gecko-dev/widget/windows/WinWindowOcclusionTracker.cpp

1472 строки
49 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <queue>
#include <windows.h>
#include <winuser.h>
#include <wtsapi32.h>
#include "WinWindowOcclusionTracker.h"
#include "base/thread.h"
#include "base/message_loop.h"
#include "base/platform_thread.h"
#include "gfxConfig.h"
#include "nsThreadUtils.h"
#include "mozilla/DataMutex.h"
#include "mozilla/gfx/Logging.h"
#include "mozilla/TimeStamp.h"
#include "mozilla/Logging.h"
#include "mozilla/StaticPrefs_widget.h"
#include "mozilla/StaticPtr.h"
#include "nsBaseWidget.h"
#include "nsWindow.h"
#include "transport/runnable_utils.h"
#include "WinUtils.h"
namespace mozilla::widget {
// Can be called on Main thread
LazyLogModule gWinOcclusionTrackerLog("WinOcclusionTracker");
#define LOG(type, ...) MOZ_LOG(gWinOcclusionTrackerLog, type, (__VA_ARGS__))
// Can be called on OcclusionCalculator thread
LazyLogModule gWinOcclusionCalculatorLog("WinOcclusionCalculator");
#define CALC_LOG(type, ...) \
MOZ_LOG(gWinOcclusionCalculatorLog, type, (__VA_ARGS__))
// ~16 ms = time between frames when frame rate is 60 FPS.
const int kOcclusionUpdateRunnableDelayMs = 16;
class OcclusionUpdateRunnable : public CancelableRunnable {
public:
explicit OcclusionUpdateRunnable(
WinWindowOcclusionTracker::WindowOcclusionCalculator*
aOcclusionCalculator)
: CancelableRunnable("OcclusionUpdateRunnable"),
mOcclusionCalculator(aOcclusionCalculator) {
mTimeStamp = TimeStamp::Now();
}
NS_IMETHOD Run() override {
if (mIsCanceled) {
return NS_OK;
}
MOZ_ASSERT(WinWindowOcclusionTracker::IsInWinWindowOcclusionThread());
uint32_t latencyMs =
round((TimeStamp::Now() - mTimeStamp).ToMilliseconds());
CALC_LOG(LogLevel::Debug,
"ComputeNativeWindowOcclusionStatus() latencyMs %u", latencyMs);
mOcclusionCalculator->ComputeNativeWindowOcclusionStatus();
return NS_OK;
}
nsresult Cancel() override {
mIsCanceled = true;
mOcclusionCalculator = nullptr;
return NS_OK;
}
private:
bool mIsCanceled = false;
RefPtr<WinWindowOcclusionTracker::WindowOcclusionCalculator>
mOcclusionCalculator;
TimeStamp mTimeStamp;
};
// Used to serialize tasks related to mRootWindowHwndsOcclusionState.
class SerializedTaskDispatcher {
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(SerializedTaskDispatcher)
public:
SerializedTaskDispatcher();
void Destroy();
void PostTaskToMain(already_AddRefed<nsIRunnable> aTask);
void PostTaskToCalculator(already_AddRefed<nsIRunnable> aTask);
void PostDelayedTaskToCalculator(already_AddRefed<Runnable> aTask,
int aDelayMs);
bool IsOnCurrentThread();
private:
friend class DelayedTaskRunnable;
~SerializedTaskDispatcher();
struct Data {
std::queue<std::pair<RefPtr<nsIRunnable>, RefPtr<nsISerialEventTarget>>>
mTasks;
bool mDestroyed = false;
RefPtr<Runnable> mCurrentRunnable;
};
void PostTasksIfNecessary(nsISerialEventTarget* aEventTarget,
const DataMutex<Data>::AutoLock& aProofOfLock);
void HandleDelayedTask(already_AddRefed<nsIRunnable> aTask);
void HandleTasks();
// Hold current EventTarget during calling nsIRunnable::Run().
RefPtr<nsISerialEventTarget> mCurrentEventTarget = nullptr;
DataMutex<Data> mData;
};
class DelayedTaskRunnable : public Runnable {
public:
DelayedTaskRunnable(SerializedTaskDispatcher* aSerializedTaskDispatcher,
already_AddRefed<Runnable> aTask)
: Runnable("DelayedTaskRunnable"),
mSerializedTaskDispatcher(aSerializedTaskDispatcher),
mTask(aTask) {}
NS_IMETHOD Run() override {
mSerializedTaskDispatcher->HandleDelayedTask(mTask.forget());
return NS_OK;
}
private:
RefPtr<SerializedTaskDispatcher> mSerializedTaskDispatcher;
RefPtr<Runnable> mTask;
};
SerializedTaskDispatcher::SerializedTaskDispatcher()
: mData("SerializedTaskDispatcher::mData") {
MOZ_RELEASE_ASSERT(NS_IsMainThread());
LOG(LogLevel::Info,
"SerializedTaskDispatcher::SerializedTaskDispatcher() this %p", this);
}
SerializedTaskDispatcher::~SerializedTaskDispatcher() {
#ifdef DEBUG
auto data = mData.Lock();
MOZ_ASSERT(data->mDestroyed);
MOZ_ASSERT(data->mTasks.empty());
#endif
}
void SerializedTaskDispatcher::Destroy() {
MOZ_RELEASE_ASSERT(NS_IsMainThread());
LOG(LogLevel::Info, "SerializedTaskDispatcher::Destroy() this %p", this);
auto data = mData.Lock();
if (data->mDestroyed) {
return;
}
data->mDestroyed = true;
std::queue<std::pair<RefPtr<nsIRunnable>, RefPtr<nsISerialEventTarget>>>
empty;
std::swap(data->mTasks, empty);
}
void SerializedTaskDispatcher::PostTaskToMain(
already_AddRefed<nsIRunnable> aTask) {
RefPtr<nsIRunnable> task = aTask;
auto data = mData.Lock();
if (data->mDestroyed) {
return;
}
nsISerialEventTarget* eventTarget = GetMainThreadSerialEventTarget();
data->mTasks.push({std::move(task), eventTarget});
MOZ_ASSERT_IF(!data->mCurrentRunnable, data->mTasks.size() == 1);
PostTasksIfNecessary(eventTarget, data);
}
void SerializedTaskDispatcher::PostTaskToCalculator(
already_AddRefed<nsIRunnable> aTask) {
RefPtr<nsIRunnable> task = aTask;
auto data = mData.Lock();
if (data->mDestroyed) {
return;
}
nsISerialEventTarget* eventTarget =
WinWindowOcclusionTracker::OcclusionCalculatorLoop()->SerialEventTarget();
data->mTasks.push({std::move(task), eventTarget});
MOZ_ASSERT_IF(!data->mCurrentRunnable, data->mTasks.size() == 1);
PostTasksIfNecessary(eventTarget, data);
}
void SerializedTaskDispatcher::PostDelayedTaskToCalculator(
already_AddRefed<Runnable> aTask, int aDelayMs) {
CALC_LOG(LogLevel::Debug,
"SerializedTaskDispatcher::PostDelayedTaskToCalculator()");
RefPtr<DelayedTaskRunnable> runnable =
new DelayedTaskRunnable(this, std::move(aTask));
MessageLoop* targetLoop =
WinWindowOcclusionTracker::OcclusionCalculatorLoop();
targetLoop->PostDelayedTask(runnable.forget(), aDelayMs);
}
bool SerializedTaskDispatcher::IsOnCurrentThread() {
return !!mCurrentEventTarget;
}
void SerializedTaskDispatcher::PostTasksIfNecessary(
nsISerialEventTarget* aEventTarget,
const DataMutex<Data>::AutoLock& aProofOfLock) {
MOZ_ASSERT(!aProofOfLock->mTasks.empty());
if (aProofOfLock->mCurrentRunnable) {
return;
}
RefPtr<Runnable> runnable =
WrapRunnable(RefPtr<SerializedTaskDispatcher>(this),
&SerializedTaskDispatcher::HandleTasks);
aProofOfLock->mCurrentRunnable = runnable;
aEventTarget->Dispatch(runnable.forget());
}
void SerializedTaskDispatcher::HandleDelayedTask(
already_AddRefed<nsIRunnable> aTask) {
MOZ_ASSERT(WinWindowOcclusionTracker::IsInWinWindowOcclusionThread());
CALC_LOG(LogLevel::Debug, "SerializedTaskDispatcher::HandleDelayedTask()");
RefPtr<nsIRunnable> task = aTask;
auto data = mData.Lock();
if (data->mDestroyed) {
return;
}
nsISerialEventTarget* eventTarget =
WinWindowOcclusionTracker::OcclusionCalculatorLoop()->SerialEventTarget();
data->mTasks.push({std::move(task), eventTarget});
MOZ_ASSERT_IF(!data->mCurrentRunnable, data->mTasks.size() == 1);
PostTasksIfNecessary(eventTarget, data);
}
void SerializedTaskDispatcher::HandleTasks() {
RefPtr<nsIRunnable> frontTask;
// Get front task
{
auto data = mData.Lock();
if (data->mDestroyed) {
return;
}
MOZ_RELEASE_ASSERT(data->mCurrentRunnable);
MOZ_RELEASE_ASSERT(!data->mTasks.empty());
frontTask = data->mTasks.front().first;
MOZ_RELEASE_ASSERT(!mCurrentEventTarget);
mCurrentEventTarget = data->mTasks.front().second;
}
while (frontTask) {
if (NS_IsMainThread()) {
LOG(LogLevel::Debug, "SerializedTaskDispatcher::HandleTasks()");
} else {
CALC_LOG(LogLevel::Debug, "SerializedTaskDispatcher::HandleTasks()");
}
MOZ_ASSERT_IF(NS_IsMainThread(),
mCurrentEventTarget == GetMainThreadSerialEventTarget());
MOZ_ASSERT_IF(
!NS_IsMainThread(),
mCurrentEventTarget == MessageLoop::current()->SerialEventTarget());
frontTask->Run();
// Get next task
{
auto data = mData.Lock();
if (data->mDestroyed) {
return;
}
frontTask = nullptr;
data->mTasks.pop();
// Check if next task could be handled on current thread
if (!data->mTasks.empty() &&
data->mTasks.front().second == mCurrentEventTarget) {
frontTask = data->mTasks.front().first;
}
}
}
MOZ_ASSERT(!frontTask);
// Post tasks to different thread if pending tasks exist.
{
auto data = mData.Lock();
data->mCurrentRunnable = nullptr;
mCurrentEventTarget = nullptr;
if (data->mDestroyed || data->mTasks.empty()) {
return;
}
PostTasksIfNecessary(data->mTasks.front().second, data);
}
}
// static
StaticRefPtr<WinWindowOcclusionTracker> WinWindowOcclusionTracker::sTracker;
/* static */
WinWindowOcclusionTracker* WinWindowOcclusionTracker::Get() {
MOZ_ASSERT(NS_IsMainThread());
if (!sTracker || sTracker->mHasAttemptedShutdown) {
return nullptr;
}
return sTracker;
}
/* static */
void WinWindowOcclusionTracker::Ensure() {
MOZ_ASSERT(NS_IsMainThread());
LOG(LogLevel::Info, "WinWindowOcclusionTracker::Ensure()");
base::Thread::Options options;
options.message_loop_type = MessageLoop::TYPE_UI;
if (sTracker) {
// Try to reuse the thread, which involves stopping and restarting it.
sTracker->mThread->Stop();
if (sTracker->mThread->StartWithOptions(options)) {
// Success!
sTracker->mHasAttemptedShutdown = false;
// Take this opportunity to ensure that mDisplayStatusObserver and
// mSessionChangeObserver exist. They might have failed to be
// created when sTracker was created.
sTracker->EnsureDisplayStatusObserver();
sTracker->EnsureSessionChangeObserver();
return;
}
// Restart failed, so null out our sTracker and try again with a new
// thread. This will cause the old singleton instance to be deallocated,
// which will destroy its mThread as well.
sTracker = nullptr;
}
UniquePtr<base::Thread> thread =
MakeUnique<base::Thread>("WinWindowOcclusionCalc");
if (!thread->StartWithOptions(options)) {
return;
}
sTracker = new WinWindowOcclusionTracker(std::move(thread));
WindowOcclusionCalculator::CreateInstance();
RefPtr<Runnable> runnable =
WrapRunnable(RefPtr<WindowOcclusionCalculator>(
WindowOcclusionCalculator::GetInstance()),
&WindowOcclusionCalculator::Initialize);
sTracker->mSerializedTaskDispatcher->PostTaskToCalculator(runnable.forget());
}
/* static */
void WinWindowOcclusionTracker::ShutDown() {
if (!sTracker) {
return;
}
MOZ_ASSERT(NS_IsMainThread());
LOG(LogLevel::Info, "WinWindowOcclusionTracker::ShutDown()");
sTracker->mHasAttemptedShutdown = true;
sTracker->Destroy();
// Our thread could hang while we're waiting for it to stop.
// Since we're shutting down, that's not a critical problem.
// We set a reasonable amount of time to wait for shutdown,
// and if it succeeds within that time, we correctly stop
// our thread by nulling out the refptr, which will cause it
// to be deallocated and join the thread. If it times out,
// we do nothing, which means that the thread will not be
// joined and sTracker memory will leak.
CVStatus status;
{
// It's important to hold the lock before posting the
// runnable. This ensures that the runnable can't begin
// until we've started our Wait, which prevents us from
// Waiting on a monitor that has already been notified.
MonitorAutoLock lock(sTracker->mMonitor);
static const TimeDuration TIMEOUT = TimeDuration::FromSeconds(2.0);
RefPtr<Runnable> runnable =
WrapRunnable(RefPtr<WindowOcclusionCalculator>(
WindowOcclusionCalculator::GetInstance()),
&WindowOcclusionCalculator::Shutdown);
OcclusionCalculatorLoop()->PostTask(runnable.forget());
// Monitor uses SleepConditionVariableSRW, which can have
// spurious wakeups which are reported as timeouts, so we
// check timestamps to ensure that we've waited as long we
// intended to. If we wake early, we don't bother calculating
// a precise amount for the next wait; we just wait the same
// amount of time. This means timeout might happen after as
// much as 2x the TIMEOUT time.
TimeStamp timeStart = TimeStamp::NowLoRes();
do {
status = sTracker->mMonitor.Wait(TIMEOUT);
} while ((status == CVStatus::Timeout) &&
((TimeStamp::NowLoRes() - timeStart) < TIMEOUT));
}
if (status == CVStatus::NoTimeout) {
WindowOcclusionCalculator::ClearInstance();
sTracker = nullptr;
}
}
void WinWindowOcclusionTracker::Destroy() {
if (mDisplayStatusObserver) {
mDisplayStatusObserver->Destroy();
mDisplayStatusObserver = nullptr;
}
if (mSessionChangeObserver) {
mSessionChangeObserver->Destroy();
mSessionChangeObserver = nullptr;
}
if (mSerializedTaskDispatcher) {
mSerializedTaskDispatcher->Destroy();
}
}
/* static */
MessageLoop* WinWindowOcclusionTracker::OcclusionCalculatorLoop() {
return sTracker ? sTracker->mThread->message_loop() : nullptr;
}
/* static */
bool WinWindowOcclusionTracker::IsInWinWindowOcclusionThread() {
return sTracker &&
sTracker->mThread->thread_id() == PlatformThread::CurrentId();
}
void WinWindowOcclusionTracker::EnsureDisplayStatusObserver() {
if (mDisplayStatusObserver) {
return;
}
if (StaticPrefs::
widget_windows_window_occlusion_tracking_display_state_enabled()) {
mDisplayStatusObserver = DisplayStatusObserver::Create(this);
}
}
void WinWindowOcclusionTracker::EnsureSessionChangeObserver() {
if (mSessionChangeObserver) {
return;
}
if (StaticPrefs::
widget_windows_window_occlusion_tracking_session_lock_enabled()) {
mSessionChangeObserver = SessionChangeObserver::Create(this);
}
}
void WinWindowOcclusionTracker::Enable(nsBaseWidget* aWindow, HWND aHwnd) {
MOZ_ASSERT(NS_IsMainThread());
LOG(LogLevel::Info, "WinWindowOcclusionTracker::Enable() aWindow %p aHwnd %p",
aWindow, aHwnd);
auto it = mHwndRootWindowMap.find(aHwnd);
if (it != mHwndRootWindowMap.end()) {
return;
}
nsWeakPtr weak = do_GetWeakReference(aWindow);
mHwndRootWindowMap.emplace(aHwnd, weak);
RefPtr<Runnable> runnable = WrapRunnable(
RefPtr<WindowOcclusionCalculator>(
WindowOcclusionCalculator::GetInstance()),
&WindowOcclusionCalculator::EnableOcclusionTrackingForWindow, aHwnd);
mSerializedTaskDispatcher->PostTaskToCalculator(runnable.forget());
}
void WinWindowOcclusionTracker::Disable(nsBaseWidget* aWindow, HWND aHwnd) {
MOZ_ASSERT(NS_IsMainThread());
LOG(LogLevel::Info,
"WinWindowOcclusionTracker::Disable() aWindow %p aHwnd %p", aWindow,
aHwnd);
auto it = mHwndRootWindowMap.find(aHwnd);
if (it == mHwndRootWindowMap.end()) {
return;
}
mHwndRootWindowMap.erase(it);
RefPtr<Runnable> runnable = WrapRunnable(
RefPtr<WindowOcclusionCalculator>(
WindowOcclusionCalculator::GetInstance()),
&WindowOcclusionCalculator::DisableOcclusionTrackingForWindow, aHwnd);
mSerializedTaskDispatcher->PostTaskToCalculator(runnable.forget());
}
void WinWindowOcclusionTracker::OnWindowVisibilityChanged(nsBaseWidget* aWindow,
bool aVisible) {
MOZ_ASSERT(NS_IsMainThread());
LOG(LogLevel::Info,
"WinWindowOcclusionTracker::OnWindowVisibilityChanged() aWindow %p "
"aVisible %d",
aWindow, aVisible);
RefPtr<Runnable> runnable = WrapRunnable(
RefPtr<WindowOcclusionCalculator>(
WindowOcclusionCalculator::GetInstance()),
&WindowOcclusionCalculator::HandleVisibilityChanged, aVisible);
mSerializedTaskDispatcher->PostTaskToCalculator(runnable.forget());
}
WinWindowOcclusionTracker::WinWindowOcclusionTracker(
UniquePtr<base::Thread> aThread)
: mThread(std::move(aThread)), mMonitor("WinWindowOcclusionTracker") {
MOZ_ASSERT(NS_IsMainThread());
LOG(LogLevel::Info, "WinWindowOcclusionTracker::WinWindowOcclusionTracker()");
EnsureDisplayStatusObserver();
EnsureSessionChangeObserver();
mSerializedTaskDispatcher = new SerializedTaskDispatcher();
}
WinWindowOcclusionTracker::~WinWindowOcclusionTracker() {
MOZ_ASSERT(NS_IsMainThread());
LOG(LogLevel::Info,
"WinWindowOcclusionTracker::~WinWindowOcclusionTracker()");
}
// static
bool WinWindowOcclusionTracker::IsWindowVisibleAndFullyOpaque(
HWND aHwnd, LayoutDeviceIntRect* aWindowRect) {
// Filter out windows that are not "visible", IsWindowVisible().
if (!::IsWindow(aHwnd) || !::IsWindowVisible(aHwnd)) {
return false;
}
// Filter out minimized windows.
if (::IsIconic(aHwnd)) {
return false;
}
LONG exStyles = ::GetWindowLong(aHwnd, GWL_EXSTYLE);
// Filter out "transparent" windows, windows where the mouse clicks fall
// through them.
if (exStyles & WS_EX_TRANSPARENT) {
return false;
}
// Filter out "tool windows", which are floating windows that do not appear on
// the taskbar or ALT-TAB. Floating windows can have larger window rectangles
// than what is visible to the user, so by filtering them out we will avoid
// incorrectly marking native windows as occluded. We do not filter out the
// Windows Taskbar.
if (exStyles & WS_EX_TOOLWINDOW) {
nsAutoString className;
if (WinUtils::GetClassName(aHwnd, className)) {
if (!className.Equals(L"Shell_TrayWnd")) {
return false;
}
}
}
// Filter out layered windows that are not opaque or that set a transparency
// colorkey.
if (exStyles & WS_EX_LAYERED) {
BYTE alpha;
DWORD flags;
// GetLayeredWindowAttributes only works if the application has
// previously called SetLayeredWindowAttributes on the window.
// The function will fail if the layered window was setup with
// UpdateLayeredWindow. Treat this failure as the window being transparent.
// See Remarks section of
// https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-getlayeredwindowattributes
if (!::GetLayeredWindowAttributes(aHwnd, nullptr, &alpha, &flags)) {
return false;
}
if (flags & LWA_ALPHA && alpha < 255) {
return false;
}
if (flags & LWA_COLORKEY) {
return false;
}
}
// Filter out windows that do not have a simple rectangular region.
HRGN region = ::CreateRectRgn(0, 0, 0, 0);
int result = GetWindowRgn(aHwnd, region);
::DeleteObject(region);
if (result == COMPLEXREGION) {
return false;
}
// Windows 10 has cloaked windows, windows with WS_VISIBLE attribute but
// not displayed. explorer.exe, in particular has one that's the
// size of the desktop. It's usually behind Chrome windows in the z-order,
// but using a remote desktop can move it up in the z-order. So, ignore them.
DWORD reason;
if (SUCCEEDED(::DwmGetWindowAttribute(aHwnd, DWMWA_CLOAKED, &reason,
sizeof(reason))) &&
reason != 0) {
return false;
}
RECT winRect;
// Filter out windows that take up zero area. The call to GetWindowRect is one
// of the most expensive parts of this function, so it is last.
if (!::GetWindowRect(aHwnd, &winRect)) {
return false;
}
if (::IsRectEmpty(&winRect)) {
return false;
}
// Ignore popup windows since they're transient unless it is the Windows
// Taskbar
// XXX Chrome Widget popup handling is removed for now.
if (::GetWindowLong(aHwnd, GWL_STYLE) & WS_POPUP) {
nsAutoString className;
if (WinUtils::GetClassName(aHwnd, className)) {
if (!className.Equals(L"Shell_TrayWnd")) {
return false;
}
}
}
*aWindowRect = LayoutDeviceIntRect(winRect.left, winRect.top,
winRect.right - winRect.left,
winRect.bottom - winRect.top);
WINDOWPLACEMENT windowPlacement = {0};
windowPlacement.length = sizeof(WINDOWPLACEMENT);
::GetWindowPlacement(aHwnd, &windowPlacement);
if (windowPlacement.showCmd == SW_MAXIMIZE) {
// If the window is maximized the window border extends beyond the visible
// region of the screen. Adjust the maximized window rect to fit the
// screen dimensions to ensure that fullscreen windows, which do not extend
// beyond the screen boundaries since they typically have no borders, will
// occlude maximized windows underneath them.
HMONITOR hmon = ::MonitorFromWindow(aHwnd, MONITOR_DEFAULTTONEAREST);
if (hmon) {
MONITORINFO mi;
mi.cbSize = sizeof(mi);
if (GetMonitorInfo(hmon, &mi)) {
LayoutDeviceIntRect workArea(mi.rcWork.left, mi.rcWork.top,
mi.rcWork.right - mi.rcWork.left,
mi.rcWork.bottom - mi.rcWork.top);
// Adjust aWindowRect to fit to monitor.
aWindowRect->width = std::min(workArea.width, aWindowRect->width);
if (aWindowRect->x < workArea.x) {
aWindowRect->x = workArea.x;
} else {
aWindowRect->x = std::min(workArea.x + workArea.width,
aWindowRect->x + aWindowRect->width) -
aWindowRect->width;
}
aWindowRect->height = std::min(workArea.height, aWindowRect->height);
if (aWindowRect->y < workArea.y) {
aWindowRect->y = workArea.y;
} else {
aWindowRect->y = std::min(workArea.y + workArea.height,
aWindowRect->y + aWindowRect->height) -
aWindowRect->height;
}
}
}
}
return true;
}
// static
void WinWindowOcclusionTracker::CallUpdateOcclusionState(
std::unordered_map<HWND, OcclusionState>* aMap, bool aShowAllWindows) {
MOZ_ASSERT(NS_IsMainThread());
auto* tracker = WinWindowOcclusionTracker::Get();
if (!tracker) {
return;
}
tracker->UpdateOcclusionState(aMap, aShowAllWindows);
}
void WinWindowOcclusionTracker::UpdateOcclusionState(
std::unordered_map<HWND, OcclusionState>* aMap, bool aShowAllWindows) {
MOZ_ASSERT(NS_IsMainThread());
MOZ_ASSERT(mSerializedTaskDispatcher->IsOnCurrentThread());
LOG(LogLevel::Debug,
"WinWindowOcclusionTracker::UpdateOcclusionState() aShowAllWindows %d",
aShowAllWindows);
mNumVisibleRootWindows = 0;
for (auto& [hwnd, state] : *aMap) {
auto it = mHwndRootWindowMap.find(hwnd);
// The window was destroyed while processing occlusion.
if (it == mHwndRootWindowMap.end()) {
continue;
}
auto occlState = state;
// If the screen is locked or off, ignore occlusion state results and
// mark the window as occluded.
if (mScreenLocked || !mDisplayOn) {
occlState = OcclusionState::OCCLUDED;
} else if (aShowAllWindows) {
occlState = OcclusionState::VISIBLE;
}
nsCOMPtr<nsIWidget> widget = do_QueryReferent(it->second);
if (!widget) {
continue;
}
auto* baseWidget = static_cast<nsBaseWidget*>(widget.get());
baseWidget->NotifyOcclusionState(occlState);
if (baseWidget->SizeMode() != nsSizeMode_Minimized) {
mNumVisibleRootWindows++;
}
}
}
void WinWindowOcclusionTracker::OnSessionChange(WPARAM aStatusCode,
Maybe<bool> aIsCurrentSession) {
MOZ_ASSERT(NS_IsMainThread());
if (aIsCurrentSession.isNothing() || !*aIsCurrentSession) {
return;
}
if (aStatusCode == WTS_SESSION_UNLOCK) {
LOG(LogLevel::Info,
"WinWindowOcclusionTracker::OnSessionChange() WTS_SESSION_UNLOCK");
// UNLOCK will cause a foreground window change, which will
// trigger an occlusion calculation on its own.
mScreenLocked = false;
} else if (aStatusCode == WTS_SESSION_LOCK) {
LOG(LogLevel::Info,
"WinWindowOcclusionTracker::OnSessionChange() WTS_SESSION_LOCK");
mScreenLocked = true;
MarkNonIconicWindowsOccluded();
}
}
void WinWindowOcclusionTracker::OnDisplayStateChanged(bool aDisplayOn) {
MOZ_ASSERT(NS_IsMainThread());
LOG(LogLevel::Info,
"WinWindowOcclusionTracker::OnDisplayStateChanged() aDisplayOn %d",
aDisplayOn);
if (mDisplayOn == aDisplayOn) {
return;
}
mDisplayOn = aDisplayOn;
if (aDisplayOn) {
// Notify the window occlusion calculator of the display turning on
// which will schedule an occlusion calculation. This must be run
// on the WindowOcclusionCalculator thread.
RefPtr<Runnable> runnable =
WrapRunnable(RefPtr<WindowOcclusionCalculator>(
WindowOcclusionCalculator::GetInstance()),
&WindowOcclusionCalculator::HandleVisibilityChanged,
/* aVisible */ true);
mSerializedTaskDispatcher->PostTaskToCalculator(runnable.forget());
} else {
MarkNonIconicWindowsOccluded();
}
}
void WinWindowOcclusionTracker::MarkNonIconicWindowsOccluded() {
MOZ_ASSERT(NS_IsMainThread());
LOG(LogLevel::Info,
"WinWindowOcclusionTracker::MarkNonIconicWindowsOccluded()");
// Set all visible root windows as occluded. If not visible,
// set them as hidden.
for (auto& [hwnd, weak] : mHwndRootWindowMap) {
nsCOMPtr<nsIWidget> widget = do_QueryReferent(weak);
if (!widget) {
continue;
}
auto* baseWidget = static_cast<nsBaseWidget*>(widget.get());
auto state = (baseWidget->SizeMode() == nsSizeMode_Minimized)
? OcclusionState::HIDDEN
: OcclusionState::OCCLUDED;
baseWidget->NotifyOcclusionState(state);
}
}
void WinWindowOcclusionTracker::TriggerCalculation() {
RefPtr<Runnable> runnable =
WrapRunnable(RefPtr<WindowOcclusionCalculator>(
WindowOcclusionCalculator::GetInstance()),
&WindowOcclusionCalculator::HandleTriggerCalculation);
mSerializedTaskDispatcher->PostTaskToCalculator(runnable.forget());
}
// static
BOOL WinWindowOcclusionTracker::DumpOccludingWindowsCallback(HWND aHWnd,
LPARAM aLParam) {
HWND hwnd = reinterpret_cast<HWND>(aLParam);
LayoutDeviceIntRect windowRect;
bool windowIsOccluding = IsWindowVisibleAndFullyOpaque(aHWnd, &windowRect);
if (windowIsOccluding) {
nsAutoString className;
if (WinUtils::GetClassName(aHWnd, className)) {
const auto name = NS_ConvertUTF16toUTF8(className);
printf_stderr(
"DumpOccludingWindowsCallback() aHWnd %p className %s windowRect(%d, "
"%d, %d, %d)\n",
aHWnd, name.get(), windowRect.x, windowRect.y, windowRect.width,
windowRect.height);
}
}
if (aHWnd == hwnd) {
return false;
}
return true;
}
void WinWindowOcclusionTracker::DumpOccludingWindows(HWND aHWnd) {
printf_stderr("DumpOccludingWindows() until aHWnd %p visible %d iconic %d\n",
aHWnd, ::IsWindowVisible(aHWnd), ::IsIconic(aHWnd));
::EnumWindows(&DumpOccludingWindowsCallback, reinterpret_cast<LPARAM>(aHWnd));
}
// static
StaticRefPtr<WinWindowOcclusionTracker::WindowOcclusionCalculator>
WinWindowOcclusionTracker::WindowOcclusionCalculator::sCalculator;
WinWindowOcclusionTracker::WindowOcclusionCalculator::
WindowOcclusionCalculator()
: mMonitor(WinWindowOcclusionTracker::Get()->mMonitor) {
MOZ_ASSERT(NS_IsMainThread());
LOG(LogLevel::Info, "WindowOcclusionCalculator()");
mSerializedTaskDispatcher =
WinWindowOcclusionTracker::Get()->GetSerializedTaskDispatcher();
}
WinWindowOcclusionTracker::WindowOcclusionCalculator::
~WindowOcclusionCalculator() {}
// static
void WinWindowOcclusionTracker::WindowOcclusionCalculator::CreateInstance() {
MOZ_ASSERT(NS_IsMainThread());
sCalculator = new WindowOcclusionCalculator();
}
// static
void WinWindowOcclusionTracker::WindowOcclusionCalculator::ClearInstance() {
MOZ_ASSERT(NS_IsMainThread());
sCalculator = nullptr;
}
void WinWindowOcclusionTracker::WindowOcclusionCalculator::Initialize() {
MOZ_ASSERT(IsInWinWindowOcclusionThread());
MOZ_ASSERT(!mVirtualDesktopManager);
CALC_LOG(LogLevel::Info, "Initialize()");
#ifndef __MINGW32__
RefPtr<IVirtualDesktopManager> desktopManager;
HRESULT hr = ::CoCreateInstance(
CLSID_VirtualDesktopManager, NULL, CLSCTX_INPROC_SERVER,
__uuidof(IVirtualDesktopManager), getter_AddRefs(desktopManager));
if (FAILED(hr)) {
return;
}
mVirtualDesktopManager = desktopManager;
#endif
}
void WinWindowOcclusionTracker::WindowOcclusionCalculator::Shutdown() {
MonitorAutoLock lock(mMonitor);
MOZ_ASSERT(IsInWinWindowOcclusionThread());
CALC_LOG(LogLevel::Info, "Shutdown()");
UnregisterEventHooks();
if (mOcclusionUpdateRunnable) {
mOcclusionUpdateRunnable->Cancel();
mOcclusionUpdateRunnable = nullptr;
}
mVirtualDesktopManager = nullptr;
mMonitor.NotifyAll();
}
void WinWindowOcclusionTracker::WindowOcclusionCalculator::
EnableOcclusionTrackingForWindow(HWND aHwnd) {
MOZ_ASSERT(IsInWinWindowOcclusionThread());
MOZ_ASSERT(mSerializedTaskDispatcher->IsOnCurrentThread());
CALC_LOG(LogLevel::Info, "EnableOcclusionTrackingForWindow() aHwnd %p",
aHwnd);
MOZ_RELEASE_ASSERT(mRootWindowHwndsOcclusionState.find(aHwnd) ==
mRootWindowHwndsOcclusionState.end());
mRootWindowHwndsOcclusionState[aHwnd] = OcclusionState::UNKNOWN;
if (mGlobalEventHooks.empty()) {
RegisterEventHooks();
}
// Schedule an occlusion calculation so that the newly tracked window does
// not have a stale occlusion status.
ScheduleOcclusionCalculationIfNeeded();
}
void WinWindowOcclusionTracker::WindowOcclusionCalculator::
DisableOcclusionTrackingForWindow(HWND aHwnd) {
MOZ_ASSERT(IsInWinWindowOcclusionThread());
MOZ_ASSERT(mSerializedTaskDispatcher->IsOnCurrentThread());
CALC_LOG(LogLevel::Info, "DisableOcclusionTrackingForWindow() aHwnd %p",
aHwnd);
MOZ_RELEASE_ASSERT(mRootWindowHwndsOcclusionState.find(aHwnd) !=
mRootWindowHwndsOcclusionState.end());
mRootWindowHwndsOcclusionState.erase(aHwnd);
if (mMovingWindow == aHwnd) {
mMovingWindow = 0;
}
if (mRootWindowHwndsOcclusionState.empty()) {
UnregisterEventHooks();
if (mOcclusionUpdateRunnable) {
mOcclusionUpdateRunnable->Cancel();
mOcclusionUpdateRunnable = nullptr;
}
}
}
void WinWindowOcclusionTracker::WindowOcclusionCalculator::
HandleVisibilityChanged(bool aVisible) {
MOZ_ASSERT(IsInWinWindowOcclusionThread());
CALC_LOG(LogLevel::Info, "HandleVisibilityChange() aVisible %d", aVisible);
// May have gone from having no visible windows to having one, in
// which case we need to register event hooks, and make sure that an
// occlusion calculation is scheduled.
if (aVisible) {
MaybeRegisterEventHooks();
ScheduleOcclusionCalculationIfNeeded();
}
}
void WinWindowOcclusionTracker::WindowOcclusionCalculator::
HandleTriggerCalculation() {
MOZ_ASSERT(IsInWinWindowOcclusionThread());
CALC_LOG(LogLevel::Info, "HandleTriggerCalculation()");
MaybeRegisterEventHooks();
ScheduleOcclusionCalculationIfNeeded();
}
void WinWindowOcclusionTracker::WindowOcclusionCalculator::
MaybeRegisterEventHooks() {
if (mGlobalEventHooks.empty()) {
RegisterEventHooks();
}
}
// static
void CALLBACK
WinWindowOcclusionTracker::WindowOcclusionCalculator::EventHookCallback(
HWINEVENTHOOK aWinEventHook, DWORD aEvent, HWND aHwnd, LONG aIdObject,
LONG aIdChild, DWORD aEventThread, DWORD aMsEventTime) {
if (sCalculator) {
sCalculator->ProcessEventHookCallback(aWinEventHook, aEvent, aHwnd,
aIdObject, aIdChild);
}
}
// static
BOOL CALLBACK WinWindowOcclusionTracker::WindowOcclusionCalculator::
ComputeNativeWindowOcclusionStatusCallback(HWND aHwnd, LPARAM aLParam) {
if (sCalculator) {
return sCalculator->ProcessComputeNativeWindowOcclusionStatusCallback(
aHwnd, reinterpret_cast<std::unordered_set<DWORD>*>(aLParam));
}
return FALSE;
}
// static
BOOL CALLBACK WinWindowOcclusionTracker::WindowOcclusionCalculator::
UpdateVisibleWindowProcessIdsCallback(HWND aHwnd, LPARAM aLParam) {
if (sCalculator) {
sCalculator->ProcessUpdateVisibleWindowProcessIdsCallback(aHwnd);
return TRUE;
}
return FALSE;
}
void WinWindowOcclusionTracker::WindowOcclusionCalculator::
UpdateVisibleWindowProcessIds() {
mPidsForLocationChangeHook.clear();
::EnumWindows(&UpdateVisibleWindowProcessIdsCallback, 0);
}
void WinWindowOcclusionTracker::WindowOcclusionCalculator::
ComputeNativeWindowOcclusionStatus() {
MOZ_ASSERT(IsInWinWindowOcclusionThread());
MOZ_ASSERT(mSerializedTaskDispatcher->IsOnCurrentThread());
if (mOcclusionUpdateRunnable) {
mOcclusionUpdateRunnable = nullptr;
}
if (mRootWindowHwndsOcclusionState.empty()) {
return;
}
// Set up initial conditions for occlusion calculation.
bool shouldUnregisterEventHooks = true;
// Compute the LayoutDeviceIntRegion for the screen.
int screenLeft = ::GetSystemMetrics(SM_XVIRTUALSCREEN);
int screenTop = ::GetSystemMetrics(SM_YVIRTUALSCREEN);
int screenWidth = ::GetSystemMetrics(SM_CXVIRTUALSCREEN);
int screenHeight = ::GetSystemMetrics(SM_CYVIRTUALSCREEN);
LayoutDeviceIntRegion screenRegion =
LayoutDeviceIntRect(screenLeft, screenTop, screenWidth, screenHeight);
mNumRootWindowsWithUnknownOcclusionState = 0;
CALC_LOG(LogLevel::Debug,
"ComputeNativeWindowOcclusionStatus() screen(%d, %d, %d, %d)",
screenLeft, screenTop, screenWidth, screenHeight);
for (auto& [hwnd, state] : mRootWindowHwndsOcclusionState) {
// IsIconic() checks for a minimized window. Immediately set the state of
// minimized windows to HIDDEN.
if (::IsIconic(hwnd)) {
state = OcclusionState::HIDDEN;
} else if (IsWindowOnCurrentVirtualDesktop(hwnd) == Some(false)) {
// If window is not on the current virtual desktop, immediately
// set the state of the window to OCCLUDED.
state = OcclusionState::OCCLUDED;
// Don't unregister event hooks when not on current desktop. There's no
// notification when that changes, so we can't reregister event hooks.
shouldUnregisterEventHooks = false;
} else {
state = OcclusionState::UNKNOWN;
shouldUnregisterEventHooks = false;
mNumRootWindowsWithUnknownOcclusionState++;
}
}
// Unregister event hooks if all native windows are minimized.
if (shouldUnregisterEventHooks) {
UnregisterEventHooks();
} else {
std::unordered_set<DWORD> currentPidsWithVisibleWindows;
mUnoccludedDesktopRegion = screenRegion;
// Calculate unoccluded region if there is a non-minimized native window.
// Also compute |current_pids_with_visible_windows| as we enumerate
// the windows.
EnumWindows(&ComputeNativeWindowOcclusionStatusCallback,
reinterpret_cast<LPARAM>(&currentPidsWithVisibleWindows));
// Check if mPidsForLocationChangeHook has any pids of processes
// currently without visible windows. If so, unhook the win event,
// remove the pid from mPidsForLocationChangeHook and remove
// the corresponding event hook from mProcessEventHooks.
std::unordered_set<DWORD> pidsToRemove;
for (auto locChangePid : mPidsForLocationChangeHook) {
if (currentPidsWithVisibleWindows.find(locChangePid) ==
currentPidsWithVisibleWindows.end()) {
// Remove the event hook from our map, and unregister the event hook.
// It's possible the eventhook will no longer be valid, but if we don't
// unregister the event hook, a process that toggles between having
// visible windows and not having visible windows could cause duplicate
// event hooks to get registered for the process.
UnhookWinEvent(mProcessEventHooks[locChangePid]);
mProcessEventHooks.erase(locChangePid);
pidsToRemove.insert(locChangePid);
}
}
if (!pidsToRemove.empty()) {
// XXX simplify
for (auto it = mPidsForLocationChangeHook.begin();
it != mPidsForLocationChangeHook.end();) {
if (pidsToRemove.find(*it) != pidsToRemove.end()) {
it = mPidsForLocationChangeHook.erase(it);
} else {
++it;
}
}
}
}
std::unordered_map<HWND, OcclusionState>* map =
&mRootWindowHwndsOcclusionState;
bool showAllWindows = mShowingThumbnails;
RefPtr<Runnable> runnable = NS_NewRunnableFunction(
"CallUpdateOcclusionState", [map, showAllWindows]() {
WinWindowOcclusionTracker::CallUpdateOcclusionState(map,
showAllWindows);
});
mSerializedTaskDispatcher->PostTaskToMain(runnable.forget());
}
void WinWindowOcclusionTracker::WindowOcclusionCalculator::
ScheduleOcclusionCalculationIfNeeded() {
MOZ_ASSERT(IsInWinWindowOcclusionThread());
// OcclusionUpdateRunnable is already queued.
if (mOcclusionUpdateRunnable) {
return;
}
CALC_LOG(LogLevel::Debug, "ScheduleOcclusionCalculationIfNeeded()");
RefPtr<CancelableRunnable> task = new OcclusionUpdateRunnable(this);
mOcclusionUpdateRunnable = task;
mSerializedTaskDispatcher->PostDelayedTaskToCalculator(
task.forget(), kOcclusionUpdateRunnableDelayMs);
}
void WinWindowOcclusionTracker::WindowOcclusionCalculator::
RegisterGlobalEventHook(DWORD aEventMin, DWORD aEventMax) {
HWINEVENTHOOK eventHook =
::SetWinEventHook(aEventMin, aEventMax, nullptr, &EventHookCallback, 0, 0,
WINEVENT_OUTOFCONTEXT);
mGlobalEventHooks.push_back(eventHook);
}
void WinWindowOcclusionTracker::WindowOcclusionCalculator::
RegisterEventHookForProcess(DWORD aPid) {
mPidsForLocationChangeHook.insert(aPid);
mProcessEventHooks[aPid] = SetWinEventHook(
EVENT_OBJECT_LOCATIONCHANGE, EVENT_OBJECT_LOCATIONCHANGE, nullptr,
&EventHookCallback, aPid, 0, WINEVENT_OUTOFCONTEXT);
}
void WinWindowOcclusionTracker::WindowOcclusionCalculator::
RegisterEventHooks() {
MOZ_ASSERT(IsInWinWindowOcclusionThread());
MOZ_RELEASE_ASSERT(mGlobalEventHooks.empty());
CALC_LOG(LogLevel::Info, "RegisterEventHooks()");
// Detects native window lost mouse capture
RegisterGlobalEventHook(EVENT_SYSTEM_CAPTUREEND, EVENT_SYSTEM_CAPTUREEND);
// Detects native window move (drag) and resizing events.
RegisterGlobalEventHook(EVENT_SYSTEM_MOVESIZESTART, EVENT_SYSTEM_MOVESIZEEND);
// Detects native window minimize and restore from taskbar events.
RegisterGlobalEventHook(EVENT_SYSTEM_MINIMIZESTART, EVENT_SYSTEM_MINIMIZEEND);
// Detects foreground window changing.
RegisterGlobalEventHook(EVENT_SYSTEM_FOREGROUND, EVENT_SYSTEM_FOREGROUND);
// Detects objects getting shown and hidden. Used to know when the task bar
// and alt tab are showing preview windows so we can unocclude windows.
RegisterGlobalEventHook(EVENT_OBJECT_SHOW, EVENT_OBJECT_HIDE);
// Detects object state changes, e.g., enable/disable state, native window
// maximize and native window restore events.
RegisterGlobalEventHook(EVENT_OBJECT_STATECHANGE, EVENT_OBJECT_STATECHANGE);
// Cloaking and uncloaking of windows should trigger an occlusion calculation.
// In particular, switching virtual desktops seems to generate these events.
RegisterGlobalEventHook(EVENT_OBJECT_CLOAKED, EVENT_OBJECT_UNCLOAKED);
// Determine which subset of processes to set EVENT_OBJECT_LOCATIONCHANGE on
// because otherwise event throughput is very high, as it generates events
// for location changes of all objects, including the mouse moving on top of a
// window.
UpdateVisibleWindowProcessIds();
for (DWORD pid : mPidsForLocationChangeHook) {
RegisterEventHookForProcess(pid);
}
}
void WinWindowOcclusionTracker::WindowOcclusionCalculator::
UnregisterEventHooks() {
MOZ_ASSERT(IsInWinWindowOcclusionThread());
CALC_LOG(LogLevel::Info, "UnregisterEventHooks()");
for (const auto eventHook : mGlobalEventHooks) {
::UnhookWinEvent(eventHook);
}
mGlobalEventHooks.clear();
for (const auto& [pid, eventHook] : mProcessEventHooks) {
::UnhookWinEvent(eventHook);
}
mProcessEventHooks.clear();
mPidsForLocationChangeHook.clear();
}
bool WinWindowOcclusionTracker::WindowOcclusionCalculator::
ProcessComputeNativeWindowOcclusionStatusCallback(
HWND aHwnd, std::unordered_set<DWORD>* aCurrentPidsWithVisibleWindows) {
LayoutDeviceIntRegion currUnoccludedDestkop = mUnoccludedDesktopRegion;
LayoutDeviceIntRect windowRect;
bool windowIsOccluding =
WindowCanOccludeOtherWindowsOnCurrentVirtualDesktop(aHwnd, &windowRect);
if (windowIsOccluding) {
// Hook this window's process with EVENT_OBJECT_LOCATION_CHANGE, if we are
// not already doing so.
DWORD pid;
::GetWindowThreadProcessId(aHwnd, &pid);
aCurrentPidsWithVisibleWindows->insert(pid);
auto it = mProcessEventHooks.find(pid);
if (it == mProcessEventHooks.end()) {
RegisterEventHookForProcess(pid);
}
// If no more root windows to consider, return true so we can continue
// looking for windows we haven't hooked.
if (mNumRootWindowsWithUnknownOcclusionState == 0) {
return true;
}
mUnoccludedDesktopRegion.SubOut(windowRect);
} else if (mNumRootWindowsWithUnknownOcclusionState == 0) {
// This window can't occlude other windows, but we've determined the
// occlusion state of all root windows, so we can return.
return true;
}
// Ignore moving windows when deciding if windows under it are occluded.
if (aHwnd == mMovingWindow) {
return true;
}
// Check if |hwnd| is a root window; if so, we're done figuring out
// if it's occluded because we've seen all the windows "over" it.
auto it = mRootWindowHwndsOcclusionState.find(aHwnd);
if (it == mRootWindowHwndsOcclusionState.end() ||
it->second != OcclusionState::UNKNOWN) {
return true;
}
CALC_LOG(LogLevel::Debug,
"ProcessComputeNativeWindowOcclusionStatusCallback() windowRect(%d, "
"%d, %d, %d) IsOccluding %d",
windowRect.x, windowRect.y, windowRect.width, windowRect.height,
windowIsOccluding);
// On Win7, default theme makes root windows have complex regions by
// default. But we can still check if their bounding rect is occluded.
if (!windowIsOccluding) {
RECT rect;
if (::GetWindowRect(aHwnd, &rect) != 0) {
LayoutDeviceIntRect windowRect(
rect.left, rect.top, rect.right - rect.left, rect.bottom - rect.top);
currUnoccludedDestkop.SubOut(windowRect);
}
}
it->second = (mUnoccludedDesktopRegion == currUnoccludedDestkop)
? OcclusionState::OCCLUDED
: OcclusionState::VISIBLE;
mNumRootWindowsWithUnknownOcclusionState--;
return true;
}
void WinWindowOcclusionTracker::WindowOcclusionCalculator::
ProcessEventHookCallback(HWINEVENTHOOK aWinEventHook, DWORD aEvent,
HWND aHwnd, LONG aIdObject, LONG aIdChild) {
MOZ_ASSERT(IsInWinWindowOcclusionThread());
// No need to calculate occlusion if a zero HWND generated the event. This
// happens if there is no window associated with the event, e.g., mouse move
// events.
if (!aHwnd) {
return;
}
// We only care about events for window objects. In particular, we don't care
// about OBJID_CARET, which is spammy.
if (aIdObject != OBJID_WINDOW) {
return;
}
CALC_LOG(LogLevel::Debug,
"WindowOcclusionCalculator::ProcessEventHookCallback() aEvent 0x%lx",
aEvent);
// We generally ignore events for popup windows, except for when the taskbar
// is hidden or Windows Taskbar, in which case we recalculate occlusion.
// XXX Chrome Widget popup handling is removed for now.
bool calculateOcclusion = true;
if (::GetWindowLong(aHwnd, GWL_STYLE) & WS_POPUP) {
nsAutoString className;
if (WinUtils::GetClassName(aHwnd, className)) {
calculateOcclusion = className.Equals(L"Shell_TrayWnd");
}
}
// Detect if either the alt tab view or the task list thumbnail is being
// shown. If so, mark all non-hidden windows as occluded, and remember that
// we're in the showing_thumbnails state. This lasts until we get told that
// either the alt tab view or task list thumbnail are hidden.
if (aEvent == EVENT_OBJECT_SHOW) {
// Avoid getting the aHwnd's class name, and recomputing occlusion, if not
// needed.
if (mShowingThumbnails) {
return;
}
nsAutoString className;
if (WinUtils::GetClassName(aHwnd, className)) {
const auto name = NS_ConvertUTF16toUTF8(className);
CALC_LOG(LogLevel::Debug,
"ProcessEventHookCallback() EVENT_OBJECT_SHOW %s", name.get());
if (name.Equals("MultitaskingViewFrame") ||
name.Equals("TaskListThumbnailWnd")) {
CALC_LOG(LogLevel::Info,
"ProcessEventHookCallback() mShowingThumbnails = true");
mShowingThumbnails = true;
std::unordered_map<HWND, OcclusionState>* map =
&mRootWindowHwndsOcclusionState;
bool showAllWindows = mShowingThumbnails;
RefPtr<Runnable> runnable = NS_NewRunnableFunction(
"CallUpdateOcclusionState", [map, showAllWindows]() {
WinWindowOcclusionTracker::CallUpdateOcclusionState(
map, showAllWindows);
});
mSerializedTaskDispatcher->PostTaskToMain(runnable.forget());
}
}
return;
} else if (aEvent == EVENT_OBJECT_HIDE) {
// Avoid getting the aHwnd's class name, and recomputing occlusion, if not
// needed.
if (!mShowingThumbnails) {
return;
}
nsAutoString className;
WinUtils::GetClassName(aHwnd, className);
const auto name = NS_ConvertUTF16toUTF8(className);
CALC_LOG(LogLevel::Debug, "ProcessEventHookCallback() EVENT_OBJECT_HIDE %s",
name.get());
if (name.Equals("MultitaskingViewFrame") ||
name.Equals("TaskListThumbnailWnd")) {
CALC_LOG(LogLevel::Info,
"ProcessEventHookCallback() mShowingThumbnails = false");
mShowingThumbnails = false;
// Let occlusion calculation fix occlusion state, even though hwnd might
// be a popup window.
calculateOcclusion = true;
} else {
return;
}
}
// Don't continually calculate occlusion while a window is moving (unless it's
// a root window), but instead once at the beginning and once at the end.
// Remember the window being moved so if it's a root window, we can ignore
// it when deciding if windows under it are occluded.
else if (aEvent == EVENT_SYSTEM_MOVESIZESTART) {
mMovingWindow = aHwnd;
} else if (aEvent == EVENT_SYSTEM_MOVESIZEEND) {
mMovingWindow = 0;
} else if (mMovingWindow != 0) {
if (aEvent == EVENT_OBJECT_LOCATIONCHANGE ||
aEvent == EVENT_OBJECT_STATECHANGE) {
// Ignore move events if it's not a root window that's being moved. If it
// is a root window, we want to calculate occlusion to support tab
// dragging to windows that were occluded when the drag was started but
// are no longer occluded.
if (mRootWindowHwndsOcclusionState.find(aHwnd) ==
mRootWindowHwndsOcclusionState.end()) {
return;
}
} else {
// If we get an event that isn't a location/state change, then we probably
// missed the movesizeend notification, or got events out of order. In
// that case, we want to go back to normal occlusion calculation.
mMovingWindow = 0;
}
}
if (!calculateOcclusion) {
return;
}
ScheduleOcclusionCalculationIfNeeded();
}
void WinWindowOcclusionTracker::WindowOcclusionCalculator::
ProcessUpdateVisibleWindowProcessIdsCallback(HWND aHwnd) {
MOZ_ASSERT(IsInWinWindowOcclusionThread());
LayoutDeviceIntRect windowRect;
if (WindowCanOccludeOtherWindowsOnCurrentVirtualDesktop(aHwnd, &windowRect)) {
DWORD pid;
::GetWindowThreadProcessId(aHwnd, &pid);
mPidsForLocationChangeHook.insert(pid);
}
}
bool WinWindowOcclusionTracker::WindowOcclusionCalculator::
WindowCanOccludeOtherWindowsOnCurrentVirtualDesktop(
HWND aHwnd, LayoutDeviceIntRect* aWindowRect) {
return IsWindowVisibleAndFullyOpaque(aHwnd, aWindowRect) &&
(IsWindowOnCurrentVirtualDesktop(aHwnd) == Some(true));
}
Maybe<bool> WinWindowOcclusionTracker::WindowOcclusionCalculator::
IsWindowOnCurrentVirtualDesktop(HWND aHwnd) {
if (!mVirtualDesktopManager) {
return Some(true);
}
BOOL onCurrentDesktop;
HRESULT hr = mVirtualDesktopManager->IsWindowOnCurrentVirtualDesktop(
aHwnd, &onCurrentDesktop);
if (FAILED(hr)) {
// In this case, we do not know the window is in which virtual desktop.
return Nothing();
}
if (onCurrentDesktop) {
return Some(true);
}
GUID workspaceGuid;
hr = mVirtualDesktopManager->GetWindowDesktopId(aHwnd, &workspaceGuid);
if (FAILED(hr)) {
// In this case, we do not know the window is in which virtual desktop.
return Nothing();
}
// IsWindowOnCurrentVirtualDesktop() is flaky for newly opened windows,
// which causes test flakiness. Occasionally, it incorrectly says a window
// is not on the current virtual desktop when it is. In this situation,
// it also returns GUID_NULL for the desktop id.
if (workspaceGuid == GUID_NULL) {
// In this case, we do not know if the window is in which virtual desktop.
// But we hanle it as on current virtual desktop.
// It does not cause a problem to window occlusion.
// Since if window is not on current virtual desktop, window size becomes
// (0, 0, 0, 0). It makes window occlusion handling explicit. It is
// necessary for gtest.
return Some(true);
}
return Some(false);
}
#undef LOG
#undef CALC_LOG
} // namespace mozilla::widget