зеркало из https://github.com/mozilla/gecko-dev.git
1000 строки
36 KiB
C++
1000 строки
36 KiB
C++
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-
|
|
*
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "ImageLogging.h" // Must appear first.
|
|
|
|
#include "nsJPEGDecoder.h"
|
|
|
|
#include <cstdint>
|
|
|
|
#include "imgFrame.h"
|
|
#include "Orientation.h"
|
|
#include "EXIF.h"
|
|
#include "SurfacePipeFactory.h"
|
|
|
|
#include "nspr.h"
|
|
#include "nsCRT.h"
|
|
#include "gfxColor.h"
|
|
|
|
#include "jerror.h"
|
|
|
|
#include "gfxPlatform.h"
|
|
#include "mozilla/EndianUtils.h"
|
|
#include "mozilla/gfx/Types.h"
|
|
#include "mozilla/Telemetry.h"
|
|
|
|
extern "C" {
|
|
#include "iccjpeg.h"
|
|
}
|
|
|
|
#if MOZ_BIG_ENDIAN()
|
|
# define MOZ_JCS_EXT_NATIVE_ENDIAN_XRGB JCS_EXT_XRGB
|
|
#else
|
|
# define MOZ_JCS_EXT_NATIVE_ENDIAN_XRGB JCS_EXT_BGRX
|
|
#endif
|
|
|
|
static void cmyk_convert_bgra(uint32_t* aInput, uint32_t* aOutput,
|
|
int32_t aWidth);
|
|
|
|
using mozilla::gfx::SurfaceFormat;
|
|
|
|
namespace mozilla {
|
|
namespace image {
|
|
|
|
static mozilla::LazyLogModule sJPEGLog("JPEGDecoder");
|
|
|
|
static mozilla::LazyLogModule sJPEGDecoderAccountingLog(
|
|
"JPEGDecoderAccounting");
|
|
|
|
static qcms_profile* GetICCProfile(struct jpeg_decompress_struct& info) {
|
|
JOCTET* profilebuf;
|
|
uint32_t profileLength;
|
|
qcms_profile* profile = nullptr;
|
|
|
|
if (read_icc_profile(&info, &profilebuf, &profileLength)) {
|
|
profile = qcms_profile_from_memory(profilebuf, profileLength);
|
|
free(profilebuf);
|
|
}
|
|
|
|
return profile;
|
|
}
|
|
|
|
METHODDEF(void) init_source(j_decompress_ptr jd);
|
|
METHODDEF(boolean) fill_input_buffer(j_decompress_ptr jd);
|
|
METHODDEF(void) skip_input_data(j_decompress_ptr jd, long num_bytes);
|
|
METHODDEF(void) term_source(j_decompress_ptr jd);
|
|
METHODDEF(void) my_error_exit(j_common_ptr cinfo);
|
|
METHODDEF(void) progress_monitor(j_common_ptr info);
|
|
|
|
// Normal JFIF markers can't have more bytes than this.
|
|
#define MAX_JPEG_MARKER_LENGTH (((uint32_t)1 << 16) - 1)
|
|
|
|
nsJPEGDecoder::nsJPEGDecoder(RasterImage* aImage,
|
|
Decoder::DecodeStyle aDecodeStyle)
|
|
: Decoder(aImage),
|
|
mLexer(Transition::ToUnbuffered(State::FINISHED_JPEG_DATA,
|
|
State::JPEG_DATA, SIZE_MAX),
|
|
Transition::TerminateSuccess()),
|
|
mProfile(nullptr),
|
|
mProfileLength(0),
|
|
mCMSLine(nullptr),
|
|
mDecodeStyle(aDecodeStyle) {
|
|
this->mErr.pub.error_exit = nullptr;
|
|
this->mErr.pub.emit_message = nullptr;
|
|
this->mErr.pub.output_message = nullptr;
|
|
this->mErr.pub.format_message = nullptr;
|
|
this->mErr.pub.reset_error_mgr = nullptr;
|
|
this->mErr.pub.msg_code = 0;
|
|
this->mErr.pub.trace_level = 0;
|
|
this->mErr.pub.num_warnings = 0;
|
|
this->mErr.pub.jpeg_message_table = nullptr;
|
|
this->mErr.pub.last_jpeg_message = 0;
|
|
this->mErr.pub.addon_message_table = nullptr;
|
|
this->mErr.pub.first_addon_message = 0;
|
|
this->mErr.pub.last_addon_message = 0;
|
|
mState = JPEG_HEADER;
|
|
mReading = true;
|
|
mImageData = nullptr;
|
|
|
|
mBytesToSkip = 0;
|
|
memset(&mInfo, 0, sizeof(jpeg_decompress_struct));
|
|
memset(&mSourceMgr, 0, sizeof(mSourceMgr));
|
|
memset(&mProgressMgr, 0, sizeof(mProgressMgr));
|
|
mInfo.client_data = (void*)this;
|
|
|
|
mSegment = nullptr;
|
|
mSegmentLen = 0;
|
|
|
|
mBackBuffer = nullptr;
|
|
mBackBufferLen = mBackBufferSize = mBackBufferUnreadLen = 0;
|
|
|
|
MOZ_LOG(sJPEGDecoderAccountingLog, LogLevel::Debug,
|
|
("nsJPEGDecoder::nsJPEGDecoder: Creating JPEG decoder %p", this));
|
|
}
|
|
|
|
nsJPEGDecoder::~nsJPEGDecoder() {
|
|
// Step 8: Release JPEG decompression object
|
|
mInfo.src = nullptr;
|
|
jpeg_destroy_decompress(&mInfo);
|
|
|
|
free(mBackBuffer);
|
|
mBackBuffer = nullptr;
|
|
|
|
delete[] mCMSLine;
|
|
|
|
MOZ_LOG(sJPEGDecoderAccountingLog, LogLevel::Debug,
|
|
("nsJPEGDecoder::~nsJPEGDecoder: Destroying JPEG decoder %p", this));
|
|
}
|
|
|
|
Maybe<Telemetry::HistogramID> nsJPEGDecoder::SpeedHistogram() const {
|
|
return Some(Telemetry::IMAGE_DECODE_SPEED_JPEG);
|
|
}
|
|
|
|
nsresult nsJPEGDecoder::InitInternal() {
|
|
// We set up the normal JPEG error routines, then override error_exit.
|
|
mInfo.err = jpeg_std_error(&mErr.pub);
|
|
// mInfo.err = jpeg_std_error(&mErr.pub);
|
|
mErr.pub.error_exit = my_error_exit;
|
|
// Establish the setjmp return context for my_error_exit to use.
|
|
if (setjmp(mErr.setjmp_buffer)) {
|
|
// If we get here, the JPEG code has signaled an error, and initialization
|
|
// has failed.
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
// Step 1: allocate and initialize JPEG decompression object
|
|
jpeg_create_decompress(&mInfo);
|
|
// Set the source manager
|
|
mInfo.src = &mSourceMgr;
|
|
|
|
// Step 2: specify data source (eg, a file)
|
|
|
|
// Setup callback functions.
|
|
mSourceMgr.init_source = init_source;
|
|
mSourceMgr.fill_input_buffer = fill_input_buffer;
|
|
mSourceMgr.skip_input_data = skip_input_data;
|
|
mSourceMgr.resync_to_restart = jpeg_resync_to_restart;
|
|
mSourceMgr.term_source = term_source;
|
|
|
|
mInfo.mem->max_memory_to_use = static_cast<long>(
|
|
std::min<size_t>(SurfaceCache::MaximumCapacity(), LONG_MAX));
|
|
|
|
mProgressMgr.progress_monitor = &progress_monitor;
|
|
mInfo.progress = &mProgressMgr;
|
|
|
|
// Record app markers for ICC data
|
|
for (uint32_t m = 0; m < 16; m++) {
|
|
jpeg_save_markers(&mInfo, JPEG_APP0 + m, 0xFFFF);
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult nsJPEGDecoder::FinishInternal() {
|
|
// If we're not in any sort of error case, force our state to JPEG_DONE.
|
|
if ((mState != JPEG_DONE && mState != JPEG_SINK_NON_JPEG_TRAILER) &&
|
|
(mState != JPEG_ERROR) && !IsMetadataDecode()) {
|
|
mState = JPEG_DONE;
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
LexerResult nsJPEGDecoder::DoDecode(SourceBufferIterator& aIterator,
|
|
IResumable* aOnResume) {
|
|
MOZ_ASSERT(!HasError(), "Shouldn't call DoDecode after error!");
|
|
|
|
return mLexer.Lex(aIterator, aOnResume,
|
|
[=](State aState, const char* aData, size_t aLength) {
|
|
switch (aState) {
|
|
case State::JPEG_DATA:
|
|
return ReadJPEGData(aData, aLength);
|
|
case State::FINISHED_JPEG_DATA:
|
|
return FinishedJPEGData();
|
|
}
|
|
MOZ_CRASH("Unknown State");
|
|
});
|
|
}
|
|
|
|
LexerTransition<nsJPEGDecoder::State> nsJPEGDecoder::ReadJPEGData(
|
|
const char* aData, size_t aLength) {
|
|
mSegment = reinterpret_cast<const JOCTET*>(aData);
|
|
mSegmentLen = aLength;
|
|
|
|
// Return here if there is a error within libjpeg.
|
|
nsresult error_code;
|
|
// This cast to nsresult makes sense because setjmp() returns whatever we
|
|
// passed to longjmp(), which was actually an nsresult. These error codes
|
|
// have been translated from libjpeg error codes, like so:
|
|
// JERR_OUT_OF_MEMORY => NS_ERROR_OUT_OF_MEMORY
|
|
// JERR_UNKNOWN_MARKER => NS_ERROR_ILLEGAL_VALUE
|
|
// JERR_SOF_UNSUPPORTED => NS_ERROR_INVALID_CONTENT_ENCODING
|
|
// <any other error> => NS_ERROR_FAILURE
|
|
if ((error_code = static_cast<nsresult>(setjmp(mErr.setjmp_buffer))) !=
|
|
NS_OK) {
|
|
bool fatal = true;
|
|
if (error_code == NS_ERROR_FAILURE) {
|
|
// Error due to corrupt data. Make sure that we don't feed any more data
|
|
// to libjpeg-turbo.
|
|
mState = JPEG_SINK_NON_JPEG_TRAILER;
|
|
MOZ_LOG(sJPEGDecoderAccountingLog, LogLevel::Debug,
|
|
("} (setjmp returned NS_ERROR_FAILURE)"));
|
|
} else if (error_code == NS_ERROR_ILLEGAL_VALUE) {
|
|
// This is a recoverable error. Consume the marker and continue.
|
|
mInfo.unread_marker = 0;
|
|
fatal = false;
|
|
} else if (error_code == NS_ERROR_INVALID_CONTENT_ENCODING) {
|
|
// The content is encoding frames with a format that libjpeg can't handle.
|
|
MOZ_LOG(sJPEGDecoderAccountingLog, LogLevel::Debug,
|
|
("} (setjmp returned NS_ERROR_INVALID_CONTENT_ENCODING)"));
|
|
// Check to see if we're in the done state, which indicates that we've
|
|
// already processed the main JPEG data.
|
|
bool inDoneState = (mState == JPEG_DONE);
|
|
// Whether we succeed or fail, we shouldn't send any more data.
|
|
mState = JPEG_SINK_NON_JPEG_TRAILER;
|
|
|
|
// If we're in the done state, we exit successfully and attempt to
|
|
// display the content we've already received. Otherwise, we fallthrough
|
|
// and treat this as a fatal error.
|
|
if (inDoneState) {
|
|
return Transition::TerminateSuccess();
|
|
}
|
|
} else {
|
|
// Error for another reason. (Possibly OOM.)
|
|
mState = JPEG_ERROR;
|
|
MOZ_LOG(sJPEGDecoderAccountingLog, LogLevel::Debug,
|
|
("} (setjmp returned an error)"));
|
|
}
|
|
|
|
if (fatal) {
|
|
return Transition::TerminateFailure();
|
|
}
|
|
}
|
|
|
|
MOZ_LOG(sJPEGLog, LogLevel::Debug,
|
|
("[this=%p] nsJPEGDecoder::Write -- processing JPEG data\n", this));
|
|
|
|
switch (mState) {
|
|
case JPEG_HEADER: {
|
|
LOG_SCOPE((mozilla::LogModule*)sJPEGLog,
|
|
"nsJPEGDecoder::Write -- entering JPEG_HEADER"
|
|
" case");
|
|
|
|
// Step 3: read file parameters with jpeg_read_header()
|
|
if (jpeg_read_header(&mInfo, TRUE) == JPEG_SUSPENDED) {
|
|
MOZ_LOG(sJPEGDecoderAccountingLog, LogLevel::Debug,
|
|
("} (JPEG_SUSPENDED)"));
|
|
return Transition::ContinueUnbuffered(
|
|
State::JPEG_DATA); // I/O suspension
|
|
}
|
|
|
|
// Post our size to the superclass
|
|
EXIFData exif = ReadExifData();
|
|
PostSize(mInfo.image_width, mInfo.image_height, exif.orientation,
|
|
exif.resolution);
|
|
if (HasError()) {
|
|
// Setting the size led to an error.
|
|
mState = JPEG_ERROR;
|
|
return Transition::TerminateFailure();
|
|
}
|
|
|
|
// If we're doing a metadata decode, we're done.
|
|
if (IsMetadataDecode()) {
|
|
return Transition::TerminateSuccess();
|
|
}
|
|
|
|
// We're doing a full decode.
|
|
switch (mInfo.jpeg_color_space) {
|
|
case JCS_GRAYSCALE:
|
|
case JCS_RGB:
|
|
case JCS_YCbCr:
|
|
// By default, we will output directly to BGRA. If we need to apply
|
|
// special color transforms, this may change.
|
|
switch (SurfaceFormat::OS_RGBX) {
|
|
case SurfaceFormat::B8G8R8X8:
|
|
mInfo.out_color_space = JCS_EXT_BGRX;
|
|
break;
|
|
case SurfaceFormat::X8R8G8B8:
|
|
mInfo.out_color_space = JCS_EXT_XRGB;
|
|
break;
|
|
case SurfaceFormat::R8G8B8X8:
|
|
mInfo.out_color_space = JCS_EXT_RGBX;
|
|
break;
|
|
default:
|
|
mState = JPEG_ERROR;
|
|
return Transition::TerminateFailure();
|
|
}
|
|
break;
|
|
case JCS_CMYK:
|
|
case JCS_YCCK:
|
|
// libjpeg can convert from YCCK to CMYK, but not to XRGB.
|
|
mInfo.out_color_space = JCS_CMYK;
|
|
break;
|
|
default:
|
|
mState = JPEG_ERROR;
|
|
MOZ_LOG(sJPEGDecoderAccountingLog, LogLevel::Debug,
|
|
("} (unknown colorspace (3))"));
|
|
return Transition::TerminateFailure();
|
|
}
|
|
|
|
if (mCMSMode != CMSMode::Off) {
|
|
if ((mInProfile = GetICCProfile(mInfo)) != nullptr &&
|
|
GetCMSOutputProfile()) {
|
|
uint32_t profileSpace = qcms_profile_get_color_space(mInProfile);
|
|
|
|
qcms_data_type outputType = gfxPlatform::GetCMSOSRGBAType();
|
|
Maybe<qcms_data_type> inputType;
|
|
if (profileSpace == icSigRgbData) {
|
|
// We can always color manage RGB profiles since it happens at the
|
|
// end of the pipeline.
|
|
inputType.emplace(outputType);
|
|
} else if (profileSpace == icSigGrayData &&
|
|
mInfo.jpeg_color_space == JCS_GRAYSCALE) {
|
|
// We can only color manage gray profiles if the original color
|
|
// space is grayscale. This means we must downscale after color
|
|
// management since the downscaler assumes BGRA.
|
|
mInfo.out_color_space = JCS_GRAYSCALE;
|
|
inputType.emplace(QCMS_DATA_GRAY_8);
|
|
}
|
|
|
|
#if 0
|
|
// We don't currently support CMYK profiles. The following
|
|
// code dealt with lcms types. Add something like this
|
|
// back when we gain support for CMYK.
|
|
|
|
// Adobe Photoshop writes YCCK/CMYK files with inverted data
|
|
if (mInfo.out_color_space == JCS_CMYK) {
|
|
type |= FLAVOR_SH(mInfo.saw_Adobe_marker ? 1 : 0);
|
|
}
|
|
#endif
|
|
|
|
if (inputType) {
|
|
// Calculate rendering intent.
|
|
int intent = gfxPlatform::GetRenderingIntent();
|
|
if (intent == -1) {
|
|
intent = qcms_profile_get_rendering_intent(mInProfile);
|
|
}
|
|
|
|
// Create the color management transform.
|
|
mTransform = qcms_transform_create(mInProfile, *inputType,
|
|
GetCMSOutputProfile(),
|
|
outputType, (qcms_intent)intent);
|
|
}
|
|
} else if (mCMSMode == CMSMode::All) {
|
|
mTransform = GetCMSsRGBTransform(SurfaceFormat::OS_RGBX);
|
|
}
|
|
}
|
|
|
|
// We don't want to use the pipe buffers directly because we don't want
|
|
// any reads on non-BGRA formatted data.
|
|
if (mInfo.out_color_space == JCS_GRAYSCALE ||
|
|
mInfo.out_color_space == JCS_CMYK) {
|
|
mCMSLine = new (std::nothrow) uint32_t[mInfo.image_width];
|
|
if (!mCMSLine) {
|
|
mState = JPEG_ERROR;
|
|
MOZ_LOG(sJPEGDecoderAccountingLog, LogLevel::Debug,
|
|
("} (could allocate buffer for color conversion)"));
|
|
return Transition::TerminateFailure();
|
|
}
|
|
}
|
|
|
|
// Don't allocate a giant and superfluous memory buffer
|
|
// when not doing a progressive decode.
|
|
mInfo.buffered_image =
|
|
mDecodeStyle == PROGRESSIVE && jpeg_has_multiple_scans(&mInfo);
|
|
|
|
/* Used to set up image size so arrays can be allocated */
|
|
jpeg_calc_output_dimensions(&mInfo);
|
|
|
|
// We handle the transform outside the pipeline if we are outputting in
|
|
// grayscale, because the pipeline wants BGRA pixels, particularly the
|
|
// downscaling filter, so we can't handle it after downscaling as would
|
|
// be optimal.
|
|
qcms_transform* pipeTransform =
|
|
mInfo.out_color_space != JCS_GRAYSCALE ? mTransform : nullptr;
|
|
|
|
Maybe<SurfacePipe> pipe = SurfacePipeFactory::CreateReorientSurfacePipe(
|
|
this, Size(), OutputSize(), SurfaceFormat::OS_RGBX, pipeTransform,
|
|
GetOrientation());
|
|
if (!pipe) {
|
|
mState = JPEG_ERROR;
|
|
MOZ_LOG(sJPEGDecoderAccountingLog, LogLevel::Debug,
|
|
("} (could not initialize surface pipe)"));
|
|
return Transition::TerminateFailure();
|
|
}
|
|
|
|
mPipe = std::move(*pipe);
|
|
|
|
MOZ_LOG(sJPEGDecoderAccountingLog, LogLevel::Debug,
|
|
(" JPEGDecoderAccounting: nsJPEGDecoder::"
|
|
"Write -- created image frame with %ux%u pixels",
|
|
mInfo.image_width, mInfo.image_height));
|
|
|
|
mState = JPEG_START_DECOMPRESS;
|
|
[[fallthrough]]; // to start decompressing.
|
|
}
|
|
|
|
case JPEG_START_DECOMPRESS: {
|
|
LOG_SCOPE((mozilla::LogModule*)sJPEGLog,
|
|
"nsJPEGDecoder::Write -- entering"
|
|
" JPEG_START_DECOMPRESS case");
|
|
// Step 4: set parameters for decompression
|
|
|
|
// FIXME -- Should reset dct_method and dither mode
|
|
// for final pass of progressive JPEG
|
|
|
|
mInfo.dct_method = JDCT_ISLOW;
|
|
mInfo.dither_mode = JDITHER_FS;
|
|
mInfo.do_fancy_upsampling = TRUE;
|
|
mInfo.enable_2pass_quant = FALSE;
|
|
mInfo.do_block_smoothing = TRUE;
|
|
|
|
// Step 5: Start decompressor
|
|
if (jpeg_start_decompress(&mInfo) == FALSE) {
|
|
MOZ_LOG(sJPEGDecoderAccountingLog, LogLevel::Debug,
|
|
("} (I/O suspension after jpeg_start_decompress())"));
|
|
return Transition::ContinueUnbuffered(
|
|
State::JPEG_DATA); // I/O suspension
|
|
}
|
|
|
|
// If this is a progressive JPEG ...
|
|
mState = mInfo.buffered_image ? JPEG_DECOMPRESS_PROGRESSIVE
|
|
: JPEG_DECOMPRESS_SEQUENTIAL;
|
|
[[fallthrough]]; // to decompress sequential JPEG.
|
|
}
|
|
|
|
case JPEG_DECOMPRESS_SEQUENTIAL: {
|
|
if (mState == JPEG_DECOMPRESS_SEQUENTIAL) {
|
|
LOG_SCOPE((mozilla::LogModule*)sJPEGLog,
|
|
"nsJPEGDecoder::Write -- "
|
|
"JPEG_DECOMPRESS_SEQUENTIAL case");
|
|
|
|
switch (OutputScanlines()) {
|
|
case WriteState::NEED_MORE_DATA:
|
|
MOZ_LOG(
|
|
sJPEGDecoderAccountingLog, LogLevel::Debug,
|
|
("} (I/O suspension after OutputScanlines() - SEQUENTIAL)"));
|
|
return Transition::ContinueUnbuffered(
|
|
State::JPEG_DATA); // I/O suspension
|
|
case WriteState::FINISHED:
|
|
NS_ASSERTION(mInfo.output_scanline == mInfo.output_height,
|
|
"We didn't process all of the data!");
|
|
mState = JPEG_DONE;
|
|
break;
|
|
case WriteState::FAILURE:
|
|
mState = JPEG_ERROR;
|
|
MOZ_LOG(sJPEGDecoderAccountingLog, LogLevel::Debug,
|
|
("} (Error in pipeline from OutputScalines())"));
|
|
return Transition::TerminateFailure();
|
|
}
|
|
}
|
|
[[fallthrough]]; // to decompress progressive JPEG.
|
|
}
|
|
|
|
case JPEG_DECOMPRESS_PROGRESSIVE: {
|
|
if (mState == JPEG_DECOMPRESS_PROGRESSIVE) {
|
|
LOG_SCOPE((mozilla::LogModule*)sJPEGLog,
|
|
"nsJPEGDecoder::Write -- JPEG_DECOMPRESS_PROGRESSIVE case");
|
|
auto AllComponentsSeen = [](jpeg_decompress_struct& info) {
|
|
bool all_components_seen = true;
|
|
if (info.coef_bits) {
|
|
for (int c = 0; c < info.num_components; ++c) {
|
|
bool current_component_seen = info.coef_bits[c][0] != -1;
|
|
all_components_seen &= current_component_seen;
|
|
}
|
|
}
|
|
return all_components_seen;
|
|
};
|
|
int status;
|
|
int scan_to_display_first = 0;
|
|
bool all_components_seen;
|
|
all_components_seen = AllComponentsSeen(mInfo);
|
|
if (all_components_seen) {
|
|
scan_to_display_first = mInfo.input_scan_number;
|
|
}
|
|
|
|
do {
|
|
status = jpeg_consume_input(&mInfo);
|
|
|
|
if (status == JPEG_REACHED_SOS || status == JPEG_REACHED_EOI ||
|
|
status == JPEG_SUSPENDED) {
|
|
// record the first scan where all components are present
|
|
all_components_seen = AllComponentsSeen(mInfo);
|
|
if (!scan_to_display_first && all_components_seen) {
|
|
scan_to_display_first = mInfo.input_scan_number;
|
|
}
|
|
}
|
|
} while ((status != JPEG_SUSPENDED) && (status != JPEG_REACHED_EOI));
|
|
|
|
if (!all_components_seen) {
|
|
return Transition::ContinueUnbuffered(
|
|
State::JPEG_DATA); // I/O suspension
|
|
}
|
|
// make sure we never try to access the non-exsitent scan 0
|
|
if (!scan_to_display_first) {
|
|
scan_to_display_first = 1;
|
|
}
|
|
while (mState != JPEG_DONE) {
|
|
if (mInfo.output_scanline == 0) {
|
|
int scan = mInfo.input_scan_number;
|
|
|
|
// if we haven't displayed anything yet (output_scan_number==0)
|
|
// and we have enough data for a complete scan, force output
|
|
// of the last full scan, but only if this last scan has seen
|
|
// DC data from all components
|
|
if ((mInfo.output_scan_number == 0) &&
|
|
(scan > scan_to_display_first) &&
|
|
(status != JPEG_REACHED_EOI)) {
|
|
scan--;
|
|
}
|
|
MOZ_ASSERT(scan > 0, "scan number to small!");
|
|
if (!jpeg_start_output(&mInfo, scan)) {
|
|
MOZ_LOG(sJPEGDecoderAccountingLog, LogLevel::Debug,
|
|
("} (I/O suspension after jpeg_start_output() -"
|
|
" PROGRESSIVE)"));
|
|
return Transition::ContinueUnbuffered(
|
|
State::JPEG_DATA); // I/O suspension
|
|
}
|
|
}
|
|
|
|
if (mInfo.output_scanline == 0xffffff) {
|
|
mInfo.output_scanline = 0;
|
|
}
|
|
|
|
switch (OutputScanlines()) {
|
|
case WriteState::NEED_MORE_DATA:
|
|
if (mInfo.output_scanline == 0) {
|
|
// didn't manage to read any lines - flag so we don't call
|
|
// jpeg_start_output() multiple times for the same scan
|
|
mInfo.output_scanline = 0xffffff;
|
|
}
|
|
MOZ_LOG(sJPEGDecoderAccountingLog, LogLevel::Debug,
|
|
("} (I/O suspension after OutputScanlines() - "
|
|
"PROGRESSIVE)"));
|
|
return Transition::ContinueUnbuffered(
|
|
State::JPEG_DATA); // I/O suspension
|
|
case WriteState::FINISHED:
|
|
NS_ASSERTION(mInfo.output_scanline == mInfo.output_height,
|
|
"We didn't process all of the data!");
|
|
|
|
if (!jpeg_finish_output(&mInfo)) {
|
|
MOZ_LOG(sJPEGDecoderAccountingLog, LogLevel::Debug,
|
|
("} (I/O suspension after jpeg_finish_output() -"
|
|
" PROGRESSIVE)"));
|
|
return Transition::ContinueUnbuffered(
|
|
State::JPEG_DATA); // I/O suspension
|
|
}
|
|
|
|
if (jpeg_input_complete(&mInfo) &&
|
|
(mInfo.input_scan_number == mInfo.output_scan_number)) {
|
|
mState = JPEG_DONE;
|
|
} else {
|
|
mInfo.output_scanline = 0;
|
|
mPipe.ResetToFirstRow();
|
|
}
|
|
break;
|
|
case WriteState::FAILURE:
|
|
mState = JPEG_ERROR;
|
|
MOZ_LOG(sJPEGDecoderAccountingLog, LogLevel::Debug,
|
|
("} (Error in pipeline from OutputScalines())"));
|
|
return Transition::TerminateFailure();
|
|
}
|
|
}
|
|
}
|
|
[[fallthrough]]; // to finish decompressing.
|
|
}
|
|
|
|
case JPEG_DONE: {
|
|
LOG_SCOPE((mozilla::LogModule*)sJPEGLog,
|
|
"nsJPEGDecoder::ProcessData -- entering"
|
|
" JPEG_DONE case");
|
|
|
|
// Step 7: Finish decompression
|
|
|
|
if (jpeg_finish_decompress(&mInfo) == FALSE) {
|
|
MOZ_LOG(sJPEGDecoderAccountingLog, LogLevel::Debug,
|
|
("} (I/O suspension after jpeg_finish_decompress() - DONE)"));
|
|
return Transition::ContinueUnbuffered(
|
|
State::JPEG_DATA); // I/O suspension
|
|
}
|
|
|
|
// Make sure we don't feed any more data to libjpeg-turbo.
|
|
mState = JPEG_SINK_NON_JPEG_TRAILER;
|
|
|
|
// We're done.
|
|
return Transition::TerminateSuccess();
|
|
}
|
|
case JPEG_SINK_NON_JPEG_TRAILER:
|
|
MOZ_LOG(sJPEGLog, LogLevel::Debug,
|
|
("[this=%p] nsJPEGDecoder::ProcessData -- entering"
|
|
" JPEG_SINK_NON_JPEG_TRAILER case\n",
|
|
this));
|
|
|
|
MOZ_ASSERT_UNREACHABLE(
|
|
"Should stop getting data after entering state "
|
|
"JPEG_SINK_NON_JPEG_TRAILER");
|
|
|
|
return Transition::TerminateSuccess();
|
|
|
|
case JPEG_ERROR:
|
|
MOZ_ASSERT_UNREACHABLE(
|
|
"Should stop getting data after entering state "
|
|
"JPEG_ERROR");
|
|
|
|
return Transition::TerminateFailure();
|
|
}
|
|
|
|
MOZ_ASSERT_UNREACHABLE("Escaped the JPEG decoder state machine");
|
|
return Transition::TerminateFailure();
|
|
} // namespace image
|
|
|
|
LexerTransition<nsJPEGDecoder::State> nsJPEGDecoder::FinishedJPEGData() {
|
|
// Since we set up an unbuffered read for SIZE_MAX bytes, if we actually read
|
|
// all that data something is really wrong.
|
|
MOZ_ASSERT_UNREACHABLE("Read the entire address space?");
|
|
return Transition::TerminateFailure();
|
|
}
|
|
|
|
EXIFData nsJPEGDecoder::ReadExifData() const {
|
|
jpeg_saved_marker_ptr marker;
|
|
|
|
// Locate the APP1 marker, where EXIF data is stored, in the marker list.
|
|
for (marker = mInfo.marker_list; marker != nullptr; marker = marker->next) {
|
|
if (marker->marker == JPEG_APP0 + 1) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If we're at the end of the list, there's no EXIF data.
|
|
if (!marker) {
|
|
return EXIFData();
|
|
}
|
|
|
|
return EXIFParser::Parse(marker->data,
|
|
static_cast<uint32_t>(marker->data_length),
|
|
gfx::IntSize(mInfo.image_width, mInfo.image_height));
|
|
}
|
|
|
|
void nsJPEGDecoder::NotifyDone() {
|
|
PostFrameStop(Opacity::FULLY_OPAQUE);
|
|
PostDecodeDone();
|
|
}
|
|
|
|
WriteState nsJPEGDecoder::OutputScanlines() {
|
|
auto result = mPipe.WritePixelBlocks<uint32_t>(
|
|
[&](uint32_t* aPixelBlock, int32_t aBlockSize) {
|
|
JSAMPROW sampleRow = (JSAMPROW)(mCMSLine ? mCMSLine : aPixelBlock);
|
|
if (jpeg_read_scanlines(&mInfo, &sampleRow, 1) != 1) {
|
|
return std::make_tuple(/* aWritten */ 0,
|
|
Some(WriteState::NEED_MORE_DATA));
|
|
}
|
|
|
|
switch (mInfo.out_color_space) {
|
|
default:
|
|
// Already outputted directly to aPixelBlock as BGRA.
|
|
MOZ_ASSERT(!mCMSLine);
|
|
break;
|
|
case JCS_GRAYSCALE:
|
|
// The transform here does both color management, and converts the
|
|
// pixels from grayscale to BGRA. This is why we do it here, instead
|
|
// of using ColorManagementFilter in the SurfacePipe, because the
|
|
// other filters (e.g. DownscalingFilter) require BGRA pixels.
|
|
MOZ_ASSERT(mCMSLine);
|
|
qcms_transform_data(mTransform, mCMSLine, aPixelBlock,
|
|
mInfo.output_width);
|
|
break;
|
|
case JCS_CMYK:
|
|
// Convert from CMYK to BGRA
|
|
MOZ_ASSERT(mCMSLine);
|
|
cmyk_convert_bgra(mCMSLine, aPixelBlock, aBlockSize);
|
|
break;
|
|
}
|
|
|
|
return std::make_tuple(aBlockSize, Maybe<WriteState>());
|
|
});
|
|
|
|
Maybe<SurfaceInvalidRect> invalidRect = mPipe.TakeInvalidRect();
|
|
if (invalidRect) {
|
|
PostInvalidation(invalidRect->mInputSpaceRect,
|
|
Some(invalidRect->mOutputSpaceRect));
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
// Override the standard error method in the IJG JPEG decoder code.
|
|
METHODDEF(void)
|
|
my_error_exit(j_common_ptr cinfo) {
|
|
decoder_error_mgr* err = (decoder_error_mgr*)cinfo->err;
|
|
|
|
// Convert error to a browser error code
|
|
nsresult error_code;
|
|
switch (err->pub.msg_code) {
|
|
case JERR_OUT_OF_MEMORY:
|
|
error_code = NS_ERROR_OUT_OF_MEMORY;
|
|
break;
|
|
case JERR_UNKNOWN_MARKER:
|
|
error_code = NS_ERROR_ILLEGAL_VALUE;
|
|
break;
|
|
case JERR_SOF_UNSUPPORTED:
|
|
error_code = NS_ERROR_INVALID_CONTENT_ENCODING;
|
|
break;
|
|
default:
|
|
error_code = NS_ERROR_FAILURE;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
char buffer[JMSG_LENGTH_MAX];
|
|
|
|
// Create the message
|
|
(*err->pub.format_message)(cinfo, buffer);
|
|
|
|
fprintf(stderr, "JPEG decoding error:\n%s\n", buffer);
|
|
#endif
|
|
|
|
// Return control to the setjmp point. We pass an nsresult masquerading as
|
|
// an int, which works because the setjmp() caller casts it back.
|
|
longjmp(err->setjmp_buffer, static_cast<int>(error_code));
|
|
}
|
|
|
|
static void progress_monitor(j_common_ptr info) {
|
|
int scan = ((j_decompress_ptr)info)->input_scan_number;
|
|
// Progressive images with a very large number of scans can cause the decoder
|
|
// to hang. Here we use the progress monitor to abort on a very large number
|
|
// of scans. 1000 is arbitrary, but much larger than the number of scans we
|
|
// might expect in a normal image.
|
|
if (scan >= 1000) {
|
|
my_error_exit(info);
|
|
}
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This is the callback routine from the IJG JPEG library used to supply new
|
|
* data to the decompressor when its input buffer is exhausted. It juggles
|
|
* multiple buffers in an attempt to avoid unnecessary copying of input data.
|
|
*
|
|
* (A simpler scheme is possible: It's much easier to use only a single
|
|
* buffer; when fill_input_buffer() is called, move any unconsumed data
|
|
* (beyond the current pointer/count) down to the beginning of this buffer and
|
|
* then load new data into the remaining buffer space. This approach requires
|
|
* a little more data copying but is far easier to get right.)
|
|
*
|
|
* At any one time, the JPEG decompressor is either reading from the necko
|
|
* input buffer, which is volatile across top-level calls to the IJG library,
|
|
* or the "backtrack" buffer. The backtrack buffer contains the remaining
|
|
* unconsumed data from the necko buffer after parsing was suspended due
|
|
* to insufficient data in some previous call to the IJG library.
|
|
*
|
|
* When suspending, the decompressor will back up to a convenient restart
|
|
* point (typically the start of the current MCU). The variables
|
|
* next_input_byte & bytes_in_buffer indicate where the restart point will be
|
|
* if the current call returns FALSE. Data beyond this point must be
|
|
* rescanned after resumption, so it must be preserved in case the decompressor
|
|
* decides to backtrack.
|
|
*
|
|
* Returns:
|
|
* TRUE if additional data is available, FALSE if no data present and
|
|
* the JPEG library should therefore suspend processing of input stream
|
|
******************************************************************************/
|
|
|
|
/******************************************************************************/
|
|
/* data source manager method */
|
|
/******************************************************************************/
|
|
|
|
/******************************************************************************/
|
|
/* data source manager method
|
|
Initialize source. This is called by jpeg_read_header() before any
|
|
data is actually read. May leave
|
|
bytes_in_buffer set to 0 (in which case a fill_input_buffer() call
|
|
will occur immediately).
|
|
*/
|
|
METHODDEF(void)
|
|
init_source(j_decompress_ptr jd) {}
|
|
|
|
/******************************************************************************/
|
|
/* data source manager method
|
|
Skip num_bytes worth of data. The buffer pointer and count should
|
|
be advanced over num_bytes input bytes, refilling the buffer as
|
|
needed. This is used to skip over a potentially large amount of
|
|
uninteresting data (such as an APPn marker). In some applications
|
|
it may be possible to optimize away the reading of the skipped data,
|
|
but it's not clear that being smart is worth much trouble; large
|
|
skips are uncommon. bytes_in_buffer may be zero on return.
|
|
A zero or negative skip count should be treated as a no-op.
|
|
*/
|
|
METHODDEF(void)
|
|
skip_input_data(j_decompress_ptr jd, long num_bytes) {
|
|
struct jpeg_source_mgr* src = jd->src;
|
|
nsJPEGDecoder* decoder = (nsJPEGDecoder*)(jd->client_data);
|
|
|
|
if (num_bytes > (long)src->bytes_in_buffer) {
|
|
// Can't skip it all right now until we get more data from
|
|
// network stream. Set things up so that fill_input_buffer
|
|
// will skip remaining amount.
|
|
decoder->mBytesToSkip = (size_t)num_bytes - src->bytes_in_buffer;
|
|
src->next_input_byte += src->bytes_in_buffer;
|
|
src->bytes_in_buffer = 0;
|
|
|
|
} else {
|
|
// Simple case. Just advance buffer pointer
|
|
|
|
src->bytes_in_buffer -= (size_t)num_bytes;
|
|
src->next_input_byte += num_bytes;
|
|
}
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/* data source manager method
|
|
This is called whenever bytes_in_buffer has reached zero and more
|
|
data is wanted. In typical applications, it should read fresh data
|
|
into the buffer (ignoring the current state of next_input_byte and
|
|
bytes_in_buffer), reset the pointer & count to the start of the
|
|
buffer, and return TRUE indicating that the buffer has been reloaded.
|
|
It is not necessary to fill the buffer entirely, only to obtain at
|
|
least one more byte. bytes_in_buffer MUST be set to a positive value
|
|
if TRUE is returned. A FALSE return should only be used when I/O
|
|
suspension is desired.
|
|
*/
|
|
METHODDEF(boolean)
|
|
fill_input_buffer(j_decompress_ptr jd) {
|
|
struct jpeg_source_mgr* src = jd->src;
|
|
nsJPEGDecoder* decoder = (nsJPEGDecoder*)(jd->client_data);
|
|
|
|
if (decoder->mReading) {
|
|
const JOCTET* new_buffer = decoder->mSegment;
|
|
uint32_t new_buflen = decoder->mSegmentLen;
|
|
|
|
if (!new_buffer || new_buflen == 0) {
|
|
return false; // suspend
|
|
}
|
|
|
|
decoder->mSegmentLen = 0;
|
|
|
|
if (decoder->mBytesToSkip) {
|
|
if (decoder->mBytesToSkip < new_buflen) {
|
|
// All done skipping bytes; Return what's left.
|
|
new_buffer += decoder->mBytesToSkip;
|
|
new_buflen -= decoder->mBytesToSkip;
|
|
decoder->mBytesToSkip = 0;
|
|
} else {
|
|
// Still need to skip some more data in the future
|
|
decoder->mBytesToSkip -= (size_t)new_buflen;
|
|
return false; // suspend
|
|
}
|
|
}
|
|
|
|
decoder->mBackBufferUnreadLen = src->bytes_in_buffer;
|
|
|
|
src->next_input_byte = new_buffer;
|
|
src->bytes_in_buffer = (size_t)new_buflen;
|
|
decoder->mReading = false;
|
|
|
|
return true;
|
|
}
|
|
|
|
if (src->next_input_byte != decoder->mSegment) {
|
|
// Backtrack data has been permanently consumed.
|
|
decoder->mBackBufferUnreadLen = 0;
|
|
decoder->mBackBufferLen = 0;
|
|
}
|
|
|
|
// Save remainder of netlib buffer in backtrack buffer
|
|
const uint32_t new_backtrack_buflen =
|
|
src->bytes_in_buffer + decoder->mBackBufferLen;
|
|
|
|
// Make sure backtrack buffer is big enough to hold new data.
|
|
if (decoder->mBackBufferSize < new_backtrack_buflen) {
|
|
// Check for malformed MARKER segment lengths, before allocating space
|
|
// for it
|
|
if (new_backtrack_buflen > MAX_JPEG_MARKER_LENGTH) {
|
|
my_error_exit((j_common_ptr)(&decoder->mInfo));
|
|
}
|
|
|
|
// Round up to multiple of 256 bytes.
|
|
const size_t roundup_buflen = ((new_backtrack_buflen + 255) >> 8) << 8;
|
|
JOCTET* buf = (JOCTET*)realloc(decoder->mBackBuffer, roundup_buflen);
|
|
// Check for OOM
|
|
if (!buf) {
|
|
decoder->mInfo.err->msg_code = JERR_OUT_OF_MEMORY;
|
|
my_error_exit((j_common_ptr)(&decoder->mInfo));
|
|
}
|
|
decoder->mBackBuffer = buf;
|
|
decoder->mBackBufferSize = roundup_buflen;
|
|
}
|
|
|
|
// Ensure we actually have a backtrack buffer. Without it, then we know that
|
|
// there is no data to copy and bytes_in_buffer is already zero.
|
|
if (decoder->mBackBuffer) {
|
|
// Copy remainder of netlib segment into backtrack buffer.
|
|
memmove(decoder->mBackBuffer + decoder->mBackBufferLen,
|
|
src->next_input_byte, src->bytes_in_buffer);
|
|
} else {
|
|
MOZ_ASSERT(src->bytes_in_buffer == 0);
|
|
MOZ_ASSERT(decoder->mBackBufferLen == 0);
|
|
MOZ_ASSERT(decoder->mBackBufferUnreadLen == 0);
|
|
}
|
|
|
|
// Point to start of data to be rescanned.
|
|
src->next_input_byte = decoder->mBackBuffer + decoder->mBackBufferLen -
|
|
decoder->mBackBufferUnreadLen;
|
|
src->bytes_in_buffer += decoder->mBackBufferUnreadLen;
|
|
decoder->mBackBufferLen = (size_t)new_backtrack_buflen;
|
|
decoder->mReading = true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/* data source manager method */
|
|
/*
|
|
* Terminate source --- called by jpeg_finish_decompress() after all
|
|
* data has been read to clean up JPEG source manager. NOT called by
|
|
* jpeg_abort() or jpeg_destroy().
|
|
*/
|
|
METHODDEF(void)
|
|
term_source(j_decompress_ptr jd) {
|
|
nsJPEGDecoder* decoder = (nsJPEGDecoder*)(jd->client_data);
|
|
|
|
// This function shouldn't be called if we ran into an error we didn't
|
|
// recover from.
|
|
MOZ_ASSERT(decoder->mState != JPEG_ERROR,
|
|
"Calling term_source on a JPEG with mState == JPEG_ERROR!");
|
|
|
|
// Notify using a helper method to get around protectedness issues.
|
|
decoder->NotifyDone();
|
|
}
|
|
|
|
} // namespace image
|
|
} // namespace mozilla
|
|
|
|
///*************** Inverted CMYK -> RGB conversion *************************
|
|
/// Input is (Inverted) CMYK stored as 4 bytes per pixel.
|
|
/// Output is RGB stored as 3 bytes per pixel.
|
|
/// @param aInput Points to row buffer containing the CMYK bytes for each pixel
|
|
/// in the row.
|
|
/// @param aOutput Points to row buffer to write BGRA to.
|
|
/// @param aWidth Number of pixels in the row.
|
|
static void cmyk_convert_bgra(uint32_t* aInput, uint32_t* aOutput,
|
|
int32_t aWidth) {
|
|
uint8_t* input = reinterpret_cast<uint8_t*>(aInput);
|
|
|
|
for (int32_t i = 0; i < aWidth; ++i) {
|
|
// Source is 'Inverted CMYK', output is RGB.
|
|
// See: http://www.easyrgb.com/math.php?MATH=M12#text12
|
|
// Or: http://www.ilkeratalay.com/colorspacesfaq.php#rgb
|
|
|
|
// From CMYK to CMY
|
|
// C = ( C * ( 1 - K ) + K )
|
|
// M = ( M * ( 1 - K ) + K )
|
|
// Y = ( Y * ( 1 - K ) + K )
|
|
|
|
// From Inverted CMYK to CMY is thus:
|
|
// C = ( (1-iC) * (1 - (1-iK)) + (1-iK) ) => 1 - iC*iK
|
|
// Same for M and Y
|
|
|
|
// Convert from CMY (0..1) to RGB (0..1)
|
|
// R = 1 - C => 1 - (1 - iC*iK) => iC*iK
|
|
// G = 1 - M => 1 - (1 - iM*iK) => iM*iK
|
|
// B = 1 - Y => 1 - (1 - iY*iK) => iY*iK
|
|
|
|
// Convert from Inverted CMYK (0..255) to RGB (0..255)
|
|
const uint32_t iC = input[0];
|
|
const uint32_t iM = input[1];
|
|
const uint32_t iY = input[2];
|
|
const uint32_t iK = input[3];
|
|
|
|
const uint8_t r = iC * iK / 255;
|
|
const uint8_t g = iM * iK / 255;
|
|
const uint8_t b = iY * iK / 255;
|
|
|
|
*aOutput++ = (0xFF << mozilla::gfx::SurfaceFormatBit::OS_A) |
|
|
(r << mozilla::gfx::SurfaceFormatBit::OS_R) |
|
|
(g << mozilla::gfx::SurfaceFormatBit::OS_G) |
|
|
(b << mozilla::gfx::SurfaceFormatBit::OS_B);
|
|
input += 4;
|
|
}
|
|
}
|