * BytesPerPixel(format) + 0x3) & ~0x3;
|
|
}
|
|
|
|
static already_AddRefed<DataSourceSurface> CreateLockedSurface(
|
|
DataSourceSurface* aSurface, const IntSize& size, SurfaceFormat format) {
|
|
switch (aSurface->GetType()) {
|
|
case SurfaceType::DATA_SHARED:
|
|
case SurfaceType::DATA_ALIGNED: {
|
|
// Shared memory is never released until the surface itself is released.
|
|
// Similar for aligned/heap surfaces.
|
|
RefPtr<DataSourceSurface> surf(aSurface);
|
|
return surf.forget();
|
|
}
|
|
default: {
|
|
// Volatile memory requires us to map it first, and it is fallible.
|
|
DataSourceSurface::ScopedMap smap(aSurface,
|
|
DataSourceSurface::READ_WRITE);
|
|
if (smap.IsMapped()) {
|
|
return MakeAndAddRef<SourceSurfaceMappedData>(std::move(smap), size,
|
|
format);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static bool ShouldUseHeap(const IntSize& aSize, int32_t aStride,
|
|
bool aIsAnimated) {
|
|
// On some platforms (i.e. Android), a volatile buffer actually keeps a file
|
|
// handle active. We would like to avoid too many since we could easily
|
|
// exhaust the pool. However, other platforms we do not have the file handle
|
|
// problem, and additionally we may avoid a superfluous memset since the
|
|
// volatile memory starts out as zero-filled. Hence the knobs below.
|
|
|
|
// For as long as an animated image is retained, its frames will never be
|
|
// released to let the OS purge volatile buffers.
|
|
if (aIsAnimated && StaticPrefs::image_mem_animated_use_heap()) {
|
|
return true;
|
|
}
|
|
|
|
// Lets us avoid too many small images consuming all of the handles. The
|
|
// actual allocation checks for overflow.
|
|
int32_t bufferSize = (aStride * aSize.height) / 1024;
|
|
if (bufferSize < StaticPrefs::image_mem_volatile_min_threshold_kb()) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static already_AddRefed<DataSourceSurface> AllocateBufferForImage(
|
|
const IntSize& size, SurfaceFormat format, bool aIsAnimated = false) {
|
|
int32_t stride = VolatileSurfaceStride(size, format);
|
|
|
|
if (gfxVars::GetUseWebRenderOrDefault() && StaticPrefs::image_mem_shared()) {
|
|
RefPtr<SourceSurfaceSharedData> newSurf = new SourceSurfaceSharedData();
|
|
if (newSurf->Init(size, stride, format)) {
|
|
return newSurf.forget();
|
|
}
|
|
} else if (ShouldUseHeap(size, stride, aIsAnimated)) {
|
|
RefPtr<SourceSurfaceAlignedRawData> newSurf =
|
|
new SourceSurfaceAlignedRawData();
|
|
if (newSurf->Init(size, format, false, 0, stride)) {
|
|
return newSurf.forget();
|
|
}
|
|
} else {
|
|
RefPtr<SourceSurfaceVolatileData> newSurf = new SourceSurfaceVolatileData();
|
|
if (newSurf->Init(size, stride, format)) {
|
|
return newSurf.forget();
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
static bool GreenSurface(DataSourceSurface* aSurface, const IntSize& aSize,
|
|
SurfaceFormat aFormat) {
|
|
int32_t stride = aSurface->Stride();
|
|
uint32_t* surfaceData = reinterpret_cast<uint32_t*>(aSurface->GetData());
|
|
uint32_t surfaceDataLength = (stride * aSize.height) / sizeof(uint32_t);
|
|
|
|
// Start by assuming that GG is in the second byte and
|
|
// AA is in the final byte -- the most common case.
|
|
uint32_t color = mozilla::NativeEndian::swapFromBigEndian(0x00FF00FF);
|
|
|
|
// We are only going to handle this type of test under
|
|
// certain circumstances.
|
|
MOZ_ASSERT(surfaceData);
|
|
MOZ_ASSERT(aFormat == SurfaceFormat::B8G8R8A8 ||
|
|
aFormat == SurfaceFormat::B8G8R8X8 ||
|
|
aFormat == SurfaceFormat::R8G8B8A8 ||
|
|
aFormat == SurfaceFormat::R8G8B8X8 ||
|
|
aFormat == SurfaceFormat::A8R8G8B8 ||
|
|
aFormat == SurfaceFormat::X8R8G8B8);
|
|
MOZ_ASSERT((stride * aSize.height) % sizeof(uint32_t));
|
|
|
|
if (aFormat == SurfaceFormat::A8R8G8B8 ||
|
|
aFormat == SurfaceFormat::X8R8G8B8) {
|
|
color = mozilla::NativeEndian::swapFromBigEndian(0xFF00FF00);
|
|
}
|
|
|
|
for (uint32_t i = 0; i < surfaceDataLength; i++) {
|
|
surfaceData[i] = color;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool ClearSurface(DataSourceSurface* aSurface, const IntSize& aSize,
|
|
SurfaceFormat aFormat) {
|
|
int32_t stride = aSurface->Stride();
|
|
uint8_t* data = aSurface->GetData();
|
|
MOZ_ASSERT(data);
|
|
|
|
if (aFormat == SurfaceFormat::OS_RGBX) {
|
|
// Skia doesn't support RGBX surfaces, so ensure the alpha value is set
|
|
// to opaque white. While it would be nice to only do this for Skia,
|
|
// imgFrame can run off main thread and past shutdown where
|
|
// we might not have gfxPlatform, so just memset every time instead.
|
|
memset(data, 0xFF, stride * aSize.height);
|
|
} else if (aSurface->OnHeap()) {
|
|
// We only need to memset it if the buffer was allocated on the heap.
|
|
// Otherwise, it's allocated via mmap and refers to a zeroed page and will
|
|
// be COW once it's written to.
|
|
memset(data, 0, stride * aSize.height);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
imgFrame::imgFrame()
|
|
: mMonitor("imgFrame"),
|
|
mDecoded(0, 0, 0, 0),
|
|
mLockCount(0),
|
|
mRecycleLockCount(0),
|
|
mAborted(false),
|
|
mFinished(false),
|
|
mOptimizable(false),
|
|
mShouldRecycle(false),
|
|
mTimeout(FrameTimeout::FromRawMilliseconds(100)),
|
|
mDisposalMethod(DisposalMethod::NOT_SPECIFIED),
|
|
mBlendMethod(BlendMethod::OVER),
|
|
mFormat(SurfaceFormat::UNKNOWN),
|
|
mNonPremult(false) {}
|
|
|
|
imgFrame::~imgFrame() {
|
|
#ifdef DEBUG
|
|
MonitorAutoLock lock(mMonitor);
|
|
MOZ_ASSERT(mAborted || AreAllPixelsWritten());
|
|
MOZ_ASSERT(mAborted || mFinished);
|
|
#endif
|
|
}
|
|
|
|
nsresult imgFrame::InitForDecoder(const nsIntSize& aImageSize,
|
|
SurfaceFormat aFormat, bool aNonPremult,
|
|
const Maybe<AnimationParams>& aAnimParams,
|
|
bool aShouldRecycle) {
|
|
// Assert for properties that should be verified by decoders,
|
|
// warn for properties related to bad content.
|
|
if (!SurfaceCache::IsLegalSize(aImageSize)) {
|
|
NS_WARNING("Should have legal image size");
|
|
mAborted = true;
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
mImageSize = aImageSize;
|
|
|
|
// May be updated shortly after InitForDecoder by BlendAnimationFilter
|
|
// because it needs to take into consideration the previous frames to
|
|
// properly calculate. We start with the whole frame as dirty.
|
|
mDirtyRect = GetRect();
|
|
|
|
if (aAnimParams) {
|
|
mBlendRect = aAnimParams->mBlendRect;
|
|
mTimeout = aAnimParams->mTimeout;
|
|
mBlendMethod = aAnimParams->mBlendMethod;
|
|
mDisposalMethod = aAnimParams->mDisposalMethod;
|
|
} else {
|
|
mBlendRect = GetRect();
|
|
}
|
|
|
|
if (aShouldRecycle) {
|
|
// If we are recycling then we should always use BGRA for the underlying
|
|
// surface because if we use BGRX, the next frame composited into the
|
|
// surface could be BGRA and cause rendering problems.
|
|
MOZ_ASSERT(aAnimParams);
|
|
mFormat = SurfaceFormat::OS_RGBA;
|
|
} else {
|
|
mFormat = aFormat;
|
|
}
|
|
|
|
mNonPremult = aNonPremult;
|
|
mShouldRecycle = aShouldRecycle;
|
|
|
|
MOZ_ASSERT(!mLockedSurface, "Called imgFrame::InitForDecoder() twice?");
|
|
|
|
bool postFirstFrame = aAnimParams && aAnimParams->mFrameNum > 0;
|
|
mRawSurface = AllocateBufferForImage(mImageSize, mFormat, postFirstFrame);
|
|
if (!mRawSurface) {
|
|
mAborted = true;
|
|
return NS_ERROR_OUT_OF_MEMORY;
|
|
}
|
|
|
|
if (StaticPrefs::browser_measurement_render_anims_and_video_solid() &&
|
|
aAnimParams) {
|
|
mBlankRawSurface = AllocateBufferForImage(mImageSize, mFormat);
|
|
if (!mBlankRawSurface) {
|
|
mAborted = true;
|
|
return NS_ERROR_OUT_OF_MEMORY;
|
|
}
|
|
}
|
|
|
|
mLockedSurface = CreateLockedSurface(mRawSurface, mImageSize, mFormat);
|
|
if (!mLockedSurface) {
|
|
NS_WARNING("Failed to create LockedSurface");
|
|
mAborted = true;
|
|
return NS_ERROR_OUT_OF_MEMORY;
|
|
}
|
|
|
|
if (mBlankRawSurface) {
|
|
mBlankLockedSurface =
|
|
CreateLockedSurface(mBlankRawSurface, mImageSize, mFormat);
|
|
if (!mBlankLockedSurface) {
|
|
NS_WARNING("Failed to create BlankLockedSurface");
|
|
mAborted = true;
|
|
return NS_ERROR_OUT_OF_MEMORY;
|
|
}
|
|
}
|
|
|
|
if (!ClearSurface(mRawSurface, mImageSize, mFormat)) {
|
|
NS_WARNING("Could not clear allocated buffer");
|
|
mAborted = true;
|
|
return NS_ERROR_OUT_OF_MEMORY;
|
|
}
|
|
|
|
if (mBlankRawSurface) {
|
|
if (!GreenSurface(mBlankRawSurface, mImageSize, mFormat)) {
|
|
NS_WARNING("Could not clear allocated blank buffer");
|
|
mAborted = true;
|
|
return NS_ERROR_OUT_OF_MEMORY;
|
|
}
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult imgFrame::InitForDecoderRecycle(const AnimationParams& aAnimParams) {
|
|
// We want to recycle this frame, but there is no guarantee that consumers are
|
|
// done with it in a timely manner. Let's ensure they are done with it first.
|
|
MonitorAutoLock lock(mMonitor);
|
|
|
|
MOZ_ASSERT(mLockCount > 0);
|
|
MOZ_ASSERT(mLockedSurface);
|
|
|
|
if (!mShouldRecycle) {
|
|
// This frame either was never marked as recyclable, or the flag was cleared
|
|
// for a caller which does not support recycling.
|
|
return NS_ERROR_NOT_AVAILABLE;
|
|
}
|
|
|
|
if (mRecycleLockCount > 0) {
|
|
if (NS_IsMainThread()) {
|
|
// We should never be both decoding and recycling on the main thread. Sync
|
|
// decoding can only be used to produce the first set of frames. Those
|
|
// either never use recycling because advancing was blocked (main thread
|
|
// is busy) or we were auto-advancing (to seek to a frame) and the frames
|
|
// were never accessed (and thus cannot have recycle locks).
|
|
MOZ_ASSERT_UNREACHABLE("Recycling/decoding on the main thread?");
|
|
return NS_ERROR_NOT_AVAILABLE;
|
|
}
|
|
|
|
// We don't want to wait forever to reclaim the frame because we have no
|
|
// idea why it is still held. It is possibly due to OMTP. Since we are off
|
|
// the main thread, and we generally have frames already buffered for the
|
|
// animation, we can afford to wait a short period of time to hopefully
|
|
// complete the transaction and reclaim the buffer.
|
|
//
|
|
// We choose to wait for, at most, the refresh driver interval, so that we
|
|
// won't skip more than one frame. If the frame is still in use due to
|
|
// outstanding transactions, we are already skipping frames. If the frame
|
|
// is still in use for some other purpose, it won't be returned to the pool
|
|
// and its owner can hold onto it forever without additional impact here.
|
|
TimeDuration timeout =
|
|
TimeDuration::FromMilliseconds(nsRefreshDriver::DefaultInterval());
|
|
while (true) {
|
|
TimeStamp start = TimeStamp::Now();
|
|
mMonitor.Wait(timeout);
|
|
if (mRecycleLockCount == 0) {
|
|
break;
|
|
}
|
|
|
|
TimeDuration delta = TimeStamp::Now() - start;
|
|
if (delta >= timeout) {
|
|
// We couldn't secure the frame for recycling. It will allocate a new
|
|
// frame instead.
|
|
return NS_ERROR_NOT_AVAILABLE;
|
|
}
|
|
|
|
timeout -= delta;
|
|
}
|
|
}
|
|
|
|
mBlendRect = aAnimParams.mBlendRect;
|
|
mTimeout = aAnimParams.mTimeout;
|
|
mBlendMethod = aAnimParams.mBlendMethod;
|
|
mDisposalMethod = aAnimParams.mDisposalMethod;
|
|
mDirtyRect = GetRect();
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult imgFrame::InitWithDrawable(gfxDrawable* aDrawable,
|
|
const nsIntSize& aSize,
|
|
const SurfaceFormat aFormat,
|
|
SamplingFilter aSamplingFilter,
|
|
uint32_t aImageFlags,
|
|
gfx::BackendType aBackend) {
|
|
// Assert for properties that should be verified by decoders,
|
|
// warn for properties related to bad content.
|
|
if (!SurfaceCache::IsLegalSize(aSize)) {
|
|
NS_WARNING("Should have legal image size");
|
|
mAborted = true;
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
mImageSize = aSize;
|
|
mFormat = aFormat;
|
|
|
|
RefPtr<DrawTarget> target;
|
|
|
|
bool canUseDataSurface = Factory::DoesBackendSupportDataDrawtarget(aBackend);
|
|
if (canUseDataSurface) {
|
|
// It's safe to use data surfaces for content on this platform, so we can
|
|
// get away with using volatile buffers.
|
|
MOZ_ASSERT(!mLockedSurface, "Called imgFrame::InitWithDrawable() twice?");
|
|
|
|
mRawSurface = AllocateBufferForImage(mImageSize, mFormat);
|
|
if (!mRawSurface) {
|
|
mAborted = true;
|
|
return NS_ERROR_OUT_OF_MEMORY;
|
|
}
|
|
|
|
mLockedSurface = CreateLockedSurface(mRawSurface, mImageSize, mFormat);
|
|
if (!mLockedSurface) {
|
|
NS_WARNING("Failed to create LockedSurface");
|
|
mAborted = true;
|
|
return NS_ERROR_OUT_OF_MEMORY;
|
|
}
|
|
|
|
if (!ClearSurface(mRawSurface, mImageSize, mFormat)) {
|
|
NS_WARNING("Could not clear allocated buffer");
|
|
mAborted = true;
|
|
return NS_ERROR_OUT_OF_MEMORY;
|
|
}
|
|
|
|
target = gfxPlatform::CreateDrawTargetForData(
|
|
mLockedSurface->GetData(), mImageSize, mLockedSurface->Stride(),
|
|
mFormat);
|
|
} else {
|
|
// We can't use data surfaces for content, so we'll create an offscreen
|
|
// surface instead. This means if someone later calls RawAccessRef(), we
|
|
// may have to do an expensive readback, but we warned callers about that in
|
|
// the documentation for this method.
|
|
MOZ_ASSERT(!mOptSurface, "Called imgFrame::InitWithDrawable() twice?");
|
|
|
|
if (gfxPlatform::GetPlatform()->SupportsAzureContentForType(aBackend)) {
|
|
target = gfxPlatform::GetPlatform()->CreateDrawTargetForBackend(
|
|
aBackend, mImageSize, mFormat);
|
|
} else {
|
|
target = gfxPlatform::GetPlatform()->CreateOffscreenContentDrawTarget(
|
|
mImageSize, mFormat);
|
|
}
|
|
}
|
|
|
|
if (!target || !target->IsValid()) {
|
|
mAborted = true;
|
|
return NS_ERROR_OUT_OF_MEMORY;
|
|
}
|
|
|
|
// Draw using the drawable the caller provided.
|
|
RefPtr<gfxContext> ctx = gfxContext::CreateOrNull(target);
|
|
MOZ_ASSERT(ctx); // Already checked the draw target above.
|
|
gfxUtils::DrawPixelSnapped(ctx, aDrawable, SizeDouble(mImageSize),
|
|
ImageRegion::Create(ThebesRect(GetRect())),
|
|
mFormat, aSamplingFilter, aImageFlags);
|
|
|
|
if (canUseDataSurface && !mLockedSurface) {
|
|
NS_WARNING("Failed to create VolatileDataSourceSurface");
|
|
mAborted = true;
|
|
return NS_ERROR_OUT_OF_MEMORY;
|
|
}
|
|
|
|
if (!canUseDataSurface) {
|
|
// We used an offscreen surface, which is an "optimized" surface from
|
|
// imgFrame's perspective.
|
|
mOptSurface = target->Snapshot();
|
|
} else {
|
|
FinalizeSurface();
|
|
}
|
|
|
|
// If we reach this point, we should regard ourselves as complete.
|
|
mDecoded = GetRect();
|
|
mFinished = true;
|
|
|
|
#ifdef DEBUG
|
|
MonitorAutoLock lock(mMonitor);
|
|
MOZ_ASSERT(AreAllPixelsWritten());
|
|
#endif
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult imgFrame::Optimize(DrawTarget* aTarget) {
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
mMonitor.AssertCurrentThreadOwns();
|
|
|
|
if (mLockCount > 0 || !mOptimizable) {
|
|
// Don't optimize right now.
|
|
return NS_OK;
|
|
}
|
|
|
|
// Check whether image optimization is disabled -- not thread safe!
|
|
static bool gDisableOptimize = false;
|
|
static bool hasCheckedOptimize = false;
|
|
if (!hasCheckedOptimize) {
|
|
if (PR_GetEnv("MOZ_DISABLE_IMAGE_OPTIMIZE")) {
|
|
gDisableOptimize = true;
|
|
}
|
|
hasCheckedOptimize = true;
|
|
}
|
|
|
|
// Don't optimize during shutdown because gfxPlatform may not be available.
|
|
if (ShutdownTracker::ShutdownHasStarted()) {
|
|
return NS_OK;
|
|
}
|
|
|
|
if (gDisableOptimize) {
|
|
return NS_OK;
|
|
}
|
|
|
|
if (mOptSurface) {
|
|
return NS_OK;
|
|
}
|
|
|
|
// XXX(seth): It's currently unclear if there's any reason why we can't
|
|
// optimize non-premult surfaces. We should look into removing this.
|
|
if (mNonPremult) {
|
|
return NS_OK;
|
|
}
|
|
if (!gfxVars::UseWebRender()) {
|
|
mOptSurface = aTarget->OptimizeSourceSurface(mLockedSurface);
|
|
} else {
|
|
mOptSurface = gfxPlatform::GetPlatform()
|
|
->ScreenReferenceDrawTarget()
|
|
->OptimizeSourceSurface(mLockedSurface);
|
|
}
|
|
if (mOptSurface == mLockedSurface) {
|
|
mOptSurface = nullptr;
|
|
}
|
|
|
|
if (mOptSurface) {
|
|
// There's no reason to keep our original surface around if we have an
|
|
// optimized surface. Release our reference to it. This will leave
|
|
// |mLockedSurface| as the only thing keeping it alive, so it'll get freed
|
|
// below.
|
|
mRawSurface = nullptr;
|
|
}
|
|
|
|
// Release all strong references to the surface's memory. If the underlying
|
|
// surface is volatile, this will allow the operating system to free the
|
|
// memory if it needs to.
|
|
mLockedSurface = nullptr;
|
|
mOptimizable = false;
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
DrawableFrameRef imgFrame::DrawableRef() { return DrawableFrameRef(this); }
|
|
|
|
RawAccessFrameRef imgFrame::RawAccessRef(bool aOnlyFinished /*= false*/) {
|
|
return RawAccessFrameRef(this, aOnlyFinished);
|
|
}
|
|
|
|
void imgFrame::SetRawAccessOnly() {
|
|
AssertImageDataLocked();
|
|
|
|
// Lock our data and throw away the key.
|
|
LockImageData(false);
|
|
}
|
|
|
|
imgFrame::SurfaceWithFormat imgFrame::SurfaceForDrawing(
|
|
bool aDoPartialDecode, bool aDoTile, ImageRegion& aRegion,
|
|
SourceSurface* aSurface) {
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
mMonitor.AssertCurrentThreadOwns();
|
|
|
|
if (!aDoPartialDecode) {
|
|
return SurfaceWithFormat(new gfxSurfaceDrawable(aSurface, mImageSize),
|
|
mFormat);
|
|
}
|
|
|
|
gfxRect available =
|
|
gfxRect(mDecoded.X(), mDecoded.Y(), mDecoded.Width(), mDecoded.Height());
|
|
|
|
if (aDoTile) {
|
|
// Create a temporary surface.
|
|
// Give this surface an alpha channel because there are
|
|
// transparent pixels in the padding or undecoded area
|
|
RefPtr<DrawTarget> target =
|
|
gfxPlatform::GetPlatform()->CreateOffscreenContentDrawTarget(
|
|
mImageSize, SurfaceFormat::OS_RGBA);
|
|
if (!target) {
|
|
return SurfaceWithFormat();
|
|
}
|
|
|
|
SurfacePattern pattern(aSurface, aRegion.GetExtendMode(),
|
|
Matrix::Translation(mDecoded.X(), mDecoded.Y()));
|
|
target->FillRect(ToRect(aRegion.Intersect(available).Rect()), pattern);
|
|
|
|
RefPtr<SourceSurface> newsurf = target->Snapshot();
|
|
return SurfaceWithFormat(new gfxSurfaceDrawable(newsurf, mImageSize),
|
|
target->GetFormat());
|
|
}
|
|
|
|
// Not tiling, and we have a surface, so we can account for
|
|
// a partial decode just by twiddling parameters.
|
|
aRegion = aRegion.Intersect(available);
|
|
IntSize availableSize(mDecoded.Width(), mDecoded.Height());
|
|
|
|
return SurfaceWithFormat(new gfxSurfaceDrawable(aSurface, availableSize),
|
|
mFormat);
|
|
}
|
|
|
|
bool imgFrame::Draw(gfxContext* aContext, const ImageRegion& aRegion,
|
|
SamplingFilter aSamplingFilter, uint32_t aImageFlags,
|
|
float aOpacity) {
|
|
AUTO_PROFILER_LABEL("imgFrame::Draw", GRAPHICS);
|
|
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
NS_ASSERTION(!aRegion.Rect().IsEmpty(), "Drawing empty region!");
|
|
NS_ASSERTION(!aRegion.IsRestricted() ||
|
|
!aRegion.Rect().Intersect(aRegion.Restriction()).IsEmpty(),
|
|
"We must be allowed to sample *some* source pixels!");
|
|
|
|
// Perform the draw and freeing of the surface outside the lock. We want to
|
|
// avoid contention with the decoder if we can. The surface may also attempt
|
|
// to relock the monitor if it is freed (e.g. RecyclingSourceSurface).
|
|
RefPtr<SourceSurface> surf;
|
|
SurfaceWithFormat surfaceResult;
|
|
ImageRegion region(aRegion);
|
|
gfxRect imageRect(0, 0, mImageSize.width, mImageSize.height);
|
|
|
|
{
|
|
MonitorAutoLock lock(mMonitor);
|
|
|
|
// Possibly convert this image into a GPU texture, this may also cause our
|
|
// mLockedSurface to be released and the OS to release the underlying
|
|
// memory.
|
|
Optimize(aContext->GetDrawTarget());
|
|
|
|
bool doPartialDecode = !AreAllPixelsWritten();
|
|
|
|
// Most draw targets will just use the surface only during DrawPixelSnapped
|
|
// but captures/recordings will retain a reference outside this stack
|
|
// context. While in theory a decoder thread could be trying to recycle this
|
|
// frame at this very moment, in practice the only way we can get here is if
|
|
// this frame is the current frame of the animation. Since we can only
|
|
// advance on the main thread, we know nothing else will try to use it.
|
|
DrawTarget* drawTarget = aContext->GetDrawTarget();
|
|
bool recording = drawTarget->GetBackendType() == BackendType::RECORDING;
|
|
bool temporary = !drawTarget->IsCaptureDT() && !recording;
|
|
RefPtr<SourceSurface> surf = GetSourceSurfaceInternal(temporary);
|
|
if (!surf) {
|
|
return false;
|
|
}
|
|
|
|
bool doTile = !imageRect.Contains(aRegion.Rect()) &&
|
|
!(aImageFlags & imgIContainer::FLAG_CLAMP);
|
|
|
|
surfaceResult = SurfaceForDrawing(doPartialDecode, doTile, region, surf);
|
|
|
|
// If we are recording, then we cannot recycle the surface. The blob
|
|
// rasterizer is not properly synchronized for recycling in the compositor
|
|
// process. The easiest thing to do is just mark the frames it consumes as
|
|
// non-recyclable.
|
|
if (recording && surfaceResult.IsValid()) {
|
|
mShouldRecycle = false;
|
|
}
|
|
}
|
|
|
|
if (surfaceResult.IsValid()) {
|
|
gfxUtils::DrawPixelSnapped(aContext, surfaceResult.mDrawable,
|
|
imageRect.Size(), region, surfaceResult.mFormat,
|
|
aSamplingFilter, aImageFlags, aOpacity);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
nsresult imgFrame::ImageUpdated(const nsIntRect& aUpdateRect) {
|
|
MonitorAutoLock lock(mMonitor);
|
|
return ImageUpdatedInternal(aUpdateRect);
|
|
}
|
|
|
|
nsresult imgFrame::ImageUpdatedInternal(const nsIntRect& aUpdateRect) {
|
|
mMonitor.AssertCurrentThreadOwns();
|
|
|
|
// Clamp to the frame rect to ensure that decoder bugs don't result in a
|
|
// decoded rect that extends outside the bounds of the frame rect.
|
|
IntRect updateRect = aUpdateRect.Intersect(GetRect());
|
|
if (updateRect.IsEmpty()) {
|
|
return NS_OK;
|
|
}
|
|
|
|
mDecoded.UnionRect(mDecoded, updateRect);
|
|
|
|
// Update our invalidation counters for any consumers watching for changes
|
|
// in the surface.
|
|
if (mRawSurface) {
|
|
mRawSurface->Invalidate(updateRect);
|
|
}
|
|
if (mLockedSurface && mRawSurface != mLockedSurface) {
|
|
mLockedSurface->Invalidate(updateRect);
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
void imgFrame::Finish(Opacity aFrameOpacity /* = Opacity::SOME_TRANSPARENCY */,
|
|
bool aFinalize /* = true */) {
|
|
MonitorAutoLock lock(mMonitor);
|
|
MOZ_ASSERT(mLockCount > 0, "Image data should be locked");
|
|
|
|
IntRect frameRect(GetRect());
|
|
if (!mDecoded.IsEqualEdges(frameRect)) {
|
|
// The decoder should have produced rows starting from either the bottom or
|
|
// the top of the image. We need to calculate the region for which we have
|
|
// not yet invalidated.
|
|
IntRect delta(0, 0, frameRect.width, 0);
|
|
if (mDecoded.y == 0) {
|
|
delta.y = mDecoded.height;
|
|
delta.height = frameRect.height - mDecoded.height;
|
|
} else if (mDecoded.y + mDecoded.height == frameRect.height) {
|
|
delta.height = frameRect.height - mDecoded.y;
|
|
} else {
|
|
MOZ_ASSERT_UNREACHABLE("Decoder only updated middle of image!");
|
|
delta = frameRect;
|
|
}
|
|
|
|
ImageUpdatedInternal(delta);
|
|
}
|
|
|
|
MOZ_ASSERT(mDecoded.IsEqualEdges(frameRect));
|
|
|
|
if (aFinalize) {
|
|
FinalizeSurfaceInternal();
|
|
}
|
|
|
|
mFinished = true;
|
|
|
|
// The image is now complete, wake up anyone who's waiting.
|
|
mMonitor.NotifyAll();
|
|
}
|
|
|
|
uint32_t imgFrame::GetImageBytesPerRow() const {
|
|
mMonitor.AssertCurrentThreadOwns();
|
|
|
|
if (mRawSurface) {
|
|
return mImageSize.width * BytesPerPixel(mFormat);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
uint32_t imgFrame::GetImageDataLength() const {
|
|
return GetImageBytesPerRow() * mImageSize.height;
|
|
}
|
|
|
|
void imgFrame::GetImageData(uint8_t** aData, uint32_t* aLength) const {
|
|
MonitorAutoLock lock(mMonitor);
|
|
GetImageDataInternal(aData, aLength);
|
|
}
|
|
|
|
void imgFrame::GetImageDataInternal(uint8_t** aData, uint32_t* aLength) const {
|
|
mMonitor.AssertCurrentThreadOwns();
|
|
MOZ_ASSERT(mLockCount > 0, "Image data should be locked");
|
|
MOZ_ASSERT(mLockedSurface);
|
|
|
|
if (mLockedSurface) {
|
|
// TODO: This is okay for now because we only realloc shared surfaces on
|
|
// the main thread after decoding has finished, but if animations want to
|
|
// read frame data off the main thread, we will need to reconsider this.
|
|
*aData = mLockedSurface->GetData();
|
|
MOZ_ASSERT(
|
|
*aData,
|
|
"mLockedSurface is non-null, but GetData is null in GetImageData");
|
|
} else {
|
|
*aData = nullptr;
|
|
}
|
|
|
|
*aLength = GetImageDataLength();
|
|
}
|
|
|
|
uint8_t* imgFrame::GetImageData() const {
|
|
uint8_t* data;
|
|
uint32_t length;
|
|
GetImageData(&data, &length);
|
|
return data;
|
|
}
|
|
|
|
uint8_t* imgFrame::LockImageData(bool aOnlyFinished) {
|
|
MonitorAutoLock lock(mMonitor);
|
|
|
|
MOZ_ASSERT(mLockCount >= 0, "Unbalanced locks and unlocks");
|
|
if (mLockCount < 0 || (aOnlyFinished && !mFinished)) {
|
|
return nullptr;
|
|
}
|
|
|
|
uint8_t* data;
|
|
if (mLockedSurface) {
|
|
data = mLockedSurface->GetData();
|
|
} else {
|
|
data = nullptr;
|
|
}
|
|
|
|
// If the raw data is still available, we should get a valid pointer for it.
|
|
if (!data) {
|
|
MOZ_ASSERT_UNREACHABLE("It's illegal to re-lock an optimized imgFrame");
|
|
return nullptr;
|
|
}
|
|
|
|
++mLockCount;
|
|
return data;
|
|
}
|
|
|
|
void imgFrame::AssertImageDataLocked() const {
|
|
#ifdef DEBUG
|
|
MonitorAutoLock lock(mMonitor);
|
|
MOZ_ASSERT(mLockCount > 0, "Image data should be locked");
|
|
#endif
|
|
}
|
|
|
|
nsresult imgFrame::UnlockImageData() {
|
|
MonitorAutoLock lock(mMonitor);
|
|
|
|
MOZ_ASSERT(mLockCount > 0, "Unlocking an unlocked image!");
|
|
if (mLockCount <= 0) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
MOZ_ASSERT(mLockCount > 1 || mFinished || mAborted,
|
|
"Should have Finish()'d or aborted before unlocking");
|
|
|
|
mLockCount--;
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
void imgFrame::SetOptimizable() {
|
|
AssertImageDataLocked();
|
|
MonitorAutoLock lock(mMonitor);
|
|
mOptimizable = true;
|
|
}
|
|
|
|
void imgFrame::FinalizeSurface() {
|
|
MonitorAutoLock lock(mMonitor);
|
|
FinalizeSurfaceInternal();
|
|
}
|
|
|
|
void imgFrame::FinalizeSurfaceInternal() {
|
|
mMonitor.AssertCurrentThreadOwns();
|
|
|
|
// Not all images will have mRawSurface to finalize (i.e. paletted images).
|
|
if (mShouldRecycle || !mRawSurface ||
|
|
mRawSurface->GetType() != SurfaceType::DATA_SHARED) {
|
|
return;
|
|
}
|
|
|
|
auto sharedSurf = static_cast<SourceSurfaceSharedData*>(mRawSurface.get());
|
|
sharedSurf->Finalize();
|
|
}
|
|
|
|
already_AddRefed<SourceSurface> imgFrame::GetSourceSurface() {
|
|
MonitorAutoLock lock(mMonitor);
|
|
return GetSourceSurfaceInternal(/* aTemporary */ false);
|
|
}
|
|
|
|
already_AddRefed<SourceSurface> imgFrame::GetSourceSurfaceInternal(
|
|
bool aTemporary) {
|
|
mMonitor.AssertCurrentThreadOwns();
|
|
|
|
if (mOptSurface) {
|
|
if (mOptSurface->IsValid()) {
|
|
RefPtr<SourceSurface> surf(mOptSurface);
|
|
return surf.forget();
|
|
} else {
|
|
mOptSurface = nullptr;
|
|
}
|
|
}
|
|
|
|
if (mBlankLockedSurface) {
|
|
// We are going to return the blank surface because of the flags.
|
|
// We are including comments here that are copied from below
|
|
// just so that we are on the same page!
|
|
|
|
// We don't need to create recycling wrapper for some callers because they
|
|
// promise to release the surface immediately after.
|
|
if (!aTemporary && mShouldRecycle) {
|
|
RefPtr<SourceSurface> surf =
|
|
new RecyclingSourceSurface(this, mBlankLockedSurface);
|
|
return surf.forget();
|
|
}
|
|
|
|
RefPtr<SourceSurface> surf(mBlankLockedSurface);
|
|
return surf.forget();
|
|
}
|
|
|
|
if (mLockedSurface) {
|
|
// We don't need to create recycling wrapper for some callers because they
|
|
// promise to release the surface immediately after.
|
|
if (!aTemporary && mShouldRecycle) {
|
|
RefPtr<SourceSurface> surf =
|
|
new RecyclingSourceSurface(this, mLockedSurface);
|
|
return surf.forget();
|
|
}
|
|
|
|
RefPtr<SourceSurface> surf(mLockedSurface);
|
|
return surf.forget();
|
|
}
|
|
|
|
MOZ_ASSERT(!mShouldRecycle, "Should recycle but no locked surface!");
|
|
|
|
if (!mRawSurface) {
|
|
return nullptr;
|
|
}
|
|
|
|
return CreateLockedSurface(mRawSurface, mImageSize, mFormat);
|
|
}
|
|
|
|
void imgFrame::Abort() {
|
|
MonitorAutoLock lock(mMonitor);
|
|
|
|
mAborted = true;
|
|
|
|
// Wake up anyone who's waiting.
|
|
mMonitor.NotifyAll();
|
|
}
|
|
|
|
bool imgFrame::IsAborted() const {
|
|
MonitorAutoLock lock(mMonitor);
|
|
return mAborted;
|
|
}
|
|
|
|
bool imgFrame::IsFinished() const {
|
|
MonitorAutoLock lock(mMonitor);
|
|
return mFinished;
|
|
}
|
|
|
|
void imgFrame::WaitUntilFinished() const {
|
|
MonitorAutoLock lock(mMonitor);
|
|
|
|
while (true) {
|
|
// Return if we're aborted or complete.
|
|
if (mAborted || mFinished) {
|
|
return;
|
|
}
|
|
|
|
// Not complete yet, so we'll have to wait.
|
|
mMonitor.Wait();
|
|
}
|
|
}
|
|
|
|
bool imgFrame::AreAllPixelsWritten() const {
|
|
mMonitor.AssertCurrentThreadOwns();
|
|
return mDecoded.IsEqualInterior(GetRect());
|
|
}
|
|
|
|
void imgFrame::AddSizeOfExcludingThis(MallocSizeOf aMallocSizeOf,
|
|
const AddSizeOfCb& aCallback) const {
|
|
MonitorAutoLock lock(mMonitor);
|
|
|
|
AddSizeOfCbData metadata;
|
|
|
|
metadata.finished = mFinished;
|
|
if (mLockedSurface) {
|
|
metadata.heap += aMallocSizeOf(mLockedSurface);
|
|
}
|
|
if (mOptSurface) {
|
|
metadata.heap += aMallocSizeOf(mOptSurface);
|
|
}
|
|
if (mRawSurface) {
|
|
metadata.heap += aMallocSizeOf(mRawSurface);
|
|
mRawSurface->AddSizeOfExcludingThis(aMallocSizeOf, metadata.heap,
|
|
metadata.nonHeap, metadata.handles,
|
|
metadata.externalId);
|
|
}
|
|
|
|
aCallback(metadata);
|
|
}
|
|
|
|
RecyclingSourceSurface::RecyclingSourceSurface(imgFrame* aParent,
|
|
DataSourceSurface* aSurface)
|
|
: mParent(aParent), mSurface(aSurface), mType(SurfaceType::DATA) {
|
|
mParent->mMonitor.AssertCurrentThreadOwns();
|
|
++mParent->mRecycleLockCount;
|
|
|
|
if (aSurface->GetType() == SurfaceType::DATA_SHARED) {
|
|
mType = SurfaceType::DATA_RECYCLING_SHARED;
|
|
}
|
|
}
|
|
|
|
RecyclingSourceSurface::~RecyclingSourceSurface() {
|
|
MonitorAutoLock lock(mParent->mMonitor);
|
|
MOZ_ASSERT(mParent->mRecycleLockCount > 0);
|
|
if (--mParent->mRecycleLockCount == 0) {
|
|
mParent->mMonitor.NotifyAll();
|
|
}
|
|
}
|
|
|
|
} // namespace image
|
|
} // namespace mozilla
|