gecko-dev/layout/style/nsCSSRuleProcessor.cpp

4146 строки
142 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
// vim:cindent:tabstop=2:expandtab:shiftwidth=2:
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/*
* style rule processor for CSS style sheets, responsible for selector
* matching and cascading
*/
#define PL_ARENA_CONST_ALIGN_MASK 7
// We want page-sized arenas so there's no fragmentation involved.
// Including plarena.h must come first to avoid it being included by some
// header file thereby making PL_ARENA_CONST_ALIGN_MASK ineffective.
#define NS_CASCADEENUMDATA_ARENA_BLOCK_SIZE (4096)
#include "plarena.h"
#include "nsCSSRuleProcessor.h"
#include "nsRuleProcessorData.h"
#include <algorithm>
#include "nsIAtom.h"
#include "PLDHashTable.h"
#include "nsICSSPseudoComparator.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/css/StyleRule.h"
#include "mozilla/css/GroupRule.h"
#include "nsIDocument.h"
#include "nsPresContext.h"
#include "nsGkAtoms.h"
#include "nsUnicharUtils.h"
#include "nsError.h"
#include "nsRuleWalker.h"
#include "nsCSSPseudoClasses.h"
#include "nsCSSPseudoElements.h"
#include "nsIContent.h"
#include "nsCOMPtr.h"
#include "nsHashKeys.h"
#include "nsStyleUtil.h"
#include "nsQuickSort.h"
#include "nsAttrValue.h"
#include "nsAttrValueInlines.h"
#include "nsAttrName.h"
#include "nsTArray.h"
#include "nsContentUtils.h"
#include "nsIMediaList.h"
#include "nsCSSRules.h"
#include "nsStyleSet.h"
#include "mozilla/dom/Element.h"
#include "nsNthIndexCache.h"
#include "mozilla/ArrayUtils.h"
#include "mozilla/EventStates.h"
#include "mozilla/Preferences.h"
#include "mozilla/LookAndFeel.h"
#include "mozilla/Likely.h"
#include "mozilla/TypedEnumBits.h"
#include "RuleProcessorCache.h"
#include "nsIDOMMutationEvent.h"
#include "nsIMozBrowserFrame.h"
using namespace mozilla;
using namespace mozilla::dom;
#define VISITED_PSEUDO_PREF "layout.css.visited_links_enabled"
static bool gSupportVisitedPseudo = true;
static nsTArray< nsCOMPtr<nsIAtom> >* sSystemMetrics = 0;
#ifdef XP_WIN
uint8_t nsCSSRuleProcessor::sWinThemeId = LookAndFeel::eWindowsTheme_Generic;
#endif
/**
* A struct representing a given CSS rule and a particular selector
* from that rule's selector list.
*/
struct RuleSelectorPair {
RuleSelectorPair(css::StyleRule* aRule, nsCSSSelector* aSelector)
: mRule(aRule), mSelector(aSelector) {}
// If this class ever grows a destructor, deal with
// PerWeightDataListItem appropriately.
css::StyleRule* mRule;
nsCSSSelector* mSelector; // which of |mRule|'s selectors
};
#define NS_IS_ANCESTOR_OPERATOR(ch) \
((ch) == char16_t(' ') || (ch) == char16_t('>'))
/**
* A struct representing a particular rule in an ordered list of rules
* (the ordering depending on the weight of mSelector and the order of
* our rules to start with).
*/
struct RuleValue : RuleSelectorPair {
enum {
eMaxAncestorHashes = 4
};
RuleValue(const RuleSelectorPair& aRuleSelectorPair, int32_t aIndex,
bool aQuirksMode) :
RuleSelectorPair(aRuleSelectorPair),
mIndex(aIndex)
{
CollectAncestorHashes(aQuirksMode);
}
int32_t mIndex; // High index means high weight/order.
uint32_t mAncestorSelectorHashes[eMaxAncestorHashes];
private:
void CollectAncestorHashes(bool aQuirksMode) {
// Collect up our mAncestorSelectorHashes. It's not clear whether it's
// better to stop once we've found eMaxAncestorHashes of them or to keep
// going and preferentially collect information from selectors higher up the
// chain... Let's do the former for now.
size_t hashIndex = 0;
for (nsCSSSelector* sel = mSelector->mNext; sel; sel = sel->mNext) {
if (!NS_IS_ANCESTOR_OPERATOR(sel->mOperator)) {
// |sel| is going to select something that's not actually one of our
// ancestors, so don't add it to mAncestorSelectorHashes. But keep
// going, because it'll select a sibling of one of our ancestors, so its
// ancestors would be our ancestors too.
continue;
}
// Now sel is supposed to select one of our ancestors. Grab
// whatever info we can from it into mAncestorSelectorHashes.
// But in qurks mode, don't grab IDs and classes because those
// need to be matched case-insensitively.
if (!aQuirksMode) {
nsAtomList* ids = sel->mIDList;
while (ids) {
mAncestorSelectorHashes[hashIndex++] = ids->mAtom->hash();
if (hashIndex == eMaxAncestorHashes) {
return;
}
ids = ids->mNext;
}
nsAtomList* classes = sel->mClassList;
while (classes) {
mAncestorSelectorHashes[hashIndex++] = classes->mAtom->hash();
if (hashIndex == eMaxAncestorHashes) {
return;
}
classes = classes->mNext;
}
}
// Only put in the tag name if it's all-lowercase. Otherwise we run into
// trouble because we may test the wrong one of mLowercaseTag and
// mCasedTag against the filter.
if (sel->mLowercaseTag && sel->mCasedTag == sel->mLowercaseTag) {
mAncestorSelectorHashes[hashIndex++] = sel->mLowercaseTag->hash();
if (hashIndex == eMaxAncestorHashes) {
return;
}
}
}
while (hashIndex != eMaxAncestorHashes) {
mAncestorSelectorHashes[hashIndex++] = 0;
}
}
};
// ------------------------------
// Rule hash table
//
// Uses any of the sets of ops below.
struct RuleHashTableEntry : public PLDHashEntryHdr {
// If you add members that have heap allocated memory be sure to change the
// logic in SizeOfRuleHashTable().
// Auto length 1, because we always have at least one entry in mRules.
AutoTArray<RuleValue, 1> mRules;
};
struct RuleHashTagTableEntry : public RuleHashTableEntry {
// If you add members that have heap allocated memory be sure to change the
// logic in RuleHash::SizeOf{In,Ex}cludingThis.
nsCOMPtr<nsIAtom> mTag;
};
static PLDHashNumber
RuleHash_CIHashKey(PLDHashTable *table, const void *key)
{
nsIAtom *atom = const_cast<nsIAtom*>(static_cast<const nsIAtom*>(key));
nsAutoString str;
atom->ToString(str);
nsContentUtils::ASCIIToLower(str);
return HashString(str);
}
typedef nsIAtom*
(* RuleHashGetKey) (PLDHashTable *table, const PLDHashEntryHdr *entry);
struct RuleHashTableOps {
const PLDHashTableOps ops;
// Extra callback to avoid duplicating the matchEntry callback for
// each table. (There used to be a getKey callback in
// PLDHashTableOps.)
RuleHashGetKey getKey;
};
inline const RuleHashTableOps*
ToLocalOps(const PLDHashTableOps *aOps)
{
return (const RuleHashTableOps*)
(((const char*) aOps) - offsetof(RuleHashTableOps, ops));
}
static bool
RuleHash_CIMatchEntry(PLDHashTable *table, const PLDHashEntryHdr *hdr,
const void *key)
{
nsIAtom *match_atom = const_cast<nsIAtom*>(static_cast<const nsIAtom*>
(key));
// Use our extra |getKey| callback to avoid code duplication.
nsIAtom *entry_atom = ToLocalOps(table->Ops())->getKey(table, hdr);
// Check for case-sensitive match first.
if (match_atom == entry_atom)
return true;
// Use EqualsIgnoreASCIICase instead of full on unicode case conversion
// in order to save on performance. This is only used in quirks mode
// anyway.
return
nsContentUtils::EqualsIgnoreASCIICase(nsDependentAtomString(entry_atom),
nsDependentAtomString(match_atom));
}
static bool
RuleHash_CSMatchEntry(PLDHashTable *table, const PLDHashEntryHdr *hdr,
const void *key)
{
nsIAtom *match_atom = const_cast<nsIAtom*>(static_cast<const nsIAtom*>
(key));
// Use our extra |getKey| callback to avoid code duplication.
nsIAtom *entry_atom = ToLocalOps(table->Ops())->getKey(table, hdr);
return match_atom == entry_atom;
}
static void
RuleHash_InitEntry(PLDHashEntryHdr *hdr, const void *key)
{
RuleHashTableEntry* entry = static_cast<RuleHashTableEntry*>(hdr);
new (entry) RuleHashTableEntry();
}
static void
RuleHash_ClearEntry(PLDHashTable *table, PLDHashEntryHdr *hdr)
{
RuleHashTableEntry* entry = static_cast<RuleHashTableEntry*>(hdr);
entry->~RuleHashTableEntry();
}
static void
RuleHash_MoveEntry(PLDHashTable *table, const PLDHashEntryHdr *from,
PLDHashEntryHdr *to)
{
NS_PRECONDITION(from != to, "This is not going to work!");
RuleHashTableEntry *oldEntry =
const_cast<RuleHashTableEntry*>(
static_cast<const RuleHashTableEntry*>(from));
RuleHashTableEntry *newEntry = new (to) RuleHashTableEntry();
newEntry->mRules.SwapElements(oldEntry->mRules);
oldEntry->~RuleHashTableEntry();
}
static bool
RuleHash_TagTable_MatchEntry(PLDHashTable *table, const PLDHashEntryHdr *hdr,
const void *key)
{
nsIAtom *match_atom = const_cast<nsIAtom*>(static_cast<const nsIAtom*>
(key));
nsIAtom *entry_atom = static_cast<const RuleHashTagTableEntry*>(hdr)->mTag;
return match_atom == entry_atom;
}
static void
RuleHash_TagTable_InitEntry(PLDHashEntryHdr *hdr, const void *key)
{
RuleHashTagTableEntry* entry = static_cast<RuleHashTagTableEntry*>(hdr);
new (entry) RuleHashTagTableEntry();
entry->mTag = const_cast<nsIAtom*>(static_cast<const nsIAtom*>(key));
}
static void
RuleHash_TagTable_ClearEntry(PLDHashTable *table, PLDHashEntryHdr *hdr)
{
RuleHashTagTableEntry* entry = static_cast<RuleHashTagTableEntry*>(hdr);
entry->~RuleHashTagTableEntry();
}
static void
RuleHash_TagTable_MoveEntry(PLDHashTable *table, const PLDHashEntryHdr *from,
PLDHashEntryHdr *to)
{
NS_PRECONDITION(from != to, "This is not going to work!");
RuleHashTagTableEntry *oldEntry =
const_cast<RuleHashTagTableEntry*>(
static_cast<const RuleHashTagTableEntry*>(from));
RuleHashTagTableEntry *newEntry = new (to) RuleHashTagTableEntry();
newEntry->mTag.swap(oldEntry->mTag);
newEntry->mRules.SwapElements(oldEntry->mRules);
oldEntry->~RuleHashTagTableEntry();
}
static nsIAtom*
RuleHash_ClassTable_GetKey(PLDHashTable *table, const PLDHashEntryHdr *hdr)
{
const RuleHashTableEntry *entry =
static_cast<const RuleHashTableEntry*>(hdr);
nsCSSSelector* selector = entry->mRules[0].mSelector;
if (selector->IsPseudoElement()) {
selector = selector->mNext;
}
return selector->mClassList->mAtom;
}
static nsIAtom*
RuleHash_IdTable_GetKey(PLDHashTable *table, const PLDHashEntryHdr *hdr)
{
const RuleHashTableEntry *entry =
static_cast<const RuleHashTableEntry*>(hdr);
nsCSSSelector* selector = entry->mRules[0].mSelector;
if (selector->IsPseudoElement()) {
selector = selector->mNext;
}
return selector->mIDList->mAtom;
}
static PLDHashNumber
RuleHash_NameSpaceTable_HashKey(PLDHashTable *table, const void *key)
{
return NS_PTR_TO_INT32(key);
}
static bool
RuleHash_NameSpaceTable_MatchEntry(PLDHashTable *table,
const PLDHashEntryHdr *hdr,
const void *key)
{
const RuleHashTableEntry *entry =
static_cast<const RuleHashTableEntry*>(hdr);
nsCSSSelector* selector = entry->mRules[0].mSelector;
if (selector->IsPseudoElement()) {
selector = selector->mNext;
}
return NS_PTR_TO_INT32(key) == selector->mNameSpace;
}
static const PLDHashTableOps RuleHash_TagTable_Ops = {
PLDHashTable::HashVoidPtrKeyStub,
RuleHash_TagTable_MatchEntry,
RuleHash_TagTable_MoveEntry,
RuleHash_TagTable_ClearEntry,
RuleHash_TagTable_InitEntry
};
// Case-sensitive ops.
static const RuleHashTableOps RuleHash_ClassTable_CSOps = {
{
PLDHashTable::HashVoidPtrKeyStub,
RuleHash_CSMatchEntry,
RuleHash_MoveEntry,
RuleHash_ClearEntry,
RuleHash_InitEntry
},
RuleHash_ClassTable_GetKey
};
// Case-insensitive ops.
static const RuleHashTableOps RuleHash_ClassTable_CIOps = {
{
RuleHash_CIHashKey,
RuleHash_CIMatchEntry,
RuleHash_MoveEntry,
RuleHash_ClearEntry,
RuleHash_InitEntry
},
RuleHash_ClassTable_GetKey
};
// Case-sensitive ops.
static const RuleHashTableOps RuleHash_IdTable_CSOps = {
{
PLDHashTable::HashVoidPtrKeyStub,
RuleHash_CSMatchEntry,
RuleHash_MoveEntry,
RuleHash_ClearEntry,
RuleHash_InitEntry
},
RuleHash_IdTable_GetKey
};
// Case-insensitive ops.
static const RuleHashTableOps RuleHash_IdTable_CIOps = {
{
RuleHash_CIHashKey,
RuleHash_CIMatchEntry,
RuleHash_MoveEntry,
RuleHash_ClearEntry,
RuleHash_InitEntry
},
RuleHash_IdTable_GetKey
};
static const PLDHashTableOps RuleHash_NameSpaceTable_Ops = {
RuleHash_NameSpaceTable_HashKey,
RuleHash_NameSpaceTable_MatchEntry,
RuleHash_MoveEntry,
RuleHash_ClearEntry,
RuleHash_InitEntry
};
#undef RULE_HASH_STATS
#undef PRINT_UNIVERSAL_RULES
#ifdef RULE_HASH_STATS
#define RULE_HASH_STAT_INCREMENT(var_) PR_BEGIN_MACRO ++(var_); PR_END_MACRO
#else
#define RULE_HASH_STAT_INCREMENT(var_) PR_BEGIN_MACRO PR_END_MACRO
#endif
struct NodeMatchContext;
class RuleHash {
public:
explicit RuleHash(bool aQuirksMode);
~RuleHash();
void AppendRule(const RuleSelectorPair &aRuleInfo);
void EnumerateAllRules(Element* aElement, ElementDependentRuleProcessorData* aData,
NodeMatchContext& aNodeMatchContext);
size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const;
size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const;
protected:
typedef nsTArray<RuleValue> RuleValueList;
void AppendRuleToTable(PLDHashTable* aTable, const void* aKey,
const RuleSelectorPair& aRuleInfo);
void AppendUniversalRule(const RuleSelectorPair& aRuleInfo);
int32_t mRuleCount;
PLDHashTable mIdTable;
PLDHashTable mClassTable;
PLDHashTable mTagTable;
PLDHashTable mNameSpaceTable;
RuleValueList mUniversalRules;
struct EnumData {
const RuleValue* mCurValue;
const RuleValue* mEnd;
};
EnumData* mEnumList;
int32_t mEnumListSize;
bool mQuirksMode;
inline EnumData ToEnumData(const RuleValueList& arr) {
EnumData data = { arr.Elements(), arr.Elements() + arr.Length() };
return data;
}
#ifdef RULE_HASH_STATS
uint32_t mUniversalSelectors;
uint32_t mNameSpaceSelectors;
uint32_t mTagSelectors;
uint32_t mClassSelectors;
uint32_t mIdSelectors;
uint32_t mElementsMatched;
uint32_t mElementUniversalCalls;
uint32_t mElementNameSpaceCalls;
uint32_t mElementTagCalls;
uint32_t mElementClassCalls;
uint32_t mElementIdCalls;
#endif // RULE_HASH_STATS
};
RuleHash::RuleHash(bool aQuirksMode)
: mRuleCount(0),
mIdTable(aQuirksMode ? &RuleHash_IdTable_CIOps.ops
: &RuleHash_IdTable_CSOps.ops,
sizeof(RuleHashTableEntry)),
mClassTable(aQuirksMode ? &RuleHash_ClassTable_CIOps.ops
: &RuleHash_ClassTable_CSOps.ops,
sizeof(RuleHashTableEntry)),
mTagTable(&RuleHash_TagTable_Ops, sizeof(RuleHashTagTableEntry)),
mNameSpaceTable(&RuleHash_NameSpaceTable_Ops, sizeof(RuleHashTableEntry)),
mUniversalRules(0),
mEnumList(nullptr), mEnumListSize(0),
mQuirksMode(aQuirksMode)
#ifdef RULE_HASH_STATS
,
mUniversalSelectors(0),
mNameSpaceSelectors(0),
mTagSelectors(0),
mClassSelectors(0),
mIdSelectors(0),
mElementsMatched(0),
mElementUniversalCalls(0),
mElementNameSpaceCalls(0),
mElementTagCalls(0),
mElementClassCalls(0),
mElementIdCalls(0)
#endif
{
MOZ_COUNT_CTOR(RuleHash);
}
RuleHash::~RuleHash()
{
MOZ_COUNT_DTOR(RuleHash);
#ifdef RULE_HASH_STATS
printf(
"RuleHash(%p):\n"
" Selectors: Universal (%u) NameSpace(%u) Tag(%u) Class(%u) Id(%u)\n"
" Content Nodes: Elements(%u)\n"
" Element Calls: Universal(%u) NameSpace(%u) Tag(%u) Class(%u) Id(%u)\n"
static_cast<void*>(this),
mUniversalSelectors, mNameSpaceSelectors, mTagSelectors,
mClassSelectors, mIdSelectors,
mElementsMatched,
mElementUniversalCalls, mElementNameSpaceCalls, mElementTagCalls,
mElementClassCalls, mElementIdCalls);
#ifdef PRINT_UNIVERSAL_RULES
{
if (mUniversalRules.Length() > 0) {
printf(" Universal rules:\n");
for (uint32_t i = 0; i < mUniversalRules.Length(); ++i) {
RuleValue* value = &(mUniversalRules[i]);
nsAutoString selectorText;
uint32_t lineNumber = value->mRule->GetLineNumber();
RefPtr<CSSStyleSheet> cssSheet = value->mRule->GetStyleSheet();
value->mSelector->ToString(selectorText, cssSheet);
printf(" line %d, %s\n",
lineNumber, NS_ConvertUTF16toUTF8(selectorText).get());
}
}
}
#endif // PRINT_UNIVERSAL_RULES
#endif // RULE_HASH_STATS
// Rule Values are arena allocated no need to delete them. Their destructor
// isn't doing any cleanup. So we dont even bother to enumerate through
// the hash tables and call their destructors.
if (nullptr != mEnumList) {
delete [] mEnumList;
}
}
void RuleHash::AppendRuleToTable(PLDHashTable* aTable, const void* aKey,
const RuleSelectorPair& aRuleInfo)
{
// Get a new or existing entry.
auto entry = static_cast<RuleHashTableEntry*>(aTable->Add(aKey, fallible));
if (!entry)
return;
entry->mRules.AppendElement(RuleValue(aRuleInfo, mRuleCount++, mQuirksMode));
}
static void
AppendRuleToTagTable(PLDHashTable* aTable, nsIAtom* aKey,
const RuleValue& aRuleInfo)
{
// Get a new or exisiting entry
auto entry = static_cast<RuleHashTagTableEntry*>(aTable->Add(aKey, fallible));
if (!entry)
return;
entry->mRules.AppendElement(aRuleInfo);
}
void RuleHash::AppendUniversalRule(const RuleSelectorPair& aRuleInfo)
{
mUniversalRules.AppendElement(RuleValue(aRuleInfo, mRuleCount++, mQuirksMode));
}
void RuleHash::AppendRule(const RuleSelectorPair& aRuleInfo)
{
nsCSSSelector *selector = aRuleInfo.mSelector;
if (selector->IsPseudoElement()) {
selector = selector->mNext;
}
if (nullptr != selector->mIDList) {
AppendRuleToTable(&mIdTable, selector->mIDList->mAtom, aRuleInfo);
RULE_HASH_STAT_INCREMENT(mIdSelectors);
}
else if (nullptr != selector->mClassList) {
AppendRuleToTable(&mClassTable, selector->mClassList->mAtom, aRuleInfo);
RULE_HASH_STAT_INCREMENT(mClassSelectors);
}
else if (selector->mLowercaseTag) {
RuleValue ruleValue(aRuleInfo, mRuleCount++, mQuirksMode);
AppendRuleToTagTable(&mTagTable, selector->mLowercaseTag, ruleValue);
RULE_HASH_STAT_INCREMENT(mTagSelectors);
if (selector->mCasedTag &&
selector->mCasedTag != selector->mLowercaseTag) {
AppendRuleToTagTable(&mTagTable, selector->mCasedTag, ruleValue);
RULE_HASH_STAT_INCREMENT(mTagSelectors);
}
}
else if (kNameSpaceID_Unknown != selector->mNameSpace) {
AppendRuleToTable(&mNameSpaceTable,
NS_INT32_TO_PTR(selector->mNameSpace), aRuleInfo);
RULE_HASH_STAT_INCREMENT(mNameSpaceSelectors);
}
else { // universal tag selector
AppendUniversalRule(aRuleInfo);
RULE_HASH_STAT_INCREMENT(mUniversalSelectors);
}
}
// this should cover practically all cases so we don't need to reallocate
#define MIN_ENUM_LIST_SIZE 8
#ifdef RULE_HASH_STATS
#define RULE_HASH_STAT_INCREMENT_LIST_COUNT(list_, var_) \
(var_) += (list_).Length()
#else
#define RULE_HASH_STAT_INCREMENT_LIST_COUNT(list_, var_) \
PR_BEGIN_MACRO PR_END_MACRO
#endif
static inline
void ContentEnumFunc(const RuleValue &value, nsCSSSelector* selector,
ElementDependentRuleProcessorData* data, NodeMatchContext& nodeContext,
AncestorFilter *ancestorFilter);
void RuleHash::EnumerateAllRules(Element* aElement, ElementDependentRuleProcessorData* aData,
NodeMatchContext& aNodeContext)
{
int32_t nameSpace = aElement->GetNameSpaceID();
nsIAtom* tag = aElement->NodeInfo()->NameAtom();
nsIAtom* id = aElement->GetID();
const nsAttrValue* classList = aElement->GetClasses();
MOZ_ASSERT(tag, "How could we not have a tag?");
int32_t classCount = classList ? classList->GetAtomCount() : 0;
// assume 1 universal, tag, id, and namespace, rather than wasting
// time counting
int32_t testCount = classCount + 4;
if (mEnumListSize < testCount) {
delete [] mEnumList;
mEnumListSize = std::max(testCount, MIN_ENUM_LIST_SIZE);
mEnumList = new EnumData[mEnumListSize];
}
int32_t valueCount = 0;
RULE_HASH_STAT_INCREMENT(mElementsMatched);
if (mUniversalRules.Length() != 0) { // universal rules
mEnumList[valueCount++] = ToEnumData(mUniversalRules);
RULE_HASH_STAT_INCREMENT_LIST_COUNT(mUniversalRules, mElementUniversalCalls);
}
// universal rules within the namespace
if (kNameSpaceID_Unknown != nameSpace && mNameSpaceTable.EntryCount() > 0) {
auto entry = static_cast<RuleHashTableEntry*>
(mNameSpaceTable.Search(NS_INT32_TO_PTR(nameSpace)));
if (entry) {
mEnumList[valueCount++] = ToEnumData(entry->mRules);
RULE_HASH_STAT_INCREMENT_LIST_COUNT(entry->mRules, mElementNameSpaceCalls);
}
}
if (mTagTable.EntryCount() > 0) {
auto entry = static_cast<RuleHashTableEntry*>(mTagTable.Search(tag));
if (entry) {
mEnumList[valueCount++] = ToEnumData(entry->mRules);
RULE_HASH_STAT_INCREMENT_LIST_COUNT(entry->mRules, mElementTagCalls);
}
}
if (id && mIdTable.EntryCount() > 0) {
auto entry = static_cast<RuleHashTableEntry*>(mIdTable.Search(id));
if (entry) {
mEnumList[valueCount++] = ToEnumData(entry->mRules);
RULE_HASH_STAT_INCREMENT_LIST_COUNT(entry->mRules, mElementIdCalls);
}
}
if (mClassTable.EntryCount() > 0) {
for (int32_t index = 0; index < classCount; ++index) {
auto entry = static_cast<RuleHashTableEntry*>
(mClassTable.Search(classList->AtomAt(index)));
if (entry) {
mEnumList[valueCount++] = ToEnumData(entry->mRules);
RULE_HASH_STAT_INCREMENT_LIST_COUNT(entry->mRules, mElementClassCalls);
}
}
}
NS_ASSERTION(valueCount <= testCount, "values exceeded list size");
if (valueCount > 0) {
AncestorFilter *filter =
aData->mTreeMatchContext.mAncestorFilter.HasFilter() ?
&aData->mTreeMatchContext.mAncestorFilter : nullptr;
#ifdef DEBUG
if (filter) {
filter->AssertHasAllAncestors(aElement);
}
#endif
// Merge the lists while there are still multiple lists to merge.
while (valueCount > 1) {
int32_t valueIndex = 0;
int32_t lowestRuleIndex = mEnumList[valueIndex].mCurValue->mIndex;
for (int32_t index = 1; index < valueCount; ++index) {
int32_t ruleIndex = mEnumList[index].mCurValue->mIndex;
if (ruleIndex < lowestRuleIndex) {
valueIndex = index;
lowestRuleIndex = ruleIndex;
}
}
const RuleValue *cur = mEnumList[valueIndex].mCurValue;
ContentEnumFunc(*cur, cur->mSelector, aData, aNodeContext, filter);
cur++;
if (cur == mEnumList[valueIndex].mEnd) {
mEnumList[valueIndex] = mEnumList[--valueCount];
} else {
mEnumList[valueIndex].mCurValue = cur;
}
}
// Fast loop over single value.
for (const RuleValue *value = mEnumList[0].mCurValue,
*end = mEnumList[0].mEnd;
value != end; ++value) {
ContentEnumFunc(*value, value->mSelector, aData, aNodeContext, filter);
}
}
}
static size_t
SizeOfRuleHashTable(const PLDHashTable& aTable, MallocSizeOf aMallocSizeOf)
{
size_t n = aTable.ShallowSizeOfExcludingThis(aMallocSizeOf);
for (auto iter = aTable.ConstIter(); !iter.Done(); iter.Next()) {
auto entry = static_cast<RuleHashTableEntry*>(iter.Get());
n += entry->mRules.ShallowSizeOfExcludingThis(aMallocSizeOf);
}
return n;
}
size_t
RuleHash::SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const
{
size_t n = 0;
n += SizeOfRuleHashTable(mIdTable, aMallocSizeOf);
n += SizeOfRuleHashTable(mClassTable, aMallocSizeOf);
n += SizeOfRuleHashTable(mTagTable, aMallocSizeOf);
n += SizeOfRuleHashTable(mNameSpaceTable, aMallocSizeOf);
n += mUniversalRules.ShallowSizeOfExcludingThis(aMallocSizeOf);
return n;
}
size_t
RuleHash::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const
{
return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
}
//--------------------------------
/**
* A struct that stores an nsCSSSelector pointer along side a pointer to
* the rightmost nsCSSSelector in the selector. For example, for
*
* .main p > span
*
* if mSelector points to the |p| nsCSSSelector, mRightmostSelector would
* point to the |span| nsCSSSelector.
*
* Both mSelector and mRightmostSelector are always top-level selectors,
* i.e. they aren't selectors within a :not() or :-moz-any().
*/
struct SelectorPair
{
SelectorPair(nsCSSSelector* aSelector, nsCSSSelector* aRightmostSelector)
: mSelector(aSelector), mRightmostSelector(aRightmostSelector)
{
MOZ_ASSERT(aSelector);
MOZ_ASSERT(mRightmostSelector);
}
SelectorPair(const SelectorPair& aOther)
: mSelector(aOther.mSelector)
, mRightmostSelector(aOther.mRightmostSelector) {}
nsCSSSelector* const mSelector;
nsCSSSelector* const mRightmostSelector;
};
// A hash table mapping atoms to lists of selectors
struct AtomSelectorEntry : public PLDHashEntryHdr {
nsIAtom *mAtom;
// Auto length 2, because a decent fraction of these arrays ends up
// with 2 elements, and each entry is cheap.
AutoTArray<SelectorPair, 2> mSelectors;
};
static void
AtomSelector_ClearEntry(PLDHashTable *table, PLDHashEntryHdr *hdr)
{
(static_cast<AtomSelectorEntry*>(hdr))->~AtomSelectorEntry();
}
static void
AtomSelector_InitEntry(PLDHashEntryHdr *hdr, const void *key)
{
AtomSelectorEntry *entry = static_cast<AtomSelectorEntry*>(hdr);
new (entry) AtomSelectorEntry();
entry->mAtom = const_cast<nsIAtom*>(static_cast<const nsIAtom*>(key));
}
static void
AtomSelector_MoveEntry(PLDHashTable *table, const PLDHashEntryHdr *from,
PLDHashEntryHdr *to)
{
NS_PRECONDITION(from != to, "This is not going to work!");
AtomSelectorEntry *oldEntry =
const_cast<AtomSelectorEntry*>(static_cast<const AtomSelectorEntry*>(from));
AtomSelectorEntry *newEntry = new (to) AtomSelectorEntry();
newEntry->mAtom = oldEntry->mAtom;
newEntry->mSelectors.SwapElements(oldEntry->mSelectors);
oldEntry->~AtomSelectorEntry();
}
static nsIAtom*
AtomSelector_GetKey(PLDHashTable *table, const PLDHashEntryHdr *hdr)
{
const AtomSelectorEntry *entry = static_cast<const AtomSelectorEntry*>(hdr);
return entry->mAtom;
}
// Case-sensitive ops.
static const PLDHashTableOps AtomSelector_CSOps = {
PLDHashTable::HashVoidPtrKeyStub,
PLDHashTable::MatchEntryStub,
AtomSelector_MoveEntry,
AtomSelector_ClearEntry,
AtomSelector_InitEntry
};
// Case-insensitive ops.
static const RuleHashTableOps AtomSelector_CIOps = {
{
RuleHash_CIHashKey,
RuleHash_CIMatchEntry,
AtomSelector_MoveEntry,
AtomSelector_ClearEntry,
AtomSelector_InitEntry
},
AtomSelector_GetKey
};
//--------------------------------
struct RuleCascadeData {
RuleCascadeData(nsIAtom *aMedium, bool aQuirksMode)
: mRuleHash(aQuirksMode),
mStateSelectors(),
mSelectorDocumentStates(0),
mClassSelectors(aQuirksMode ? &AtomSelector_CIOps.ops
: &AtomSelector_CSOps,
sizeof(AtomSelectorEntry)),
mIdSelectors(aQuirksMode ? &AtomSelector_CIOps.ops
: &AtomSelector_CSOps,
sizeof(AtomSelectorEntry)),
// mAttributeSelectors is matching on the attribute _name_, not the
// value, and we case-fold names at parse-time, so this is a
// case-sensitive match.
mAttributeSelectors(&AtomSelector_CSOps, sizeof(AtomSelectorEntry)),
mAnonBoxRules(&RuleHash_TagTable_Ops, sizeof(RuleHashTagTableEntry)),
#ifdef MOZ_XUL
mXULTreeRules(&RuleHash_TagTable_Ops, sizeof(RuleHashTagTableEntry)),
#endif
mKeyframesRuleTable(),
mCounterStyleRuleTable(),
mCacheKey(aMedium),
mNext(nullptr),
mQuirksMode(aQuirksMode)
{
memset(mPseudoElementRuleHashes, 0, sizeof(mPseudoElementRuleHashes));
}
~RuleCascadeData()
{
for (uint32_t i = 0; i < ArrayLength(mPseudoElementRuleHashes); ++i) {
delete mPseudoElementRuleHashes[i];
}
}
size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const;
RuleHash mRuleHash;
RuleHash* mPseudoElementRuleHashes[
static_cast<CSSPseudoElementTypeBase>(CSSPseudoElementType::Count)];
nsTArray<nsCSSRuleProcessor::StateSelector> mStateSelectors;
EventStates mSelectorDocumentStates;
PLDHashTable mClassSelectors;
PLDHashTable mIdSelectors;
nsTArray<nsCSSSelector*> mPossiblyNegatedClassSelectors;
nsTArray<nsCSSSelector*> mPossiblyNegatedIDSelectors;
PLDHashTable mAttributeSelectors;
PLDHashTable mAnonBoxRules;
#ifdef MOZ_XUL
PLDHashTable mXULTreeRules;
#endif
nsTArray<nsFontFaceRuleContainer> mFontFaceRules;
nsTArray<nsCSSKeyframesRule*> mKeyframesRules;
nsTArray<nsCSSFontFeatureValuesRule*> mFontFeatureValuesRules;
nsTArray<nsCSSPageRule*> mPageRules;
nsTArray<nsCSSCounterStyleRule*> mCounterStyleRules;
nsDataHashtable<nsStringHashKey, nsCSSKeyframesRule*> mKeyframesRuleTable;
nsDataHashtable<nsStringHashKey, nsCSSCounterStyleRule*> mCounterStyleRuleTable;
// Looks up or creates the appropriate list in |mAttributeSelectors|.
// Returns null only on allocation failure.
nsTArray<SelectorPair>* AttributeListFor(nsIAtom* aAttribute);
nsMediaQueryResultCacheKey mCacheKey;
RuleCascadeData* mNext; // for a different medium
const bool mQuirksMode;
};
static size_t
SizeOfSelectorsHashTable(const PLDHashTable& aTable, MallocSizeOf aMallocSizeOf)
{
size_t n = aTable.ShallowSizeOfExcludingThis(aMallocSizeOf);
for (auto iter = aTable.ConstIter(); !iter.Done(); iter.Next()) {
auto entry = static_cast<AtomSelectorEntry*>(iter.Get());
n += entry->mSelectors.ShallowSizeOfExcludingThis(aMallocSizeOf);
}
return n;
}
size_t
RuleCascadeData::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const
{
size_t n = aMallocSizeOf(this);
n += mRuleHash.SizeOfExcludingThis(aMallocSizeOf);
for (uint32_t i = 0; i < ArrayLength(mPseudoElementRuleHashes); ++i) {
if (mPseudoElementRuleHashes[i])
n += mPseudoElementRuleHashes[i]->SizeOfIncludingThis(aMallocSizeOf);
}
n += mStateSelectors.ShallowSizeOfExcludingThis(aMallocSizeOf);
n += SizeOfSelectorsHashTable(mIdSelectors, aMallocSizeOf);
n += SizeOfSelectorsHashTable(mClassSelectors, aMallocSizeOf);
n += mPossiblyNegatedClassSelectors.ShallowSizeOfExcludingThis(aMallocSizeOf);
n += mPossiblyNegatedIDSelectors.ShallowSizeOfExcludingThis(aMallocSizeOf);
n += SizeOfSelectorsHashTable(mAttributeSelectors, aMallocSizeOf);
n += SizeOfRuleHashTable(mAnonBoxRules, aMallocSizeOf);
#ifdef MOZ_XUL
n += SizeOfRuleHashTable(mXULTreeRules, aMallocSizeOf);
#endif
n += mFontFaceRules.ShallowSizeOfExcludingThis(aMallocSizeOf);
n += mKeyframesRules.ShallowSizeOfExcludingThis(aMallocSizeOf);
n += mFontFeatureValuesRules.ShallowSizeOfExcludingThis(aMallocSizeOf);
n += mPageRules.ShallowSizeOfExcludingThis(aMallocSizeOf);
n += mCounterStyleRules.ShallowSizeOfExcludingThis(aMallocSizeOf);
n += mKeyframesRuleTable.ShallowSizeOfExcludingThis(aMallocSizeOf);
for (auto iter = mKeyframesRuleTable.ConstIter(); !iter.Done(); iter.Next()) {
// We don't own the nsCSSKeyframesRule objects so we don't count them. We
// do care about the size of the keys' nsAString members' buffers though.
//
// Note that we depend on nsStringHashKey::GetKey() returning a reference,
// since otherwise aKey would be a copy of the string key and we would not
// be measuring the right object here.
n += iter.Key().SizeOfExcludingThisIfUnshared(aMallocSizeOf);
}
return n;
}
nsTArray<SelectorPair>*
RuleCascadeData::AttributeListFor(nsIAtom* aAttribute)
{
auto entry = static_cast<AtomSelectorEntry*>
(mAttributeSelectors.Add(aAttribute, fallible));
if (!entry)
return nullptr;
return &entry->mSelectors;
}
// -------------------------------
// CSS Style rule processor implementation
//
nsCSSRuleProcessor::nsCSSRuleProcessor(const sheet_array_type& aSheets,
SheetType aSheetType,
Element* aScopeElement,
nsCSSRuleProcessor*
aPreviousCSSRuleProcessor,
bool aIsShared)
: mSheets(aSheets)
, mRuleCascades(nullptr)
, mPreviousCacheKey(aPreviousCSSRuleProcessor
? aPreviousCSSRuleProcessor->CloneMQCacheKey()
: UniquePtr<nsMediaQueryResultCacheKey>())
, mLastPresContext(nullptr)
, mScopeElement(aScopeElement)
, mStyleSetRefCnt(0)
, mSheetType(aSheetType)
, mIsShared(aIsShared)
, mMustGatherDocumentRules(aIsShared)
, mInRuleProcessorCache(false)
#ifdef DEBUG
, mDocumentRulesAndCacheKeyValid(false)
#endif
{
NS_ASSERTION(!!mScopeElement == (aSheetType == SheetType::ScopedDoc),
"aScopeElement must be specified iff aSheetType is "
"eScopedDocSheet");
for (sheet_array_type::size_type i = mSheets.Length(); i-- != 0; ) {
mSheets[i]->AddRuleProcessor(this);
}
}
nsCSSRuleProcessor::~nsCSSRuleProcessor()
{
if (mInRuleProcessorCache) {
RuleProcessorCache::RemoveRuleProcessor(this);
}
MOZ_ASSERT(!mExpirationState.IsTracked());
MOZ_ASSERT(mStyleSetRefCnt == 0);
ClearSheets();
ClearRuleCascades();
}
NS_INTERFACE_MAP_BEGIN_CYCLE_COLLECTION(nsCSSRuleProcessor)
NS_INTERFACE_MAP_ENTRY(nsIStyleRuleProcessor)
NS_INTERFACE_MAP_END
NS_IMPL_CYCLE_COLLECTING_ADDREF(nsCSSRuleProcessor)
NS_IMPL_CYCLE_COLLECTING_RELEASE(nsCSSRuleProcessor)
NS_IMPL_CYCLE_COLLECTION_CLASS(nsCSSRuleProcessor)
NS_IMPL_CYCLE_COLLECTION_UNLINK_BEGIN(nsCSSRuleProcessor)
tmp->ClearSheets();
NS_IMPL_CYCLE_COLLECTION_UNLINK(mScopeElement)
NS_IMPL_CYCLE_COLLECTION_UNLINK_END
NS_IMPL_CYCLE_COLLECTION_TRAVERSE_BEGIN(nsCSSRuleProcessor)
NS_IMPL_CYCLE_COLLECTION_TRAVERSE(mSheets)
NS_IMPL_CYCLE_COLLECTION_TRAVERSE(mScopeElement)
NS_IMPL_CYCLE_COLLECTION_TRAVERSE_END
void
nsCSSRuleProcessor::ClearSheets()
{
for (sheet_array_type::size_type i = mSheets.Length(); i-- != 0; ) {
mSheets[i]->DropRuleProcessor(this);
}
mSheets.Clear();
}
/* static */ void
nsCSSRuleProcessor::Startup()
{
Preferences::AddBoolVarCache(&gSupportVisitedPseudo, VISITED_PSEUDO_PREF,
true);
}
static bool
InitSystemMetrics()
{
NS_ASSERTION(!sSystemMetrics, "already initialized");
sSystemMetrics = new nsTArray< nsCOMPtr<nsIAtom> >;
NS_ENSURE_TRUE(sSystemMetrics, false);
/***************************************************************************
* ANY METRICS ADDED HERE SHOULD ALSO BE ADDED AS MEDIA QUERIES IN *
* nsMediaFeatures.cpp *
***************************************************************************/
int32_t metricResult =
LookAndFeel::GetInt(LookAndFeel::eIntID_ScrollArrowStyle);
if (metricResult & LookAndFeel::eScrollArrow_StartBackward) {
sSystemMetrics->AppendElement(nsGkAtoms::scrollbar_start_backward);
}
if (metricResult & LookAndFeel::eScrollArrow_StartForward) {
sSystemMetrics->AppendElement(nsGkAtoms::scrollbar_start_forward);
}
if (metricResult & LookAndFeel::eScrollArrow_EndBackward) {
sSystemMetrics->AppendElement(nsGkAtoms::scrollbar_end_backward);
}
if (metricResult & LookAndFeel::eScrollArrow_EndForward) {
sSystemMetrics->AppendElement(nsGkAtoms::scrollbar_end_forward);
}
metricResult =
LookAndFeel::GetInt(LookAndFeel::eIntID_ScrollSliderStyle);
if (metricResult != LookAndFeel::eScrollThumbStyle_Normal) {
sSystemMetrics->AppendElement(nsGkAtoms::scrollbar_thumb_proportional);
}
metricResult =
LookAndFeel::GetInt(LookAndFeel::eIntID_ImagesInMenus);
if (metricResult) {
sSystemMetrics->AppendElement(nsGkAtoms::images_in_menus);
}
metricResult =
LookAndFeel::GetInt(LookAndFeel::eIntID_ImagesInButtons);
if (metricResult) {
sSystemMetrics->AppendElement(nsGkAtoms::images_in_buttons);
}
metricResult =
LookAndFeel::GetInt(LookAndFeel::eIntID_UseOverlayScrollbars);
if (metricResult) {
sSystemMetrics->AppendElement(nsGkAtoms::overlay_scrollbars);
}
metricResult =
LookAndFeel::GetInt(LookAndFeel::eIntID_MenuBarDrag);
if (metricResult) {
sSystemMetrics->AppendElement(nsGkAtoms::menubar_drag);
}
nsresult rv =
LookAndFeel::GetInt(LookAndFeel::eIntID_WindowsDefaultTheme, &metricResult);
if (NS_SUCCEEDED(rv) && metricResult) {
sSystemMetrics->AppendElement(nsGkAtoms::windows_default_theme);
}
rv = LookAndFeel::GetInt(LookAndFeel::eIntID_MacGraphiteTheme, &metricResult);
if (NS_SUCCEEDED(rv) && metricResult) {
sSystemMetrics->AppendElement(nsGkAtoms::mac_graphite_theme);
}
rv = LookAndFeel::GetInt(LookAndFeel::eIntID_MacLionTheme, &metricResult);
if (NS_SUCCEEDED(rv) && metricResult) {
sSystemMetrics->AppendElement(nsGkAtoms::mac_lion_theme);
}
rv = LookAndFeel::GetInt(LookAndFeel::eIntID_MacYosemiteTheme, &metricResult);
if (NS_SUCCEEDED(rv) && metricResult) {
sSystemMetrics->AppendElement(nsGkAtoms::mac_yosemite_theme);
}
rv = LookAndFeel::GetInt(LookAndFeel::eIntID_DWMCompositor, &metricResult);
if (NS_SUCCEEDED(rv) && metricResult) {
sSystemMetrics->AppendElement(nsGkAtoms::windows_compositor);
}
rv = LookAndFeel::GetInt(LookAndFeel::eIntID_WindowsGlass, &metricResult);
if (NS_SUCCEEDED(rv) && metricResult) {
sSystemMetrics->AppendElement(nsGkAtoms::windows_glass);
}
rv = LookAndFeel::GetInt(LookAndFeel::eIntID_ColorPickerAvailable, &metricResult);
if (NS_SUCCEEDED(rv) && metricResult) {
sSystemMetrics->AppendElement(nsGkAtoms::color_picker_available);
}
rv = LookAndFeel::GetInt(LookAndFeel::eIntID_WindowsClassic, &metricResult);
if (NS_SUCCEEDED(rv) && metricResult) {
sSystemMetrics->AppendElement(nsGkAtoms::windows_classic);
}
rv = LookAndFeel::GetInt(LookAndFeel::eIntID_TouchEnabled, &metricResult);
if (NS_SUCCEEDED(rv) && metricResult) {
sSystemMetrics->AppendElement(nsGkAtoms::touch_enabled);
}
rv = LookAndFeel::GetInt(LookAndFeel::eIntID_SwipeAnimationEnabled,
&metricResult);
if (NS_SUCCEEDED(rv) && metricResult) {
sSystemMetrics->AppendElement(nsGkAtoms::swipe_animation_enabled);
}
// On b2gdroid, make it so that we always have a physical home button from
// gecko's point of view, event if it's just the Android home button remapped.
#ifdef MOZ_B2GDROID
sSystemMetrics->AppendElement(nsGkAtoms::physical_home_button);
#else
rv = LookAndFeel::GetInt(LookAndFeel::eIntID_PhysicalHomeButton,
&metricResult);
if (NS_SUCCEEDED(rv) && metricResult) {
sSystemMetrics->AppendElement(nsGkAtoms::physical_home_button);
}
#endif
#ifdef XP_WIN
if (NS_SUCCEEDED(
LookAndFeel::GetInt(LookAndFeel::eIntID_WindowsThemeIdentifier,
&metricResult))) {
nsCSSRuleProcessor::SetWindowsThemeIdentifier(static_cast<uint8_t>(metricResult));
switch(metricResult) {
case LookAndFeel::eWindowsTheme_Aero:
sSystemMetrics->AppendElement(nsGkAtoms::windows_theme_aero);
break;
case LookAndFeel::eWindowsTheme_AeroLite:
sSystemMetrics->AppendElement(nsGkAtoms::windows_theme_aero_lite);
break;
case LookAndFeel::eWindowsTheme_LunaBlue:
sSystemMetrics->AppendElement(nsGkAtoms::windows_theme_luna_blue);
break;
case LookAndFeel::eWindowsTheme_LunaOlive:
sSystemMetrics->AppendElement(nsGkAtoms::windows_theme_luna_olive);
break;
case LookAndFeel::eWindowsTheme_LunaSilver:
sSystemMetrics->AppendElement(nsGkAtoms::windows_theme_luna_silver);
break;
case LookAndFeel::eWindowsTheme_Royale:
sSystemMetrics->AppendElement(nsGkAtoms::windows_theme_royale);
break;
case LookAndFeel::eWindowsTheme_Zune:
sSystemMetrics->AppendElement(nsGkAtoms::windows_theme_zune);
break;
case LookAndFeel::eWindowsTheme_Generic:
sSystemMetrics->AppendElement(nsGkAtoms::windows_theme_generic);
break;
}
}
#endif
return true;
}
/* static */ void
nsCSSRuleProcessor::FreeSystemMetrics()
{
delete sSystemMetrics;
sSystemMetrics = nullptr;
}
/* static */ void
nsCSSRuleProcessor::Shutdown()
{
FreeSystemMetrics();
}
/* static */ bool
nsCSSRuleProcessor::HasSystemMetric(nsIAtom* aMetric)
{
if (!sSystemMetrics && !InitSystemMetrics()) {
return false;
}
return sSystemMetrics->IndexOf(aMetric) != sSystemMetrics->NoIndex;
}
#ifdef XP_WIN
/* static */ uint8_t
nsCSSRuleProcessor::GetWindowsThemeIdentifier()
{
if (!sSystemMetrics)
InitSystemMetrics();
return sWinThemeId;
}
#endif
/* static */
EventStates
nsCSSRuleProcessor::GetContentState(Element* aElement, const TreeMatchContext& aTreeMatchContext)
{
EventStates state = aElement->StyleState();
// If we are not supposed to mark visited links as such, be sure to
// flip the bits appropriately. We want to do this here, rather
// than in GetContentStateForVisitedHandling, so that we don't
// expose that :visited support is disabled to the Web page.
if (state.HasState(NS_EVENT_STATE_VISITED) &&
(!gSupportVisitedPseudo ||
aElement->OwnerDoc()->IsBeingUsedAsImage() ||
aTreeMatchContext.mUsingPrivateBrowsing)) {
state &= ~NS_EVENT_STATE_VISITED;
state |= NS_EVENT_STATE_UNVISITED;
}
return state;
}
/* static */
bool
nsCSSRuleProcessor::IsLink(Element* aElement)
{
EventStates state = aElement->StyleState();
return state.HasAtLeastOneOfStates(NS_EVENT_STATE_VISITED | NS_EVENT_STATE_UNVISITED);
}
/* static */
EventStates
nsCSSRuleProcessor::GetContentStateForVisitedHandling(
Element* aElement,
const TreeMatchContext& aTreeMatchContext,
nsRuleWalker::VisitedHandlingType aVisitedHandling,
bool aIsRelevantLink)
{
EventStates contentState = GetContentState(aElement, aTreeMatchContext);
if (contentState.HasAtLeastOneOfStates(NS_EVENT_STATE_VISITED | NS_EVENT_STATE_UNVISITED)) {
MOZ_ASSERT(IsLink(aElement), "IsLink() should match state");
contentState &= ~(NS_EVENT_STATE_VISITED | NS_EVENT_STATE_UNVISITED);
if (aIsRelevantLink) {
switch (aVisitedHandling) {
case nsRuleWalker::eRelevantLinkUnvisited:
contentState |= NS_EVENT_STATE_UNVISITED;
break;
case nsRuleWalker::eRelevantLinkVisited:
contentState |= NS_EVENT_STATE_VISITED;
break;
case nsRuleWalker::eLinksVisitedOrUnvisited:
contentState |= NS_EVENT_STATE_UNVISITED | NS_EVENT_STATE_VISITED;
break;
}
} else {
contentState |= NS_EVENT_STATE_UNVISITED;
}
}
return contentState;
}
/**
* A |NodeMatchContext| has data about matching a selector (without
* combinators) against a single node. It contains only input to the
* matching.
*
* Unlike |RuleProcessorData|, which is similar, a |NodeMatchContext|
* can vary depending on the selector matching process. In other words,
* there might be multiple NodeMatchContexts corresponding to a single
* node, but only one possible RuleProcessorData.
*/
struct NodeMatchContext {
// In order to implement nsCSSRuleProcessor::HasStateDependentStyle,
// we need to be able to see if a node might match an
// event-state-dependent selector for any value of that event state.
// So mStateMask contains the states that should NOT be tested.
//
// NOTE: For |mStateMask| to work correctly, it's important that any
// change that changes multiple state bits include all those state
// bits in the notification. Otherwise, if multiple states change but
// we do separate notifications then we might determine the style is
// not state-dependent when it really is (e.g., determining that a
// :hover:active rule no longer matches when both states are unset).
const EventStates mStateMask;
// Is this link the unique link whose visitedness can affect the style
// of the node being matched? (That link is the nearest link to the
// node being matched that is itself or an ancestor.)
//
// Always false when TreeMatchContext::mForStyling is false. (We
// could figure it out for SelectorListMatches, but we're starting
// from the middle of the selector list when doing
// Has{Attribute,State}DependentStyle, so we can't tell. So when
// mForStyling is false, we have to assume we don't know.)
const bool mIsRelevantLink;
NodeMatchContext(EventStates aStateMask, bool aIsRelevantLink)
: mStateMask(aStateMask)
, mIsRelevantLink(aIsRelevantLink)
{
}
};
/**
* Additional information about a selector (without combinators) that is
* being matched.
*/
enum class SelectorMatchesFlags : uint8_t {
NONE = 0,
// The selector's flags are unknown. This happens when you don't know
// if you're starting from the top of a selector. Only used in cases
// where it's acceptable for matching to return a false positive.
// (It's not OK to return a false negative.)
UNKNOWN = 1 << 0,
// The selector is part of a compound selector which has been split in
// half, where the other half is a pseudo-element. The current
// selector is not a pseudo-element itself.
HAS_PSEUDO_ELEMENT = 1 << 1,
// The selector is part of an argument to a functional pseudo-class or
// pseudo-element.
IS_PSEUDO_CLASS_ARGUMENT = 1 << 2
};
MOZ_MAKE_ENUM_CLASS_BITWISE_OPERATORS(SelectorMatchesFlags)
static bool ValueIncludes(const nsSubstring& aValueList,
const nsSubstring& aValue,
const nsStringComparator& aComparator)
{
const char16_t *p = aValueList.BeginReading(),
*p_end = aValueList.EndReading();
while (p < p_end) {
// skip leading space
while (p != p_end && nsContentUtils::IsHTMLWhitespace(*p))
++p;
const char16_t *val_start = p;
// look for space or end
while (p != p_end && !nsContentUtils::IsHTMLWhitespace(*p))
++p;
const char16_t *val_end = p;
if (val_start < val_end &&
aValue.Equals(Substring(val_start, val_end), aComparator))
return true;
++p; // we know the next character is not whitespace
}
return false;
}
// Return whether the selector matches conditions for the :active and
// :hover quirk.
static inline bool ActiveHoverQuirkMatches(nsCSSSelector* aSelector,
SelectorMatchesFlags aSelectorFlags)
{
if (aSelector->HasTagSelector() || aSelector->mAttrList ||
aSelector->mIDList || aSelector->mClassList ||
aSelector->IsPseudoElement() ||
// Having this quirk means that some selectors will no longer match,
// so it's better to return false when we aren't sure (i.e., the
// flags are unknown).
aSelectorFlags & (SelectorMatchesFlags::UNKNOWN |
SelectorMatchesFlags::HAS_PSEUDO_ELEMENT |
SelectorMatchesFlags::IS_PSEUDO_CLASS_ARGUMENT)) {
return false;
}
// No pseudo-class other than :active and :hover.
for (nsPseudoClassList* pseudoClass = aSelector->mPseudoClassList;
pseudoClass; pseudoClass = pseudoClass->mNext) {
if (pseudoClass->mType != nsCSSPseudoClasses::ePseudoClass_hover &&
pseudoClass->mType != nsCSSPseudoClasses::ePseudoClass_active) {
return false;
}
}
return true;
}
static inline bool
IsSignificantChild(nsIContent* aChild, bool aTextIsSignificant,
bool aWhitespaceIsSignificant)
{
return nsStyleUtil::IsSignificantChild(aChild, aTextIsSignificant,
aWhitespaceIsSignificant);
}
// This function is to be called once we have fetched a value for an attribute
// whose namespace and name match those of aAttrSelector. This function
// performs comparisons on the value only, based on aAttrSelector->mFunction.
static bool AttrMatchesValue(const nsAttrSelector* aAttrSelector,
const nsString& aValue, bool isHTML)
{
NS_PRECONDITION(aAttrSelector, "Must have an attribute selector");
// http://lists.w3.org/Archives/Public/www-style/2008Apr/0038.html
// *= (CONTAINSMATCH) ~= (INCLUDES) ^= (BEGINSMATCH) $= (ENDSMATCH)
// all accept the empty string, but match nothing.
if (aAttrSelector->mValue.IsEmpty() &&
(aAttrSelector->mFunction == NS_ATTR_FUNC_INCLUDES ||
aAttrSelector->mFunction == NS_ATTR_FUNC_ENDSMATCH ||
aAttrSelector->mFunction == NS_ATTR_FUNC_BEGINSMATCH ||
aAttrSelector->mFunction == NS_ATTR_FUNC_CONTAINSMATCH))
return false;
const nsDefaultStringComparator defaultComparator;
const nsASCIICaseInsensitiveStringComparator ciComparator;
const nsStringComparator& comparator =
aAttrSelector->IsValueCaseSensitive(isHTML)
? static_cast<const nsStringComparator&>(defaultComparator)
: static_cast<const nsStringComparator&>(ciComparator);
switch (aAttrSelector->mFunction) {
case NS_ATTR_FUNC_EQUALS:
return aValue.Equals(aAttrSelector->mValue, comparator);
case NS_ATTR_FUNC_INCLUDES:
return ValueIncludes(aValue, aAttrSelector->mValue, comparator);
case NS_ATTR_FUNC_DASHMATCH:
return nsStyleUtil::DashMatchCompare(aValue, aAttrSelector->mValue, comparator);
case NS_ATTR_FUNC_ENDSMATCH:
return StringEndsWith(aValue, aAttrSelector->mValue, comparator);
case NS_ATTR_FUNC_BEGINSMATCH:
return StringBeginsWith(aValue, aAttrSelector->mValue, comparator);
case NS_ATTR_FUNC_CONTAINSMATCH:
return FindInReadable(aAttrSelector->mValue, aValue, comparator);
default:
NS_NOTREACHED("Shouldn't be ending up here");
return false;
}
}
static inline bool
edgeChildMatches(Element* aElement, TreeMatchContext& aTreeMatchContext,
bool checkFirst, bool checkLast)
{
nsIContent *parent = aElement->GetParent();
if (!parent) {
return false;
}
if (aTreeMatchContext.mForStyling)
parent->SetFlags(NODE_HAS_EDGE_CHILD_SELECTOR);
return (!checkFirst ||
aTreeMatchContext.mNthIndexCache.
GetNthIndex(aElement, false, false, true) == 1) &&
(!checkLast ||
aTreeMatchContext.mNthIndexCache.
GetNthIndex(aElement, false, true, true) == 1);
}
static inline bool
nthChildGenericMatches(Element* aElement,
TreeMatchContext& aTreeMatchContext,
nsPseudoClassList* pseudoClass,
bool isOfType, bool isFromEnd)
{
nsIContent *parent = aElement->GetParent();
if (!parent) {
return false;
}
if (aTreeMatchContext.mForStyling) {
if (isFromEnd)
parent->SetFlags(NODE_HAS_SLOW_SELECTOR);
else
parent->SetFlags(NODE_HAS_SLOW_SELECTOR_LATER_SIBLINGS);
}
const int32_t index = aTreeMatchContext.mNthIndexCache.
GetNthIndex(aElement, isOfType, isFromEnd, false);
if (index <= 0) {
// Node is anonymous content (not really a child of its parent).
return false;
}
const int32_t a = pseudoClass->u.mNumbers[0];
const int32_t b = pseudoClass->u.mNumbers[1];
// result should be true if there exists n >= 0 such that
// a * n + b == index.
if (a == 0) {
return b == index;
}
// Integer division in C does truncation (towards 0). So
// check that the result is nonnegative, and that there was no
// truncation.
const CheckedInt<int32_t> indexMinusB = CheckedInt<int32_t>(index) - b;
const CheckedInt<int32_t> n = indexMinusB / a;
return n.isValid() &&
n.value() >= 0 &&
a * n == indexMinusB;
}
static inline bool
edgeOfTypeMatches(Element* aElement, TreeMatchContext& aTreeMatchContext,
bool checkFirst, bool checkLast)
{
nsIContent *parent = aElement->GetParent();
if (!parent) {
return false;
}
if (aTreeMatchContext.mForStyling) {
if (checkLast)
parent->SetFlags(NODE_HAS_SLOW_SELECTOR);
else
parent->SetFlags(NODE_HAS_SLOW_SELECTOR_LATER_SIBLINGS);
}
return (!checkFirst ||
aTreeMatchContext.mNthIndexCache.
GetNthIndex(aElement, true, false, true) == 1) &&
(!checkLast ||
aTreeMatchContext.mNthIndexCache.
GetNthIndex(aElement, true, true, true) == 1);
}
static inline bool
checkGenericEmptyMatches(Element* aElement,
TreeMatchContext& aTreeMatchContext,
bool isWhitespaceSignificant)
{
nsIContent *child = nullptr;
int32_t index = -1;
if (aTreeMatchContext.mForStyling)
aElement->SetFlags(NODE_HAS_EMPTY_SELECTOR);
do {
child = aElement->GetChildAt(++index);
// stop at first non-comment (and non-whitespace for
// :-moz-only-whitespace) node
} while (child && !IsSignificantChild(child, true, isWhitespaceSignificant));
return (child == nullptr);
}
// Arrays of the states that are relevant for various pseudoclasses.
static const EventStates sPseudoClassStateDependences[] = {
#define CSS_PSEUDO_CLASS(_name, _value, _flags, _pref) \
EventStates(),
#define CSS_STATE_DEPENDENT_PSEUDO_CLASS(_name, _value, _flags, _pref, _states) \
_states,
#include "nsCSSPseudoClassList.h"
#undef CSS_STATE_DEPENDENT_PSEUDO_CLASS
#undef CSS_PSEUDO_CLASS
// Add more entries for our fake values to make sure we can't
// index out of bounds into this array no matter what.
EventStates(),
EventStates()
};
static const EventStates sPseudoClassStates[] = {
#define CSS_PSEUDO_CLASS(_name, _value, _flags, _pref) \
EventStates(),
#define CSS_STATE_PSEUDO_CLASS(_name, _value, _flags, _pref, _states) \
_states,
#include "nsCSSPseudoClassList.h"
#undef CSS_STATE_PSEUDO_CLASS
#undef CSS_PSEUDO_CLASS
// Add more entries for our fake values to make sure we can't
// index out of bounds into this array no matter what.
EventStates(),
EventStates()
};
static_assert(MOZ_ARRAY_LENGTH(sPseudoClassStates) ==
nsCSSPseudoClasses::ePseudoClass_NotPseudoClass + 1,
"ePseudoClass_NotPseudoClass is no longer at the end of"
"sPseudoClassStates");
static bool
StateSelectorMatches(Element* aElement,
nsCSSSelector* aSelector,
NodeMatchContext& aNodeMatchContext,
TreeMatchContext& aTreeMatchContext,
SelectorMatchesFlags aSelectorFlags,
bool* const aDependence,
EventStates aStatesToCheck)
{
NS_PRECONDITION(!aStatesToCheck.IsEmpty(),
"should only need to call StateSelectorMatches if "
"aStatesToCheck is not empty");
// Bit-based pseudo-classes
if (aStatesToCheck.HasAtLeastOneOfStates(NS_EVENT_STATE_ACTIVE |
NS_EVENT_STATE_HOVER) &&
aTreeMatchContext.mCompatMode == eCompatibility_NavQuirks &&
ActiveHoverQuirkMatches(aSelector, aSelectorFlags) &&
aElement->IsHTMLElement() && !nsCSSRuleProcessor::IsLink(aElement)) {
// In quirks mode, only make links sensitive to selectors ":active"
// and ":hover".
return false;
}
if (aTreeMatchContext.mForStyling &&
aStatesToCheck.HasAtLeastOneOfStates(NS_EVENT_STATE_HOVER)) {
// Mark the element as having :hover-dependent style
aElement->SetHasRelevantHoverRules();
}
if (aNodeMatchContext.mStateMask.HasAtLeastOneOfStates(aStatesToCheck)) {
if (aDependence) {
*aDependence = true;
}
} else {
EventStates contentState =
nsCSSRuleProcessor::GetContentStateForVisitedHandling(
aElement,
aTreeMatchContext,
aTreeMatchContext.VisitedHandling(),
aNodeMatchContext.mIsRelevantLink);
if (!contentState.HasAtLeastOneOfStates(aStatesToCheck)) {
return false;
}
}
return true;
}
static bool
StateSelectorMatches(Element* aElement,
nsCSSSelector* aSelector,
NodeMatchContext& aNodeMatchContext,
TreeMatchContext& aTreeMatchContext,
SelectorMatchesFlags aSelectorFlags)
{
for (nsPseudoClassList* pseudoClass = aSelector->mPseudoClassList;
pseudoClass; pseudoClass = pseudoClass->mNext) {
EventStates statesToCheck = sPseudoClassStates[pseudoClass->mType];
if (!statesToCheck.IsEmpty() &&
!StateSelectorMatches(aElement, aSelector, aNodeMatchContext,
aTreeMatchContext, aSelectorFlags, nullptr,
statesToCheck)) {
return false;
}
}
return true;
}
// |aDependence| has two functions:
// * when non-null, it indicates that we're processing a negation,
// which is done only when SelectorMatches calls itself recursively
// * what it points to should be set to true whenever a test is skipped
// because of aNodeMatchContent.mStateMask
static bool SelectorMatches(Element* aElement,
nsCSSSelector* aSelector,
NodeMatchContext& aNodeMatchContext,
TreeMatchContext& aTreeMatchContext,
SelectorMatchesFlags aSelectorFlags,
bool* const aDependence = nullptr)
{
NS_PRECONDITION(!aSelector->IsPseudoElement(),
"Pseudo-element snuck into SelectorMatches?");
MOZ_ASSERT(aTreeMatchContext.mForStyling ||
!aNodeMatchContext.mIsRelevantLink,
"mIsRelevantLink should be set to false when mForStyling "
"is false since we don't know how to set it correctly in "
"Has(Attribute|State)DependentStyle");
// namespace/tag match
// optimization : bail out early if we can
if ((kNameSpaceID_Unknown != aSelector->mNameSpace &&
aElement->GetNameSpaceID() != aSelector->mNameSpace))
return false;
if (aSelector->mLowercaseTag) {
nsIAtom* selectorTag =
(aTreeMatchContext.mIsHTMLDocument && aElement->IsHTMLElement()) ?
aSelector->mLowercaseTag : aSelector->mCasedTag;
if (selectorTag != aElement->NodeInfo()->NameAtom()) {
return false;
}
}
nsAtomList* IDList = aSelector->mIDList;
if (IDList) {
nsIAtom* id = aElement->GetID();
if (id) {
// case sensitivity: bug 93371
const bool isCaseSensitive =
aTreeMatchContext.mCompatMode != eCompatibility_NavQuirks;
if (isCaseSensitive) {
do {
if (IDList->mAtom != id) {
return false;
}
IDList = IDList->mNext;
} while (IDList);
} else {
// Use EqualsIgnoreASCIICase instead of full on unicode case conversion
// in order to save on performance. This is only used in quirks mode
// anyway.
nsDependentAtomString id1Str(id);
do {
if (!nsContentUtils::EqualsIgnoreASCIICase(id1Str,
nsDependentAtomString(IDList->mAtom))) {
return false;
}
IDList = IDList->mNext;
} while (IDList);
}
} else {
// Element has no id but we have an id selector
return false;
}
}
nsAtomList* classList = aSelector->mClassList;
if (classList) {
// test for class match
const nsAttrValue *elementClasses = aElement->GetClasses();
if (!elementClasses) {
// Element has no classes but we have a class selector
return false;
}
// case sensitivity: bug 93371
const bool isCaseSensitive =
aTreeMatchContext.mCompatMode != eCompatibility_NavQuirks;
while (classList) {
if (!elementClasses->Contains(classList->mAtom,
isCaseSensitive ?
eCaseMatters : eIgnoreCase)) {
return false;
}
classList = classList->mNext;
}
}
const bool isNegated = (aDependence != nullptr);
// The selectors for which we set node bits are, unfortunately, early
// in this function (because they're pseudo-classes, which are
// generally quick to test, and thus earlier). If they were later,
// we'd probably avoid setting those bits in more cases where setting
// them is unnecessary.
NS_ASSERTION(aNodeMatchContext.mStateMask.IsEmpty() ||
!aTreeMatchContext.mForStyling,
"mForStyling must be false if we're just testing for "
"state-dependence");
// test for pseudo class match
for (nsPseudoClassList* pseudoClass = aSelector->mPseudoClassList;
pseudoClass; pseudoClass = pseudoClass->mNext) {
EventStates statesToCheck = sPseudoClassStates[pseudoClass->mType];
if (statesToCheck.IsEmpty()) {
// keep the cases here in the same order as the list in
// nsCSSPseudoClassList.h
switch (pseudoClass->mType) {
case nsCSSPseudoClasses::ePseudoClass_empty:
if (!checkGenericEmptyMatches(aElement, aTreeMatchContext, true)) {
return false;
}
break;
case nsCSSPseudoClasses::ePseudoClass_mozOnlyWhitespace:
if (!checkGenericEmptyMatches(aElement, aTreeMatchContext, false)) {
return false;
}
break;
case nsCSSPseudoClasses::ePseudoClass_mozEmptyExceptChildrenWithLocalname:
{
NS_ASSERTION(pseudoClass->u.mString, "Must have string!");
nsIContent *child = nullptr;
int32_t index = -1;
if (aTreeMatchContext.mForStyling)
// FIXME: This isn't sufficient to handle:
// :-moz-empty-except-children-with-localname() + E
// :-moz-empty-except-children-with-localname() ~ E
// because we don't know to restyle the grandparent of the
// inserted/removed element (as in bug 534804 for :empty).
aElement->SetFlags(NODE_HAS_SLOW_SELECTOR);
do {
child = aElement->GetChildAt(++index);
} while (child &&
(!IsSignificantChild(child, true, false) ||
(child->GetNameSpaceID() == aElement->GetNameSpaceID() &&
child->NodeInfo()->NameAtom()->Equals(nsDependentString(pseudoClass->u.mString)))));
if (child != nullptr) {
return false;
}
}
break;
case nsCSSPseudoClasses::ePseudoClass_lang:
{
NS_ASSERTION(nullptr != pseudoClass->u.mString, "null lang parameter");
if (!pseudoClass->u.mString || !*pseudoClass->u.mString) {
return false;
}
// We have to determine the language of the current element. Since
// this is currently no property and since the language is inherited
// from the parent we have to be prepared to look at all parent
// nodes. The language itself is encoded in the LANG attribute.
nsAutoString language;
if (aElement->GetLang(language)) {
if (!nsStyleUtil::DashMatchCompare(language,
nsDependentString(pseudoClass->u.mString),
nsASCIICaseInsensitiveStringComparator())) {
return false;
}
// This pseudo-class matched; move on to the next thing
break;
}
nsIDocument* doc = aTreeMatchContext.mDocument;
if (doc) {
// Try to get the language from the HTTP header or if this
// is missing as well from the preferences.
// The content language can be a comma-separated list of
// language codes.
doc->GetContentLanguage(language);
nsDependentString langString(pseudoClass->u.mString);
language.StripWhitespace();
int32_t begin = 0;
int32_t len = language.Length();
while (begin < len) {
int32_t end = language.FindChar(char16_t(','), begin);
if (end == kNotFound) {
end = len;
}
if (nsStyleUtil::DashMatchCompare(Substring(language, begin,
end-begin),
langString,
nsASCIICaseInsensitiveStringComparator())) {
break;
}
begin = end + 1;
}
if (begin < len) {
// This pseudo-class matched
break;
}
}
}
return false;
case nsCSSPseudoClasses::ePseudoClass_mozBoundElement:
if (aTreeMatchContext.mScopedRoot != aElement) {
return false;
}
break;
case nsCSSPseudoClasses::ePseudoClass_root:
if (aElement != aElement->OwnerDoc()->GetRootElement()) {
return false;
}
break;
case nsCSSPseudoClasses::ePseudoClass_any:
{
nsCSSSelectorList *l;
for (l = pseudoClass->u.mSelectors; l; l = l->mNext) {
nsCSSSelector *s = l->mSelectors;
MOZ_ASSERT(!s->mNext && !s->IsPseudoElement(),
"parser failed");
if (SelectorMatches(
aElement, s, aNodeMatchContext, aTreeMatchContext,
SelectorMatchesFlags::IS_PSEUDO_CLASS_ARGUMENT)) {
break;
}
}
if (!l) {
return false;
}
}
break;
case nsCSSPseudoClasses::ePseudoClass_firstChild:
if (!edgeChildMatches(aElement, aTreeMatchContext, true, false)) {
return false;
}
break;
case nsCSSPseudoClasses::ePseudoClass_firstNode:
{
nsIContent *firstNode = nullptr;
nsIContent *parent = aElement->GetParent();
if (parent) {
if (aTreeMatchContext.mForStyling)
parent->SetFlags(NODE_HAS_EDGE_CHILD_SELECTOR);
int32_t index = -1;
do {
firstNode = parent->GetChildAt(++index);
// stop at first non-comment and non-whitespace node
} while (firstNode &&
!IsSignificantChild(firstNode, true, false));
}
if (aElement != firstNode) {
return false;
}
}
break;
case nsCSSPseudoClasses::ePseudoClass_lastChild:
if (!edgeChildMatches(aElement, aTreeMatchContext, false, true)) {
return false;
}
break;
case nsCSSPseudoClasses::ePseudoClass_lastNode:
{
nsIContent *lastNode = nullptr;
nsIContent *parent = aElement->GetParent();
if (parent) {
if (aTreeMatchContext.mForStyling)
parent->SetFlags(NODE_HAS_EDGE_CHILD_SELECTOR);
uint32_t index = parent->GetChildCount();
do {
lastNode = parent->GetChildAt(--index);
// stop at first non-comment and non-whitespace node
} while (lastNode &&
!IsSignificantChild(lastNode, true, false));
}
if (aElement != lastNode) {
return false;
}
}
break;
case nsCSSPseudoClasses::ePseudoClass_onlyChild:
if (!edgeChildMatches(aElement, aTreeMatchContext, true, true)) {
return false;
}
break;
case nsCSSPseudoClasses::ePseudoClass_firstOfType:
if (!edgeOfTypeMatches(aElement, aTreeMatchContext, true, false)) {
return false;
}
break;
case nsCSSPseudoClasses::ePseudoClass_lastOfType:
if (!edgeOfTypeMatches(aElement, aTreeMatchContext, false, true)) {
return false;
}
break;
case nsCSSPseudoClasses::ePseudoClass_onlyOfType:
if (!edgeOfTypeMatches(aElement, aTreeMatchContext, true, true)) {
return false;
}
break;
case nsCSSPseudoClasses::ePseudoClass_nthChild:
if (!nthChildGenericMatches(aElement, aTreeMatchContext, pseudoClass,
false, false)) {
return false;
}
break;
case nsCSSPseudoClasses::ePseudoClass_nthLastChild:
if (!nthChildGenericMatches(aElement, aTreeMatchContext, pseudoClass,
false, true)) {
return false;
}
break;
case nsCSSPseudoClasses::ePseudoClass_nthOfType:
if (!nthChildGenericMatches(aElement, aTreeMatchContext, pseudoClass,
true, false)) {
return false;
}
break;
case nsCSSPseudoClasses::ePseudoClass_nthLastOfType:
if (!nthChildGenericMatches(aElement, aTreeMatchContext, pseudoClass,
true, true)) {
return false;
}
break;
case nsCSSPseudoClasses::ePseudoClass_mozIsHTML:
if (!aTreeMatchContext.mIsHTMLDocument || !aElement->IsHTMLElement()) {
return false;
}
break;
case nsCSSPseudoClasses::ePseudoClass_mozNativeAnonymous:
if (!aElement->IsInNativeAnonymousSubtree()) {
return false;
}
break;
case nsCSSPseudoClasses::ePseudoClass_mozSystemMetric:
{
nsCOMPtr<nsIAtom> metric = do_GetAtom(pseudoClass->u.mString);
if (!nsCSSRuleProcessor::HasSystemMetric(metric)) {
return false;
}
}
break;
case nsCSSPseudoClasses::ePseudoClass_mozLocaleDir:
{
bool docIsRTL =
aTreeMatchContext.mDocument->GetDocumentState().
HasState(NS_DOCUMENT_STATE_RTL_LOCALE);
nsDependentString dirString(pseudoClass->u.mString);
if (dirString.EqualsLiteral("rtl")) {
if (!docIsRTL) {
return false;
}
} else if (dirString.EqualsLiteral("ltr")) {
if (docIsRTL) {
return false;
}
} else {
// Selectors specifying other directions never match.
return false;
}
}
break;
case nsCSSPseudoClasses::ePseudoClass_mozLWTheme:
{
if (aTreeMatchContext.mDocument->GetDocumentLWTheme() <=
nsIDocument::Doc_Theme_None) {
return false;
}
}
break;
case nsCSSPseudoClasses::ePseudoClass_mozLWThemeBrightText:
{
if (aTreeMatchContext.mDocument->GetDocumentLWTheme() !=
nsIDocument::Doc_Theme_Bright) {
return false;
}
}
break;
case nsCSSPseudoClasses::ePseudoClass_mozLWThemeDarkText:
{
if (aTreeMatchContext.mDocument->GetDocumentLWTheme() !=
nsIDocument::Doc_Theme_Dark) {
return false;
}
}
break;
case nsCSSPseudoClasses::ePseudoClass_mozWindowInactive:
if (!aTreeMatchContext.mDocument->GetDocumentState().
HasState(NS_DOCUMENT_STATE_WINDOW_INACTIVE)) {
return false;
}
break;
case nsCSSPseudoClasses::ePseudoClass_mozTableBorderNonzero:
{
if (!aElement->IsHTMLElement(nsGkAtoms::table)) {
return false;
}
const nsAttrValue *val = aElement->GetParsedAttr(nsGkAtoms::border);
if (!val ||
(val->Type() == nsAttrValue::eInteger &&
val->GetIntegerValue() == 0)) {
return false;
}
}
break;
case nsCSSPseudoClasses::ePseudoClass_mozBrowserFrame:
{
nsCOMPtr<nsIMozBrowserFrame>
browserFrame = do_QueryInterface(aElement);
if (!browserFrame ||
!browserFrame->GetReallyIsBrowserOrApp()) {
return false;
}
}
break;
case nsCSSPseudoClasses::ePseudoClass_dir:
{
if (aDependence) {
EventStates states
= sPseudoClassStateDependences[pseudoClass->mType];
if (aNodeMatchContext.mStateMask.HasAtLeastOneOfStates(states)) {
*aDependence = true;
return false;
}
}
// If we only had to consider HTML, directionality would be
// exclusively LTR or RTL.
//
// However, in markup languages where there is no direction attribute
// we have to consider the possibility that neither -moz-dir(rtl) nor
// -moz-dir(ltr) matches.
EventStates state = aElement->StyleState();
nsDependentString dirString(pseudoClass->u.mString);
if (dirString.EqualsLiteral("rtl")) {
if (!state.HasState(NS_EVENT_STATE_RTL)) {
return false;
}
} else if (dirString.EqualsLiteral("ltr")) {
if (!state.HasState(NS_EVENT_STATE_LTR)) {
return false;
}
} else {
// Selectors specifying other directions never match.
return false;
}
}
break;
case nsCSSPseudoClasses::ePseudoClass_scope:
if (aTreeMatchContext.mForScopedStyle) {
if (aTreeMatchContext.mCurrentStyleScope) {
// If mCurrentStyleScope is null, aElement must be the style
// scope root. This is because the PopStyleScopeForSelectorMatching
// call in SelectorMatchesTree sets mCurrentStyleScope to null
// as soon as we visit the style scope element, and we won't
// progress further up the tree after this call to
// SelectorMatches. Thus if mCurrentStyleScope is still set,
// we know the selector does not match.
return false;
}
} else if (aTreeMatchContext.HasSpecifiedScope()) {
if (!aTreeMatchContext.IsScopeElement(aElement)) {
return false;
}
} else {
if (aElement != aElement->OwnerDoc()->GetRootElement()) {
return false;
}
}
break;
default:
MOZ_ASSERT(false, "How did that happen?");
}
} else {
if (!StateSelectorMatches(aElement, aSelector, aNodeMatchContext,
aTreeMatchContext, aSelectorFlags, aDependence,
statesToCheck)) {
return false;
}
}
}
bool result = true;
if (aSelector->mAttrList) {
// test for attribute match
if (!aElement->HasAttrs()) {
// if no attributes on the content, no match
return false;
} else {
result = true;
nsAttrSelector* attr = aSelector->mAttrList;
nsIAtom* matchAttribute;
do {
bool isHTML =
(aTreeMatchContext.mIsHTMLDocument && aElement->IsHTMLElement());
matchAttribute = isHTML ? attr->mLowercaseAttr : attr->mCasedAttr;
if (attr->mNameSpace == kNameSpaceID_Unknown) {
// Attr selector with a wildcard namespace. We have to examine all
// the attributes on our content node.... This sort of selector is
// essentially a boolean OR, over all namespaces, of equivalent attr
// selectors with those namespaces. So to evaluate whether it
// matches, evaluate for each namespace (the only namespaces that
// have a chance at matching, of course, are ones that the element
// actually has attributes in), short-circuiting if we ever match.
result = false;
const nsAttrName* attrName;
for (uint32_t i = 0; (attrName = aElement->GetAttrNameAt(i)); ++i) {
if (attrName->LocalName() != matchAttribute) {
continue;
}
if (attr->mFunction == NS_ATTR_FUNC_SET) {
result = true;
} else {
nsAutoString value;
#ifdef DEBUG
bool hasAttr =
#endif
aElement->GetAttr(attrName->NamespaceID(),
attrName->LocalName(), value);
NS_ASSERTION(hasAttr, "GetAttrNameAt lied");
result = AttrMatchesValue(attr, value, isHTML);
}
// At this point |result| has been set by us
// explicitly in this loop. If it's false, we may still match
// -- the content may have another attribute with the same name but
// in a different namespace. But if it's true, we are done (we
// can short-circuit the boolean OR described above).
if (result) {
break;
}
}
}
else if (attr->mFunction == NS_ATTR_FUNC_EQUALS) {
result =
aElement->
AttrValueIs(attr->mNameSpace, matchAttribute, attr->mValue,
attr->IsValueCaseSensitive(isHTML) ? eCaseMatters
: eIgnoreCase);
}
else if (!aElement->HasAttr(attr->mNameSpace, matchAttribute)) {
result = false;
}
else if (attr->mFunction != NS_ATTR_FUNC_SET) {
nsAutoString value;
#ifdef DEBUG
bool hasAttr =
#endif
aElement->GetAttr(attr->mNameSpace, matchAttribute, value);
NS_ASSERTION(hasAttr, "HasAttr lied");
result = AttrMatchesValue(attr, value, isHTML);
}
attr = attr->mNext;
} while (attr && result);
}
}
// apply SelectorMatches to the negated selectors in the chain
if (!isNegated) {
for (nsCSSSelector *negation = aSelector->mNegations;
result && negation; negation = negation->mNegations) {
bool dependence = false;
result = !SelectorMatches(aElement, negation, aNodeMatchContext,
aTreeMatchContext,
SelectorMatchesFlags::IS_PSEUDO_CLASS_ARGUMENT,
&dependence);
// If the selector does match due to the dependence on
// aNodeMatchContext.mStateMask, then we want to keep result true
// so that the final result of SelectorMatches is true. Doing so
// tells StateEnumFunc that there is a dependence on the state.
result = result || dependence;
}
}
return result;
}
#undef STATE_CHECK
#ifdef DEBUG
static bool
HasPseudoClassSelectorArgsWithCombinators(nsCSSSelector* aSelector)
{
for (nsPseudoClassList* p = aSelector->mPseudoClassList; p; p = p->mNext) {
if (nsCSSPseudoClasses::HasSelectorListArg(p->mType)) {
for (nsCSSSelectorList* l = p->u.mSelectors; l; l = l->mNext) {
if (l->mSelectors->mNext) {
return true;
}
}
}
}
for (nsCSSSelector* n = aSelector->mNegations; n; n = n->mNegations) {
if (n->mNext) {
return true;
}
}
return false;
}
#endif
/* static */ bool
nsCSSRuleProcessor::RestrictedSelectorMatches(
Element* aElement,
nsCSSSelector* aSelector,
TreeMatchContext& aTreeMatchContext)
{
MOZ_ASSERT(aSelector->IsRestrictedSelector(),
"aSelector must not have a pseudo-element");
NS_WARN_IF_FALSE(!HasPseudoClassSelectorArgsWithCombinators(aSelector),
"processing eRestyle_SomeDescendants can be slow if "
"pseudo-classes with selector arguments can now have "
"combinators in them");
// We match aSelector as if :visited and :link both match visited and
// unvisited links.
NodeMatchContext nodeContext(EventStates(),
nsCSSRuleProcessor::IsLink(aElement));
if (nodeContext.mIsRelevantLink) {
aTreeMatchContext.SetHaveRelevantLink();
}
aTreeMatchContext.ResetForUnvisitedMatching();
bool matches = SelectorMatches(aElement, aSelector, nodeContext,
aTreeMatchContext, SelectorMatchesFlags::NONE);
if (nodeContext.mIsRelevantLink) {
aTreeMatchContext.ResetForVisitedMatching();
if (SelectorMatches(aElement, aSelector, nodeContext, aTreeMatchContext,
SelectorMatchesFlags::NONE)) {
matches = true;
}
}
return matches;
}
// Right now, there are four operators:
// ' ', the descendant combinator, is greedy
// '~', the indirect adjacent sibling combinator, is greedy
// '+' and '>', the direct adjacent sibling and child combinators, are not
#define NS_IS_GREEDY_OPERATOR(ch) \
((ch) == char16_t(' ') || (ch) == char16_t('~'))
/**
* Flags for SelectorMatchesTree.
*/
enum SelectorMatchesTreeFlags {
// Whether we still have not found the closest ancestor link element and
// thus have to check the current element for it.
eLookForRelevantLink = 0x1,
// Whether SelectorMatchesTree should check for, and return true upon
// finding, an ancestor element that has an eRestyle_SomeDescendants
// restyle hint pending.
eMatchOnConditionalRestyleAncestor = 0x2,
};
static bool
SelectorMatchesTree(Element* aPrevElement,
nsCSSSelector* aSelector,
TreeMatchContext& aTreeMatchContext,
SelectorMatchesTreeFlags aFlags)
{
MOZ_ASSERT(!aSelector || !aSelector->IsPseudoElement());
nsCSSSelector* selector = aSelector;
Element* prevElement = aPrevElement;
while (selector) { // check compound selectors
NS_ASSERTION(!selector->mNext ||
selector->mNext->mOperator != char16_t(0),
"compound selector without combinator");
// If after the previous selector match we are now outside the
// current style scope, we don't need to match any further.
if (aTreeMatchContext.mForScopedStyle &&
!aTreeMatchContext.IsWithinStyleScopeForSelectorMatching()) {
return false;
}
// for adjacent sibling combinators, the content to test against the
// selector is the previous sibling *element*
Element* element = nullptr;
if (char16_t('+') == selector->mOperator ||
char16_t('~') == selector->mOperator) {
// The relevant link must be an ancestor of the node being matched.
aFlags = SelectorMatchesTreeFlags(aFlags & ~eLookForRelevantLink);
nsIContent* parent = prevElement->GetParent();
if (parent) {
if (aTreeMatchContext.mForStyling)
parent->SetFlags(NODE_HAS_SLOW_SELECTOR_LATER_SIBLINGS);
element = prevElement->GetPreviousElementSibling();
}
}
// for descendant combinators and child combinators, the element
// to test against is the parent
else {
nsIContent *content = prevElement->GetParent();
// GetParent could return a document fragment; we only want
// element parents.
if (content && content->IsElement()) {
element = content->AsElement();
if (aTreeMatchContext.mForScopedStyle) {
// We are moving up to the parent element; tell the
// TreeMatchContext, so that in case this element is the
// style scope element, selector matching stops before we
// traverse further up the tree.
aTreeMatchContext.PopStyleScopeForSelectorMatching(element);
}
// Compatibility hack: First try matching this selector as though the
// <xbl:children> element wasn't in the tree to allow old selectors
// were written before <xbl:children> participated in CSS selector
// matching to work.
if (selector->mOperator == '>' && element->IsActiveChildrenElement()) {
Element* styleScope = aTreeMatchContext.mCurrentStyleScope;
if (SelectorMatchesTree(element, selector, aTreeMatchContext,
aFlags)) {
// It matched, don't try matching on the <xbl:children> element at
// all.
return true;
}
// We want to reset mCurrentStyleScope on aTreeMatchContext
// back to its state before the SelectorMatchesTree call, in
// case that call happens to traverse past the style scope element
// and sets it to null.
aTreeMatchContext.mCurrentStyleScope = styleScope;
}
}
}
if (!element) {
return false;
}
if ((aFlags & eMatchOnConditionalRestyleAncestor) &&
element->HasFlag(ELEMENT_IS_CONDITIONAL_RESTYLE_ANCESTOR)) {
// If we're looking at an element that we already generated an
// eRestyle_SomeDescendants restyle hint for, then we should pretend
// that we matched here, because we don't know what the values of
// attributes on |element| were at the time we generated the
// eRestyle_SomeDescendants. This causes AttributeEnumFunc and
// HasStateDependentStyle below to generate a restyle hint for the
// change we're currently looking at, as we don't know whether the LHS
// of the selector we looked up matches or not. (We only pass in aFlags
// to cause us to look for eRestyle_SomeDescendants here under
// AttributeEnumFunc and HasStateDependentStyle.)
return true;
}
const bool isRelevantLink = (aFlags & eLookForRelevantLink) &&
nsCSSRuleProcessor::IsLink(element);
NodeMatchContext nodeContext(EventStates(), isRelevantLink);
if (isRelevantLink) {
// If we find an ancestor of the matched node that is a link
// during the matching process, then it's the relevant link (see
// constructor call above).
// Since we are still matching against selectors that contain
// :visited (they'll just fail), we will always find such a node
// during the selector matching process if there is a relevant
// link that can influence selector matching.
aFlags = SelectorMatchesTreeFlags(aFlags & ~eLookForRelevantLink);
aTreeMatchContext.SetHaveRelevantLink();
}
if (SelectorMatches(element, selector, nodeContext, aTreeMatchContext,
SelectorMatchesFlags::NONE)) {
// to avoid greedy matching, we need to recur if this is a
// descendant or general sibling combinator and the next
// combinator is different, but we can make an exception for
// sibling, then parent, since a sibling's parent is always the
// same.
if (NS_IS_GREEDY_OPERATOR(selector->mOperator) &&
selector->mNext &&
selector->mNext->mOperator != selector->mOperator &&
!(selector->mOperator == '~' &&
NS_IS_ANCESTOR_OPERATOR(selector->mNext->mOperator))) {
// pretend the selector didn't match, and step through content
// while testing the same selector
// This approach is slightly strange in that when it recurs
// it tests from the top of the content tree, down. This
// doesn't matter much for performance since most selectors
// don't match. (If most did, it might be faster...)
Element* styleScope = aTreeMatchContext.mCurrentStyleScope;
if (SelectorMatchesTree(element, selector, aTreeMatchContext, aFlags)) {
return true;
}
// We want to reset mCurrentStyleScope on aTreeMatchContext
// back to its state before the SelectorMatchesTree call, in
// case that call happens to traverse past the style scope element
// and sets it to null.
aTreeMatchContext.mCurrentStyleScope = styleScope;
}
selector = selector->mNext;
}
else {
// for adjacent sibling and child combinators, if we didn't find
// a match, we're done
if (!NS_IS_GREEDY_OPERATOR(selector->mOperator)) {
return false; // parent was required to match
}
}
prevElement = element;
}
return true; // all the selectors matched.
}
static inline
void ContentEnumFunc(const RuleValue& value, nsCSSSelector* aSelector,
ElementDependentRuleProcessorData* data, NodeMatchContext& nodeContext,
AncestorFilter *ancestorFilter)
{
if (nodeContext.mIsRelevantLink) {
data->mTreeMatchContext.SetHaveRelevantLink();
}
if (ancestorFilter &&
!ancestorFilter->MightHaveMatchingAncestor<RuleValue::eMaxAncestorHashes>(
value.mAncestorSelectorHashes)) {
// We won't match; nothing else to do here
return;
}
if (!data->mTreeMatchContext.SetStyleScopeForSelectorMatching(data->mElement,
data->mScope)) {
// The selector is for a rule in a scoped style sheet, and the subject
// of the selector matching is not in its scope.
return;
}
nsCSSSelector* selector = aSelector;
if (selector->IsPseudoElement()) {
PseudoElementRuleProcessorData* pdata =
static_cast<PseudoElementRuleProcessorData*>(data);
if (!pdata->mPseudoElement && selector->mPseudoClassList) {
// We can get here when calling getComputedStyle(aElt, aPseudo) if:
//
// * aPseudo is a pseudo-element that supports a user action
// pseudo-class, like "::-moz-placeholder";
// * there is a style rule that uses a pseudo-class on this
// pseudo-element in the document, like ::-moz-placeholder:hover; and
// * aElt does not have such a pseudo-element.
//
// We know that the selector can't match, since there is no element for
// the user action pseudo-class to match against.
return;
}
if (!StateSelectorMatches(pdata->mPseudoElement, aSelector, nodeContext,
data->mTreeMatchContext,
SelectorMatchesFlags::NONE)) {
return;
}
selector = selector->mNext;
}
SelectorMatchesFlags selectorFlags = SelectorMatchesFlags::NONE;
if (aSelector->IsPseudoElement()) {
selectorFlags |= SelectorMatchesFlags::HAS_PSEUDO_ELEMENT;
}
if (SelectorMatches(data->mElement, selector, nodeContext,
data->mTreeMatchContext, selectorFlags)) {
nsCSSSelector *next = selector->mNext;
if (!next ||
SelectorMatchesTree(data->mElement, next,
data->mTreeMatchContext,
nodeContext.mIsRelevantLink ?
SelectorMatchesTreeFlags(0) :
eLookForRelevantLink)) {
css::Declaration* declaration = value.mRule->GetDeclaration();
declaration->SetImmutable();
data->mRuleWalker->Forward(declaration);
// nsStyleSet will deal with the !important rule
}
}
}
/* virtual */ void
nsCSSRuleProcessor::RulesMatching(ElementRuleProcessorData *aData)
{
RuleCascadeData* cascade = GetRuleCascade(aData->mPresContext);
if (cascade) {
NodeMatchContext nodeContext(EventStates(),
nsCSSRuleProcessor::IsLink(aData->mElement));
cascade->mRuleHash.EnumerateAllRules(aData->mElement, aData, nodeContext);
}
}
/* virtual */ void
nsCSSRuleProcessor::RulesMatching(PseudoElementRuleProcessorData* aData)
{
RuleCascadeData* cascade = GetRuleCascade(aData->mPresContext);
if (cascade) {
RuleHash* ruleHash = cascade->mPseudoElementRuleHashes[
static_cast<CSSPseudoElementTypeBase>(aData->mPseudoType)];
if (ruleHash) {
NodeMatchContext nodeContext(EventStates(),
nsCSSRuleProcessor::IsLink(aData->mElement));
ruleHash->EnumerateAllRules(aData->mElement, aData, nodeContext);
}
}
}
/* virtual */ void
nsCSSRuleProcessor::RulesMatching(AnonBoxRuleProcessorData* aData)
{
RuleCascadeData* cascade = GetRuleCascade(aData->mPresContext);
if (cascade && cascade->mAnonBoxRules.EntryCount()) {
auto entry = static_cast<RuleHashTagTableEntry*>
(cascade->mAnonBoxRules.Search(aData->mPseudoTag));
if (entry) {
nsTArray<RuleValue>& rules = entry->mRules;
for (RuleValue *value = rules.Elements(), *end = value + rules.Length();
value != end; ++value) {
css::Declaration* declaration = value->mRule->GetDeclaration();
declaration->SetImmutable();
aData->mRuleWalker->Forward(declaration);
}
}
}
}
#ifdef MOZ_XUL
/* virtual */ void
nsCSSRuleProcessor::RulesMatching(XULTreeRuleProcessorData* aData)
{
RuleCascadeData* cascade = GetRuleCascade(aData->mPresContext);
if (cascade && cascade->mXULTreeRules.EntryCount()) {
auto entry = static_cast<RuleHashTagTableEntry*>
(cascade->mXULTreeRules.Search(aData->mPseudoTag));
if (entry) {
NodeMatchContext nodeContext(EventStates(),
nsCSSRuleProcessor::IsLink(aData->mElement));
nsTArray<RuleValue>& rules = entry->mRules;
for (RuleValue *value = rules.Elements(), *end = value + rules.Length();
value != end; ++value) {
if (aData->mComparator->PseudoMatches(value->mSelector)) {
ContentEnumFunc(*value, value->mSelector->mNext, aData, nodeContext,
nullptr);
}
}
}
}
}
#endif
static inline nsRestyleHint RestyleHintForOp(char16_t oper)
{
if (oper == char16_t('+') || oper == char16_t('~')) {
return eRestyle_LaterSiblings;
}
if (oper != char16_t(0)) {
return eRestyle_Subtree;
}
return eRestyle_Self;
}
nsRestyleHint
nsCSSRuleProcessor::HasStateDependentStyle(ElementDependentRuleProcessorData* aData,
Element* aStatefulElement,
CSSPseudoElementType aPseudoType,
EventStates aStateMask)
{
MOZ_ASSERT(!aData->mTreeMatchContext.mForScopedStyle,
"mCurrentStyleScope will need to be saved and restored after the "
"SelectorMatchesTree call");
bool isPseudoElement =
aPseudoType != CSSPseudoElementType::NotPseudo;
RuleCascadeData* cascade = GetRuleCascade(aData->mPresContext);
// Look up the content node in the state rule list, which points to
// any (CSS2 definition) simple selector (whether or not it is the
// subject) that has a state pseudo-class on it. This means that this
// code will be matching selectors that aren't real selectors in any
// stylesheet (e.g., if there is a selector "body > p:hover > a", then
// "body > p:hover" will be in |cascade->mStateSelectors|). Note that
// |ComputeSelectorStateDependence| below determines which selectors are in
// |cascade->mStateSelectors|.
nsRestyleHint hint = nsRestyleHint(0);
if (cascade) {
StateSelector *iter = cascade->mStateSelectors.Elements(),
*end = iter + cascade->mStateSelectors.Length();
NodeMatchContext nodeContext(aStateMask, false);
for(; iter != end; ++iter) {
nsCSSSelector* selector = iter->mSelector;
EventStates states = iter->mStates;
if (selector->IsPseudoElement() != isPseudoElement) {
continue;
}
nsCSSSelector* selectorForPseudo;
if (isPseudoElement) {
if (selector->PseudoType() != aPseudoType) {
continue;
}
selectorForPseudo = selector;
selector = selector->mNext;
}
nsRestyleHint possibleChange = RestyleHintForOp(selector->mOperator);
SelectorMatchesFlags selectorFlags = SelectorMatchesFlags::UNKNOWN;
// If hint already includes all the bits of possibleChange,
// don't bother calling SelectorMatches, since even if it returns false
// hint won't change.
// Also don't bother calling SelectorMatches if none of the
// states passed in are relevant here.
if ((possibleChange & ~hint) &&
states.HasAtLeastOneOfStates(aStateMask) &&
// We can optimize away testing selectors that only involve :hover, a
// namespace, and a tag name against nodes that don't have the
// NodeHasRelevantHoverRules flag: such a selector didn't match
// the tag name or namespace the first time around (since the :hover
// didn't set the NodeHasRelevantHoverRules flag), so it won't
// match it now. Check for our selector only having :hover states, or
// the element having the hover rules flag, or the selector having
// some sort of non-namespace, non-tagname data in it.
(states != NS_EVENT_STATE_HOVER ||
aStatefulElement->HasRelevantHoverRules() ||
selector->mIDList || selector->mClassList ||
// We generally expect an mPseudoClassList, since we have a :hover.
// The question is whether we have anything else in there.
(selector->mPseudoClassList &&
(selector->mPseudoClassList->mNext ||
selector->mPseudoClassList->mType !=
nsCSSPseudoClasses::ePseudoClass_hover)) ||
selector->mAttrList || selector->mNegations) &&
(!isPseudoElement ||
StateSelectorMatches(aStatefulElement, selectorForPseudo,
nodeContext, aData->mTreeMatchContext,
selectorFlags, nullptr, aStateMask)) &&
SelectorMatches(aData->mElement, selector, nodeContext,
aData->mTreeMatchContext, selectorFlags) &&
SelectorMatchesTree(aData->mElement, selector->mNext,
aData->mTreeMatchContext,
eMatchOnConditionalRestyleAncestor))
{
hint = nsRestyleHint(hint | possibleChange);
}
}
}
return hint;
}
nsRestyleHint
nsCSSRuleProcessor::HasStateDependentStyle(StateRuleProcessorData* aData)
{
return HasStateDependentStyle(aData,
aData->mElement,
CSSPseudoElementType::NotPseudo,
aData->mStateMask);
}
nsRestyleHint
nsCSSRuleProcessor::HasStateDependentStyle(PseudoElementStateRuleProcessorData* aData)
{
return HasStateDependentStyle(aData,
aData->mPseudoElement,
aData->mPseudoType,
aData->mStateMask);
}
bool
nsCSSRuleProcessor::HasDocumentStateDependentStyle(StateRuleProcessorData* aData)
{
RuleCascadeData* cascade = GetRuleCascade(aData->mPresContext);
return cascade && cascade->mSelectorDocumentStates.HasAtLeastOneOfStates(aData->mStateMask);
}
struct AttributeEnumData {
AttributeEnumData(AttributeRuleProcessorData *aData,
RestyleHintData& aRestyleHintData)
: data(aData), change(nsRestyleHint(0)), hintData(aRestyleHintData) {}
AttributeRuleProcessorData *data;
nsRestyleHint change;
RestyleHintData& hintData;
};
static inline nsRestyleHint
RestyleHintForSelectorWithAttributeChange(nsRestyleHint aCurrentHint,
nsCSSSelector* aSelector,
nsCSSSelector* aRightmostSelector)
{
MOZ_ASSERT(aSelector);
char16_t oper = aSelector->mOperator;
if (oper == char16_t('+') || oper == char16_t('~')) {
return eRestyle_LaterSiblings;
}
if (oper == char16_t(':')) {
return eRestyle_Subtree;
}
if (oper != char16_t(0)) {
// Check whether the selector is in a form that supports
// eRestyle_SomeDescendants. If it isn't, return eRestyle_Subtree.
if (aCurrentHint & eRestyle_Subtree) {
// No point checking, since we'll end up restyling the whole
// subtree anyway.
return eRestyle_Subtree;
}
if (!aRightmostSelector) {
// aSelector wasn't a top-level selector, which means we were inside
// a :not() or :-moz-any(). We don't support that.
return eRestyle_Subtree;
}
MOZ_ASSERT(aSelector != aRightmostSelector,
"if aSelector == aRightmostSelector then we should have "
"no operator");
// Check that aRightmostSelector can be passed to RestrictedSelectorMatches.
if (!aRightmostSelector->IsRestrictedSelector()) {
return eRestyle_Subtree;
}
// We also don't support pseudo-elements on any of the selectors
// between aRightmostSelector and aSelector.
// XXX Can we lift this restriction, so that we don't have to loop
// over all the selectors?
for (nsCSSSelector* sel = aRightmostSelector->mNext;
sel != aSelector;
sel = sel->mNext) {
MOZ_ASSERT(sel, "aSelector must be reachable from aRightmostSelector");
if (sel->PseudoType() != CSSPseudoElementType::NotPseudo) {
return eRestyle_Subtree;
}
}
return eRestyle_SomeDescendants;
}
return eRestyle_Self;
}
static void
AttributeEnumFunc(nsCSSSelector* aSelector,
nsCSSSelector* aRightmostSelector,
AttributeEnumData* aData)
{
AttributeRuleProcessorData *data = aData->data;
if (!data->mTreeMatchContext.SetStyleScopeForSelectorMatching(data->mElement,
data->mScope)) {
// The selector is for a rule in a scoped style sheet, and the subject
// of the selector matching is not in its scope.
return;
}
nsRestyleHint possibleChange =
RestyleHintForSelectorWithAttributeChange(aData->change,
aSelector, aRightmostSelector);
// If, ignoring eRestyle_SomeDescendants, enumData->change already includes
// all the bits of possibleChange, don't bother calling SelectorMatches, since
// even if it returns false enumData->change won't change. If possibleChange
// has eRestyle_SomeDescendants, we need to call SelectorMatches(Tree)
// regardless as it might give us new selectors to append to
// mSelectorsForDescendants.
NodeMatchContext nodeContext(EventStates(), false);
if (((possibleChange & (~(aData->change) | eRestyle_SomeDescendants))) &&
SelectorMatches(data->mElement, aSelector, nodeContext,
data->mTreeMatchContext, SelectorMatchesFlags::UNKNOWN) &&
SelectorMatchesTree(data->mElement, aSelector->mNext,
data->mTreeMatchContext,
eMatchOnConditionalRestyleAncestor)) {
aData->change = nsRestyleHint(aData->change | possibleChange);
if (possibleChange & eRestyle_SomeDescendants) {
aData->hintData.mSelectorsForDescendants.AppendElement(aRightmostSelector);
}
}
}
static MOZ_ALWAYS_INLINE void
EnumerateSelectors(nsTArray<SelectorPair>& aSelectors, AttributeEnumData* aData)
{
SelectorPair *iter = aSelectors.Elements(),
*end = iter + aSelectors.Length();
for (; iter != end; ++iter) {
AttributeEnumFunc(iter->mSelector, iter->mRightmostSelector, aData);
}
}
static MOZ_ALWAYS_INLINE void
EnumerateSelectors(nsTArray<nsCSSSelector*>& aSelectors, AttributeEnumData* aData)
{
nsCSSSelector **iter = aSelectors.Elements(),
**end = iter + aSelectors.Length();
for (; iter != end; ++iter) {
AttributeEnumFunc(*iter, nullptr, aData);
}
}
nsRestyleHint
nsCSSRuleProcessor::HasAttributeDependentStyle(
AttributeRuleProcessorData* aData,
RestyleHintData& aRestyleHintDataResult)
{
// We could try making use of aData->mModType, but :not rules make it a bit
// of a pain to do so... So just ignore it for now.
AttributeEnumData data(aData, aRestyleHintDataResult);
// Don't do our special handling of certain attributes if the attr
// hasn't changed yet.
if (aData->mAttrHasChanged) {
// check for the lwtheme and lwthemetextcolor attribute on root XUL elements
if ((aData->mAttribute == nsGkAtoms::lwtheme ||
aData->mAttribute == nsGkAtoms::lwthemetextcolor) &&
aData->mElement->GetNameSpaceID() == kNameSpaceID_XUL &&
aData->mElement == aData->mElement->OwnerDoc()->GetRootElement())
{
data.change = nsRestyleHint(data.change | eRestyle_Subtree);
}
// We don't know the namespace of the attribute, and xml:lang applies to
// all elements. If the lang attribute changes, we need to restyle our
// whole subtree, since the :lang selector on our descendants can examine
// our lang attribute.
if (aData->mAttribute == nsGkAtoms::lang) {
data.change = nsRestyleHint(data.change | eRestyle_Subtree);
}
}
RuleCascadeData* cascade = GetRuleCascade(aData->mPresContext);
// Since we get both before and after notifications for attributes, we
// don't have to ignore aData->mAttribute while matching. Just check
// whether we have selectors relevant to aData->mAttribute that we
// match. If this is the before change notification, that will catch
// rules we might stop matching; if the after change notification, the
// ones we might have started matching.
if (cascade) {
if (aData->mAttribute == nsGkAtoms::id) {
nsIAtom* id = aData->mElement->GetID();
if (id) {
auto entry =
static_cast<AtomSelectorEntry*>(cascade->mIdSelectors.Search(id));
if (entry) {
EnumerateSelectors(entry->mSelectors, &data);
}
}
EnumerateSelectors(cascade->mPossiblyNegatedIDSelectors, &data);
}
if (aData->mAttribute == nsGkAtoms::_class &&
aData->mNameSpaceID == kNameSpaceID_None) {
const nsAttrValue* otherClasses = aData->mOtherValue;
NS_ASSERTION(otherClasses ||
aData->mModType == nsIDOMMutationEvent::REMOVAL,
"All class values should be StoresOwnData and parsed"
"via Element::BeforeSetAttr, so available here");
// For WillChange, enumerate classes that will be removed to see which
// rules apply before the change.
// For Changed, enumerate classes that have been added to see which rules
// apply after the change.
// In both cases we're interested in the classes that are currently on
// the element but not in mOtherValue.
const nsAttrValue* elementClasses = aData->mElement->GetClasses();
if (elementClasses) {
int32_t atomCount = elementClasses->GetAtomCount();
if (atomCount > 0) {
nsTHashtable<nsPtrHashKey<nsIAtom>> otherClassesTable;
if (otherClasses) {
int32_t otherClassesCount = otherClasses->GetAtomCount();
for (int32_t i = 0; i < otherClassesCount; ++i) {
otherClassesTable.PutEntry(otherClasses->AtomAt(i));
}
}
for (int32_t i = 0; i < atomCount; ++i) {
nsIAtom* curClass = elementClasses->AtomAt(i);
if (!otherClassesTable.Contains(curClass)) {
auto entry =
static_cast<AtomSelectorEntry*>
(cascade->mClassSelectors.Search(curClass));
if (entry) {
EnumerateSelectors(entry->mSelectors, &data);
}
}
}
}
}
EnumerateSelectors(cascade->mPossiblyNegatedClassSelectors, &data);
}
auto entry =
static_cast<AtomSelectorEntry*>
(cascade->mAttributeSelectors.Search(aData->mAttribute));
if (entry) {
EnumerateSelectors(entry->mSelectors, &data);
}
}
return data.change;
}
/* virtual */ bool
nsCSSRuleProcessor::MediumFeaturesChanged(nsPresContext* aPresContext)
{
// We don't want to do anything if there aren't any sets of rules
// cached yet, since we should not build the rule cascade too early
// (e.g., before we know whether the quirk style sheet should be
// enabled). And if there's nothing cached, it doesn't matter if
// anything changed. But in the cases where it does matter, we've
// cached a previous cache key to test against, instead of our current
// rule cascades. See bug 448281 and bug 1089417.
MOZ_ASSERT(!(mRuleCascades && mPreviousCacheKey));
RuleCascadeData *old = mRuleCascades;
if (old) {
RefreshRuleCascade(aPresContext);
return (old != mRuleCascades);
}
if (mPreviousCacheKey) {
// RefreshRuleCascade will get rid of mPreviousCacheKey anyway to
// maintain the invariant that we can't have both an mRuleCascades
// and an mPreviousCacheKey. But we need to hold it a little
// longer.
UniquePtr<nsMediaQueryResultCacheKey> previousCacheKey(
Move(mPreviousCacheKey));
RefreshRuleCascade(aPresContext);
// This test is a bit pessimistic since the cache key's operator==
// just does list comparison rather than set comparison, but it
// should catch all the cases we care about (i.e., where the cascade
// order hasn't changed). Other cases will do a restyle anyway, so
// we shouldn't need to worry about posting a second.
return !mRuleCascades || // all sheets gone, but we had sheets before
mRuleCascades->mCacheKey != *previousCacheKey;
}
return false;
}
UniquePtr<nsMediaQueryResultCacheKey>
nsCSSRuleProcessor::CloneMQCacheKey()
{
MOZ_ASSERT(!(mRuleCascades && mPreviousCacheKey));
RuleCascadeData* c = mRuleCascades;
if (!c) {
// We might have an mPreviousCacheKey. It already comes from a call
// to CloneMQCacheKey, so don't bother checking
// HasFeatureConditions().
if (mPreviousCacheKey) {
NS_ASSERTION(mPreviousCacheKey->HasFeatureConditions(),
"we shouldn't have a previous cache key unless it has "
"feature conditions");
return MakeUnique<nsMediaQueryResultCacheKey>(*mPreviousCacheKey);
}
return UniquePtr<nsMediaQueryResultCacheKey>();
}
if (!c->mCacheKey.HasFeatureConditions()) {
return UniquePtr<nsMediaQueryResultCacheKey>();
}
return MakeUnique<nsMediaQueryResultCacheKey>(c->mCacheKey);
}
/* virtual */ size_t
nsCSSRuleProcessor::SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const
{
size_t n = 0;
n += mSheets.ShallowSizeOfExcludingThis(aMallocSizeOf);
for (RuleCascadeData* cascade = mRuleCascades; cascade;
cascade = cascade->mNext) {
n += cascade->SizeOfIncludingThis(aMallocSizeOf);
}
return n;
}
/* virtual */ size_t
nsCSSRuleProcessor::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const
{
return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
}
// Append all the currently-active font face rules to aArray. Return
// true for success and false for failure.
bool
nsCSSRuleProcessor::AppendFontFaceRules(
nsPresContext *aPresContext,
nsTArray<nsFontFaceRuleContainer>& aArray)
{
RuleCascadeData* cascade = GetRuleCascade(aPresContext);
if (cascade) {
if (!aArray.AppendElements(cascade->mFontFaceRules))
return false;
}
return true;
}
nsCSSKeyframesRule*
nsCSSRuleProcessor::KeyframesRuleForName(nsPresContext* aPresContext,
const nsString& aName)
{
RuleCascadeData* cascade = GetRuleCascade(aPresContext);
if (cascade) {
return cascade->mKeyframesRuleTable.Get(aName);
}
return nullptr;
}
nsCSSCounterStyleRule*
nsCSSRuleProcessor::CounterStyleRuleForName(nsPresContext* aPresContext,
const nsAString& aName)
{
RuleCascadeData* cascade = GetRuleCascade(aPresContext);
if (cascade) {
return cascade->mCounterStyleRuleTable.Get(aName);
}
return nullptr;
}
// Append all the currently-active page rules to aArray. Return
// true for success and false for failure.
bool
nsCSSRuleProcessor::AppendPageRules(
nsPresContext* aPresContext,
nsTArray<nsCSSPageRule*>& aArray)
{
RuleCascadeData* cascade = GetRuleCascade(aPresContext);
if (cascade) {
if (!aArray.AppendElements(cascade->mPageRules)) {
return false;
}
}
return true;
}
bool
nsCSSRuleProcessor::AppendFontFeatureValuesRules(
nsPresContext *aPresContext,
nsTArray<nsCSSFontFeatureValuesRule*>& aArray)
{
RuleCascadeData* cascade = GetRuleCascade(aPresContext);
if (cascade) {
if (!aArray.AppendElements(cascade->mFontFeatureValuesRules))
return false;
}
return true;
}
nsresult
nsCSSRuleProcessor::ClearRuleCascades()
{
if (!mPreviousCacheKey) {
mPreviousCacheKey = CloneMQCacheKey();
}
// No need to remove the rule processor from the RuleProcessorCache here,
// since CSSStyleSheet::ClearRuleCascades will have called
// RuleProcessorCache::RemoveSheet() passing itself, which will catch
// this rule processor (and any others for different @-moz-document
// cache key results).
MOZ_ASSERT(!RuleProcessorCache::HasRuleProcessor(this));
#ifdef DEBUG
// For shared rule processors, if we've already gathered document
// rules, then they will now be out of date. We don't actually need
// them to be up-to-date (see the comment in RefreshRuleCascade), so
// record their invalidity so we can assert if we try to use them.
if (!mMustGatherDocumentRules) {
mDocumentRulesAndCacheKeyValid = false;
}
#endif
// We rely on our caller (perhaps indirectly) to do something that
// will rebuild style data and the user font set (either
// nsIPresShell::ReconstructStyleData or
// nsPresContext::RebuildAllStyleData).
RuleCascadeData *data = mRuleCascades;
mRuleCascades = nullptr;
while (data) {
RuleCascadeData *next = data->mNext;
delete data;
data = next;
}
return NS_OK;
}
// This function should return the set of states that this selector
// depends on; this is used to implement HasStateDependentStyle. It
// does NOT recur down into things like :not and :-moz-any.
inline
EventStates ComputeSelectorStateDependence(nsCSSSelector& aSelector)
{
EventStates states;
for (nsPseudoClassList* pseudoClass = aSelector.mPseudoClassList;
pseudoClass; pseudoClass = pseudoClass->mNext) {
// Tree pseudo-elements overload mPseudoClassList for things that
// aren't pseudo-classes.
if (pseudoClass->mType >= nsCSSPseudoClasses::ePseudoClass_Count) {
continue;
}
states |= sPseudoClassStateDependences[pseudoClass->mType];
}
return states;
}
static bool
AddSelector(RuleCascadeData* aCascade,
// The part between combinators at the top level of the selector
nsCSSSelector* aSelectorInTopLevel,
// The part we should look through (might be in :not or :-moz-any())
nsCSSSelector* aSelectorPart,
// The right-most selector at the top level
nsCSSSelector* aRightmostSelector)
{
// It's worth noting that this loop over negations isn't quite
// optimal for two reasons. One, we could add something to one of
// these lists twice, which means we'll check it twice, but I don't
// think that's worth worrying about. (We do the same for multiple
// attribute selectors on the same attribute.) Two, we don't really
// need to check negations past the first in the current
// implementation (and they're rare as well), but that might change
// in the future if :not() is extended.
for (nsCSSSelector* negation = aSelectorPart; negation;
negation = negation->mNegations) {
// Track both document states and attribute dependence in pseudo-classes.
for (nsPseudoClassList* pseudoClass = negation->mPseudoClassList;
pseudoClass; pseudoClass = pseudoClass->mNext) {
switch (pseudoClass->mType) {
case nsCSSPseudoClasses::ePseudoClass_mozLocaleDir: {
aCascade->mSelectorDocumentStates |= NS_DOCUMENT_STATE_RTL_LOCALE;
break;
}
case nsCSSPseudoClasses::ePseudoClass_mozWindowInactive: {
aCascade->mSelectorDocumentStates |= NS_DOCUMENT_STATE_WINDOW_INACTIVE;
break;
}
case nsCSSPseudoClasses::ePseudoClass_mozTableBorderNonzero: {
nsTArray<SelectorPair> *array =
aCascade->AttributeListFor(nsGkAtoms::border);
if (!array) {
return false;
}
array->AppendElement(SelectorPair(aSelectorInTopLevel,
aRightmostSelector));
break;
}
default: {
break;
}
}
}
// Build mStateSelectors.
EventStates dependentStates = ComputeSelectorStateDependence(*negation);
if (!dependentStates.IsEmpty()) {
aCascade->mStateSelectors.AppendElement(
nsCSSRuleProcessor::StateSelector(dependentStates,
aSelectorInTopLevel));
}
// Build mIDSelectors
if (negation == aSelectorInTopLevel) {
for (nsAtomList* curID = negation->mIDList; curID;
curID = curID->mNext) {
auto entry = static_cast<AtomSelectorEntry*>
(aCascade->mIdSelectors.Add(curID->mAtom, fallible));
if (entry) {
entry->mSelectors.AppendElement(SelectorPair(aSelectorInTopLevel,
aRightmostSelector));
}
}
} else if (negation->mIDList) {
aCascade->mPossiblyNegatedIDSelectors.AppendElement(aSelectorInTopLevel);
}
// Build mClassSelectors
if (negation == aSelectorInTopLevel) {
for (nsAtomList* curClass = negation->mClassList; curClass;
curClass = curClass->mNext) {
auto entry = static_cast<AtomSelectorEntry*>
(aCascade->mClassSelectors.Add(curClass->mAtom, fallible));
if (entry) {
entry->mSelectors.AppendElement(SelectorPair(aSelectorInTopLevel,
aRightmostSelector));
}
}
} else if (negation->mClassList) {
aCascade->mPossiblyNegatedClassSelectors.AppendElement(aSelectorInTopLevel);
}
// Build mAttributeSelectors.
for (nsAttrSelector *attr = negation->mAttrList; attr;
attr = attr->mNext) {
nsTArray<SelectorPair> *array =
aCascade->AttributeListFor(attr->mCasedAttr);
if (!array) {
return false;
}
array->AppendElement(SelectorPair(aSelectorInTopLevel,
aRightmostSelector));
if (attr->mLowercaseAttr != attr->mCasedAttr) {
array = aCascade->AttributeListFor(attr->mLowercaseAttr);
if (!array) {
return false;
}
array->AppendElement(SelectorPair(aSelectorInTopLevel,
aRightmostSelector));
}
}
// Recur through any :-moz-any selectors
for (nsPseudoClassList* pseudoClass = negation->mPseudoClassList;
pseudoClass; pseudoClass = pseudoClass->mNext) {
if (pseudoClass->mType == nsCSSPseudoClasses::ePseudoClass_any) {
for (nsCSSSelectorList *l = pseudoClass->u.mSelectors; l; l = l->mNext) {
nsCSSSelector *s = l->mSelectors;
if (!AddSelector(aCascade, aSelectorInTopLevel, s,
aRightmostSelector)) {
return false;
}
}
}
}
}
return true;
}
static bool
AddRule(RuleSelectorPair* aRuleInfo, RuleCascadeData* aCascade)
{
RuleCascadeData * const cascade = aCascade;
// Build the rule hash.
CSSPseudoElementType pseudoType = aRuleInfo->mSelector->PseudoType();
if (MOZ_LIKELY(pseudoType == CSSPseudoElementType::NotPseudo)) {
cascade->mRuleHash.AppendRule(*aRuleInfo);
} else if (pseudoType < CSSPseudoElementType::Count) {
RuleHash*& ruleHash = cascade->mPseudoElementRuleHashes[
static_cast<CSSPseudoElementTypeBase>(pseudoType)];
if (!ruleHash) {
ruleHash = new RuleHash(cascade->mQuirksMode);
if (!ruleHash) {
// Out of memory; give up
return false;
}
}
NS_ASSERTION(aRuleInfo->mSelector->mNext,
"Must have mNext; parser screwed up");
NS_ASSERTION(aRuleInfo->mSelector->mNext->mOperator == ':',
"Unexpected mNext combinator");
ruleHash->AppendRule(*aRuleInfo);
} else if (pseudoType == CSSPseudoElementType::AnonBox) {
NS_ASSERTION(!aRuleInfo->mSelector->mCasedTag &&
!aRuleInfo->mSelector->mIDList &&
!aRuleInfo->mSelector->mClassList &&
!aRuleInfo->mSelector->mPseudoClassList &&
!aRuleInfo->mSelector->mAttrList &&
!aRuleInfo->mSelector->mNegations &&
!aRuleInfo->mSelector->mNext &&
aRuleInfo->mSelector->mNameSpace == kNameSpaceID_Unknown,
"Parser messed up with anon box selector");
// Index doesn't matter here, since we'll just be walking these
// rules in order; just pass 0.
AppendRuleToTagTable(&cascade->mAnonBoxRules,
aRuleInfo->mSelector->mLowercaseTag,
RuleValue(*aRuleInfo, 0, aCascade->mQuirksMode));
} else {
#ifdef MOZ_XUL
NS_ASSERTION(pseudoType == CSSPseudoElementType::XULTree,
"Unexpected pseudo type");
// Index doesn't matter here, since we'll just be walking these
// rules in order; just pass 0.
AppendRuleToTagTable(&cascade->mXULTreeRules,
aRuleInfo->mSelector->mLowercaseTag,
RuleValue(*aRuleInfo, 0, aCascade->mQuirksMode));
#else
NS_NOTREACHED("Unexpected pseudo type");
#endif
}
for (nsCSSSelector* selector = aRuleInfo->mSelector;
selector; selector = selector->mNext) {
if (selector->IsPseudoElement()) {
CSSPseudoElementType pseudo = selector->PseudoType();
if (pseudo >= CSSPseudoElementType::Count ||
!nsCSSPseudoElements::PseudoElementSupportsUserActionState(pseudo)) {
NS_ASSERTION(!selector->mNegations, "Shouldn't have negations");
// We do store selectors ending with pseudo-elements that allow :hover
// and :active after them in the hashtables corresponding to that
// selector's mNext (i.e. the thing that matches against the element),
// but we want to make sure that selectors for any other kinds of
// pseudo-elements don't end up in the hashtables. In particular, tree
// pseudos store strange things in mPseudoClassList that we don't want
// to try to match elements against.
continue;
}
}
if (!AddSelector(cascade, selector, selector, aRuleInfo->mSelector)) {
return false;
}
}
return true;
}
struct PerWeightDataListItem : public RuleSelectorPair {
PerWeightDataListItem(css::StyleRule* aRule, nsCSSSelector* aSelector)
: RuleSelectorPair(aRule, aSelector)
, mNext(nullptr)
{}
// No destructor; these are arena-allocated
// Placement new to arena allocate the PerWeightDataListItem
void *operator new(size_t aSize, PLArenaPool &aArena) CPP_THROW_NEW {
void *mem;
PL_ARENA_ALLOCATE(mem, &aArena, aSize);
return mem;
}
PerWeightDataListItem *mNext;
};
struct PerWeightData {
PerWeightData()
: mRuleSelectorPairs(nullptr)
, mTail(&mRuleSelectorPairs)
{}
int32_t mWeight;
PerWeightDataListItem *mRuleSelectorPairs;
PerWeightDataListItem **mTail;
};
struct RuleByWeightEntry : public PLDHashEntryHdr {
PerWeightData data; // mWeight is key, mRuleSelectorPairs are value
};
static PLDHashNumber
HashIntKey(PLDHashTable *table, const void *key)
{
return PLDHashNumber(NS_PTR_TO_INT32(key));
}
static bool
MatchWeightEntry(PLDHashTable *table, const PLDHashEntryHdr *hdr,
const void *key)
{
const RuleByWeightEntry *entry = (const RuleByWeightEntry *)hdr;
return entry->data.mWeight == NS_PTR_TO_INT32(key);
}
static void
InitWeightEntry(PLDHashEntryHdr *hdr, const void *key)
{
RuleByWeightEntry* entry = static_cast<RuleByWeightEntry*>(hdr);
new (entry) RuleByWeightEntry();
}
static const PLDHashTableOps gRulesByWeightOps = {
HashIntKey,
MatchWeightEntry,
PLDHashTable::MoveEntryStub,
PLDHashTable::ClearEntryStub,
InitWeightEntry
};
struct CascadeEnumData {
CascadeEnumData(nsPresContext* aPresContext,
nsTArray<nsFontFaceRuleContainer>& aFontFaceRules,
nsTArray<nsCSSKeyframesRule*>& aKeyframesRules,
nsTArray<nsCSSFontFeatureValuesRule*>& aFontFeatureValuesRules,
nsTArray<nsCSSPageRule*>& aPageRules,
nsTArray<nsCSSCounterStyleRule*>& aCounterStyleRules,
nsTArray<css::DocumentRule*>& aDocumentRules,
nsMediaQueryResultCacheKey& aKey,
nsDocumentRuleResultCacheKey& aDocumentKey,
SheetType aSheetType,
bool aMustGatherDocumentRules)
: mPresContext(aPresContext),
mFontFaceRules(aFontFaceRules),
mKeyframesRules(aKeyframesRules),
mFontFeatureValuesRules(aFontFeatureValuesRules),
mPageRules(aPageRules),
mCounterStyleRules(aCounterStyleRules),
mDocumentRules(aDocumentRules),
mCacheKey(aKey),
mDocumentCacheKey(aDocumentKey),
mRulesByWeight(&gRulesByWeightOps, sizeof(RuleByWeightEntry), 32),
mSheetType(aSheetType),
mMustGatherDocumentRules(aMustGatherDocumentRules)
{
// Initialize our arena
PL_INIT_ARENA_POOL(&mArena, "CascadeEnumDataArena",
NS_CASCADEENUMDATA_ARENA_BLOCK_SIZE);
}
~CascadeEnumData()
{
PL_FinishArenaPool(&mArena);
}
nsPresContext* mPresContext;
nsTArray<nsFontFaceRuleContainer>& mFontFaceRules;
nsTArray<nsCSSKeyframesRule*>& mKeyframesRules;
nsTArray<nsCSSFontFeatureValuesRule*>& mFontFeatureValuesRules;
nsTArray<nsCSSPageRule*>& mPageRules;
nsTArray<nsCSSCounterStyleRule*>& mCounterStyleRules;
nsTArray<css::DocumentRule*>& mDocumentRules;
nsMediaQueryResultCacheKey& mCacheKey;
nsDocumentRuleResultCacheKey& mDocumentCacheKey;
PLArenaPool mArena;
// Hooray, a manual PLDHashTable since nsClassHashtable doesn't
// provide a getter that gives me a *reference* to the value.
PLDHashTable mRulesByWeight; // of PerWeightDataListItem linked lists
SheetType mSheetType;
bool mMustGatherDocumentRules;
};
/**
* Recursively traverses rules in order to:
* (1) add any @-moz-document rules into data->mDocumentRules.
* (2) record any @-moz-document rules whose conditions evaluate to true
* on data->mDocumentCacheKey.
*
* See also CascadeRuleEnumFunc below, which calls us via
* EnumerateRulesForwards. If modifying this function you may need to
* update CascadeRuleEnumFunc too.
*/
static bool
GatherDocRuleEnumFunc(css::Rule* aRule, void* aData)
{
CascadeEnumData* data = (CascadeEnumData*)aData;
int32_t type = aRule->GetType();
MOZ_ASSERT(data->mMustGatherDocumentRules,
"should only call GatherDocRuleEnumFunc if "
"mMustGatherDocumentRules is true");
if (css::Rule::MEDIA_RULE == type ||
css::Rule::SUPPORTS_RULE == type) {
css::GroupRule* groupRule = static_cast<css::GroupRule*>(aRule);
if (!groupRule->EnumerateRulesForwards(GatherDocRuleEnumFunc, aData)) {
return false;
}
}
else if (css::Rule::DOCUMENT_RULE == type) {
css::DocumentRule* docRule = static_cast<css::DocumentRule*>(aRule);
if (!data->mDocumentRules.AppendElement(docRule)) {
return false;
}
if (docRule->UseForPresentation(data->mPresContext)) {
if (!data->mDocumentCacheKey.AddMatchingRule(docRule)) {
return false;
}
}
if (!docRule->EnumerateRulesForwards(GatherDocRuleEnumFunc, aData)) {
return false;
}
}
return true;
}
/*
* This enumerates style rules in a sheet (and recursively into any
* grouping rules) in order to:
* (1) add any style rules, in order, into data->mRulesByWeight (for
* the primary CSS cascade), where they are separated by weight
* but kept in order per-weight, and
* (2) add any @font-face rules, in order, into data->mFontFaceRules.
* (3) add any @keyframes rules, in order, into data->mKeyframesRules.
* (4) add any @font-feature-value rules, in order,
* into data->mFontFeatureValuesRules.
* (5) add any @page rules, in order, into data->mPageRules.
* (6) add any @counter-style rules, in order, into data->mCounterStyleRules.
* (7) add any @-moz-document rules into data->mDocumentRules.
* (8) record any @-moz-document rules whose conditions evaluate to true
* on data->mDocumentCacheKey.
*
* See also GatherDocRuleEnumFunc above, which we call to traverse into
* @-moz-document rules even if their (or an ancestor's) condition
* fails. This means we might look at the result of some @-moz-document
* rules that don't actually affect whether a RuleProcessorCache lookup
* is a hit or a miss. The presence of @-moz-document rules inside
* @media etc. rules should be rare, and looking at all of them in the
* sheets lets us avoid the complication of having different document
* cache key results for different media.
*
* If modifying this function you may need to update
* GatherDocRuleEnumFunc too.
*/
static bool
CascadeRuleEnumFunc(css::Rule* aRule, void* aData)
{
CascadeEnumData* data = (CascadeEnumData*)aData;
int32_t type = aRule->GetType();
if (css::Rule::STYLE_RULE == type) {
css::StyleRule* styleRule = static_cast<css::StyleRule*>(aRule);
for (nsCSSSelectorList *sel = styleRule->Selector();
sel; sel = sel->mNext) {
int32_t weight = sel->mWeight;
auto entry = static_cast<RuleByWeightEntry*>
(data->mRulesByWeight.Add(NS_INT32_TO_PTR(weight), fallible));
if (!entry)
return false;
entry->data.mWeight = weight;
// entry->data.mRuleSelectorPairs should be linked in forward order;
// entry->data.mTail is the slot to write to.
PerWeightDataListItem *newItem =
new (data->mArena) PerWeightDataListItem(styleRule, sel->mSelectors);
if (newItem) {
*(entry->data.mTail) = newItem;
entry->data.mTail = &newItem->mNext;
}
}
}
else if (css::Rule::MEDIA_RULE == type ||
css::Rule::SUPPORTS_RULE == type) {
css::GroupRule* groupRule = static_cast<css::GroupRule*>(aRule);
const bool use =
groupRule->UseForPresentation(data->mPresContext, data->mCacheKey);
if (use || data->mMustGatherDocumentRules) {
if (!groupRule->EnumerateRulesForwards(use ? CascadeRuleEnumFunc :
GatherDocRuleEnumFunc,
aData)) {
return false;
}
}
}
else if (css::Rule::DOCUMENT_RULE == type) {
css::DocumentRule* docRule = static_cast<css::DocumentRule*>(aRule);
if (data->mMustGatherDocumentRules) {
if (!data->mDocumentRules.AppendElement(docRule)) {
return false;
}
}
const bool use = docRule->UseForPresentation(data->mPresContext);
if (use && data->mMustGatherDocumentRules) {
if (!data->mDocumentCacheKey.AddMatchingRule(docRule)) {
return false;
}
}
if (use || data->mMustGatherDocumentRules) {
if (!docRule->EnumerateRulesForwards(use ? CascadeRuleEnumFunc
: GatherDocRuleEnumFunc,
aData)) {
return false;
}
}
}
else if (css::Rule::FONT_FACE_RULE == type) {
nsCSSFontFaceRule *fontFaceRule = static_cast<nsCSSFontFaceRule*>(aRule);
nsFontFaceRuleContainer *ptr = data->mFontFaceRules.AppendElement();
if (!ptr)
return false;
ptr->mRule = fontFaceRule;
ptr->mSheetType = data->mSheetType;
}
else if (css::Rule::KEYFRAMES_RULE == type) {
nsCSSKeyframesRule *keyframesRule =
static_cast<nsCSSKeyframesRule*>(aRule);
if (!data->mKeyframesRules.AppendElement(keyframesRule)) {
return false;
}
}
else if (css::Rule::FONT_FEATURE_VALUES_RULE == type) {
nsCSSFontFeatureValuesRule *fontFeatureValuesRule =
static_cast<nsCSSFontFeatureValuesRule*>(aRule);
if (!data->mFontFeatureValuesRules.AppendElement(fontFeatureValuesRule)) {
return false;
}
}
else if (css::Rule::PAGE_RULE == type) {
nsCSSPageRule* pageRule = static_cast<nsCSSPageRule*>(aRule);
if (!data->mPageRules.AppendElement(pageRule)) {
return false;
}
}
else if (css::Rule::COUNTER_STYLE_RULE == type) {
nsCSSCounterStyleRule* counterStyleRule =
static_cast<nsCSSCounterStyleRule*>(aRule);
if (!data->mCounterStyleRules.AppendElement(counterStyleRule)) {
return false;
}
}
return true;
}
/* static */ bool
nsCSSRuleProcessor::CascadeSheet(CSSStyleSheet* aSheet, CascadeEnumData* aData)
{
if (aSheet->IsApplicable() &&
aSheet->UseForPresentation(aData->mPresContext, aData->mCacheKey) &&
aSheet->mInner) {
CSSStyleSheet* child = aSheet->mInner->mFirstChild;
while (child) {
CascadeSheet(child, aData);
child = child->mNext;
}
if (!aSheet->mInner->mOrderedRules.EnumerateForwards(CascadeRuleEnumFunc,
aData))
return false;
}
return true;
}
static int CompareWeightData(const void* aArg1, const void* aArg2,
void* closure)
{
const PerWeightData* arg1 = static_cast<const PerWeightData*>(aArg1);
const PerWeightData* arg2 = static_cast<const PerWeightData*>(aArg2);
return arg1->mWeight - arg2->mWeight; // put lower weight first
}
RuleCascadeData*
nsCSSRuleProcessor::GetRuleCascade(nsPresContext* aPresContext)
{
// FIXME: Make this infallible!
// If anything changes about the presentation context, we will be
// notified. Otherwise, our cache is valid if mLastPresContext
// matches aPresContext. (The only rule processors used for multiple
// pres contexts are for XBL. These rule processors are probably less
// likely to have @media rules, and thus the cache is pretty likely to
// hit instantly even when we're switching between pres contexts.)
if (!mRuleCascades || aPresContext != mLastPresContext) {
RefreshRuleCascade(aPresContext);
}
mLastPresContext = aPresContext;
return mRuleCascades;
}
void
nsCSSRuleProcessor::RefreshRuleCascade(nsPresContext* aPresContext)
{
// Having RuleCascadeData objects be per-medium (over all variation
// caused by media queries, handled through mCacheKey) works for now
// since nsCSSRuleProcessor objects are per-document. (For a given
// set of stylesheets they can vary based on medium (@media) or
// document (@-moz-document).)
for (RuleCascadeData **cascadep = &mRuleCascades, *cascade;
(cascade = *cascadep); cascadep = &cascade->mNext) {
if (cascade->mCacheKey.Matches(aPresContext)) {
// Ensure that the current one is always mRuleCascades.
*cascadep = cascade->mNext;
cascade->mNext = mRuleCascades;
mRuleCascades = cascade;
return;
}
}
// We're going to make a new rule cascade; this means that we should
// now stop using the previous cache key that we're holding on to from
// the last time we had rule cascades.
mPreviousCacheKey = nullptr;
if (mSheets.Length() != 0) {
nsAutoPtr<RuleCascadeData> newCascade(
new RuleCascadeData(aPresContext->Medium(),
eCompatibility_NavQuirks == aPresContext->CompatibilityMode()));
if (newCascade) {
CascadeEnumData data(aPresContext, newCascade->mFontFaceRules,
newCascade->mKeyframesRules,
newCascade->mFontFeatureValuesRules,
newCascade->mPageRules,
newCascade->mCounterStyleRules,
mDocumentRules,
newCascade->mCacheKey,
mDocumentCacheKey,
mSheetType,
mMustGatherDocumentRules);
for (uint32_t i = 0; i < mSheets.Length(); ++i) {
if (!CascadeSheet(mSheets.ElementAt(i), &data))
return; /* out of memory */
}
// Sort the hash table of per-weight linked lists by weight.
uint32_t weightCount = data.mRulesByWeight.EntryCount();
auto weightArray = MakeUnique<PerWeightData[]>(weightCount);
int32_t j = 0;
for (auto iter = data.mRulesByWeight.Iter(); !iter.Done(); iter.Next()) {
auto entry = static_cast<const RuleByWeightEntry*>(iter.Get());
weightArray[j++] = entry->data;
}
NS_QuickSort(weightArray.get(), weightCount, sizeof(PerWeightData),
CompareWeightData, nullptr);
// Put things into the rule hash.
// The primary sort is by weight...
for (uint32_t i = 0; i < weightCount; ++i) {
// and the secondary sort is by order. mRuleSelectorPairs is already in
// the right order..
for (PerWeightDataListItem *cur = weightArray[i].mRuleSelectorPairs;
cur;
cur = cur->mNext) {
if (!AddRule(cur, newCascade))
return; /* out of memory */
}
}
// Build mKeyframesRuleTable.
for (nsTArray<nsCSSKeyframesRule*>::size_type i = 0,
iEnd = newCascade->mKeyframesRules.Length(); i < iEnd; ++i) {
nsCSSKeyframesRule* rule = newCascade->mKeyframesRules[i];
newCascade->mKeyframesRuleTable.Put(rule->GetName(), rule);
}
// Build mCounterStyleRuleTable
for (nsTArray<nsCSSCounterStyleRule*>::size_type i = 0,
iEnd = newCascade->mCounterStyleRules.Length(); i < iEnd; ++i) {
nsCSSCounterStyleRule* rule = newCascade->mCounterStyleRules[i];
newCascade->mCounterStyleRuleTable.Put(rule->GetName(), rule);
}
// mMustGatherDocumentRules controls whether we build mDocumentRules
// and mDocumentCacheKey so that they can be used as keys by the
// RuleProcessorCache, as obtained by TakeDocumentRulesAndCacheKey
// later. We set it to false just below so that we only do this
// the first time we build a RuleProcessorCache for a shared rule
// processor.
//
// An up-to-date mDocumentCacheKey is only needed if we
// are still in the RuleProcessorCache (as we store a copy of the
// cache key in the RuleProcessorCache), and an up-to-date
// mDocumentRules is only needed at the time TakeDocumentRulesAndCacheKey
// is called, which is immediately after the rule processor is created
// (by nsStyleSet).
//
// Note that when nsCSSRuleProcessor::ClearRuleCascades is called,
// by CSSStyleSheet::ClearRuleCascades, we will have called
// RuleProcessorCache::RemoveSheet, which will remove the rule
// processor from the cache. (This is because the list of document
// rules now may not match the one used as they key in the
// RuleProcessorCache.)
//
// Thus, as we'll no longer be in the RuleProcessorCache, and we won't
// have TakeDocumentRulesAndCacheKey called on us, we don't need to ensure
// mDocumentCacheKey and mDocumentRules are up-to-date after the
// first time GetRuleCascade is called.
if (mMustGatherDocumentRules) {
mDocumentRules.Sort();
mDocumentCacheKey.Finalize();
mMustGatherDocumentRules = false;
#ifdef DEBUG
mDocumentRulesAndCacheKeyValid = true;
#endif
}
// Ensure that the current one is always mRuleCascades.
newCascade->mNext = mRuleCascades;
mRuleCascades = newCascade.forget();
}
}
return;
}
/* static */ bool
nsCSSRuleProcessor::SelectorListMatches(Element* aElement,
TreeMatchContext& aTreeMatchContext,
nsCSSSelectorList* aSelectorList)
{
MOZ_ASSERT(!aTreeMatchContext.mForScopedStyle,
"mCurrentStyleScope will need to be saved and restored after the "
"SelectorMatchesTree call");
while (aSelectorList) {
nsCSSSelector* sel = aSelectorList->mSelectors;
NS_ASSERTION(sel, "Should have *some* selectors");
NS_ASSERTION(!sel->IsPseudoElement(), "Shouldn't have been called");
NodeMatchContext nodeContext(EventStates(), false);
if (SelectorMatches(aElement, sel, nodeContext, aTreeMatchContext,
SelectorMatchesFlags::NONE)) {
nsCSSSelector* next = sel->mNext;
if (!next ||
SelectorMatchesTree(aElement, next, aTreeMatchContext,
SelectorMatchesTreeFlags(0))) {
return true;
}
}
aSelectorList = aSelectorList->mNext;
}
return false;
}
void
nsCSSRuleProcessor::TakeDocumentRulesAndCacheKey(
nsPresContext* aPresContext,
nsTArray<css::DocumentRule*>& aDocumentRules,
nsDocumentRuleResultCacheKey& aCacheKey)
{
MOZ_ASSERT(mIsShared);
GetRuleCascade(aPresContext);
MOZ_ASSERT(mDocumentRulesAndCacheKeyValid);
aDocumentRules.Clear();
aDocumentRules.SwapElements(mDocumentRules);
aCacheKey.Swap(mDocumentCacheKey);
#ifdef DEBUG
mDocumentRulesAndCacheKeyValid = false;
#endif
}
void
nsCSSRuleProcessor::AddStyleSetRef()
{
MOZ_ASSERT(mIsShared);
if (++mStyleSetRefCnt == 1) {
RuleProcessorCache::StopTracking(this);
}
}
void
nsCSSRuleProcessor::ReleaseStyleSetRef()
{
MOZ_ASSERT(mIsShared);
MOZ_ASSERT(mStyleSetRefCnt > 0);
if (--mStyleSetRefCnt == 0 && mInRuleProcessorCache) {
RuleProcessorCache::StartTracking(this);
}
}
// TreeMatchContext and AncestorFilter out of line methods
void
TreeMatchContext::InitAncestors(Element *aElement)
{
MOZ_ASSERT(!mAncestorFilter.mFilter);
MOZ_ASSERT(mAncestorFilter.mHashes.IsEmpty());
MOZ_ASSERT(mStyleScopes.IsEmpty());
mAncestorFilter.mFilter = new AncestorFilter::Filter();
if (MOZ_LIKELY(aElement)) {
MOZ_ASSERT(aElement->GetCurrentDoc() ||
aElement->HasFlag(NODE_IS_IN_SHADOW_TREE),
"aElement must be in the document or in shadow tree "
"for the assumption that GetParentNode() is non-null "
"on all element ancestors of aElement to be true");
// Collect up the ancestors
AutoTArray<Element*, 50> ancestors;
Element* cur = aElement;
do {
ancestors.AppendElement(cur);
cur = cur->GetParentElementCrossingShadowRoot();
} while (cur);
// Now push them in reverse order.
for (uint32_t i = ancestors.Length(); i-- != 0; ) {
mAncestorFilter.PushAncestor(ancestors[i]);
PushStyleScope(ancestors[i]);
}
}
}
void
TreeMatchContext::InitStyleScopes(Element* aElement)
{
MOZ_ASSERT(mStyleScopes.IsEmpty());
if (MOZ_LIKELY(aElement)) {
// Collect up the ancestors
AutoTArray<Element*, 50> ancestors;
Element* cur = aElement;
do {
ancestors.AppendElement(cur);
cur = cur->GetParentElementCrossingShadowRoot();
} while (cur);
// Now push them in reverse order.
for (uint32_t i = ancestors.Length(); i-- != 0; ) {
PushStyleScope(ancestors[i]);
}
}
}
void
AncestorFilter::PushAncestor(Element *aElement)
{
MOZ_ASSERT(mFilter);
uint32_t oldLength = mHashes.Length();
mPopTargets.AppendElement(oldLength);
#ifdef DEBUG
mElements.AppendElement(aElement);
#endif
mHashes.AppendElement(aElement->NodeInfo()->NameAtom()->hash());
nsIAtom *id = aElement->GetID();
if (id) {
mHashes.AppendElement(id->hash());
}
const nsAttrValue *classes = aElement->GetClasses();
if (classes) {
uint32_t classCount = classes->GetAtomCount();
for (uint32_t i = 0; i < classCount; ++i) {
mHashes.AppendElement(classes->AtomAt(i)->hash());
}
}
uint32_t newLength = mHashes.Length();
for (uint32_t i = oldLength; i < newLength; ++i) {
mFilter->add(mHashes[i]);
}
}
void
AncestorFilter::PopAncestor()
{
MOZ_ASSERT(!mPopTargets.IsEmpty());
MOZ_ASSERT(mPopTargets.Length() == mElements.Length());
uint32_t popTargetLength = mPopTargets.Length();
uint32_t newLength = mPopTargets[popTargetLength-1];
mPopTargets.TruncateLength(popTargetLength-1);
#ifdef DEBUG
mElements.TruncateLength(popTargetLength-1);
#endif
uint32_t oldLength = mHashes.Length();
for (uint32_t i = newLength; i < oldLength; ++i) {
mFilter->remove(mHashes[i]);
}
mHashes.TruncateLength(newLength);
}
#ifdef DEBUG
void
AncestorFilter::AssertHasAllAncestors(Element *aElement) const
{
Element* cur = aElement->GetParentElementCrossingShadowRoot();
while (cur) {
MOZ_ASSERT(mElements.Contains(cur));
cur = cur->GetParentElementCrossingShadowRoot();
}
}
void
TreeMatchContext::AssertHasAllStyleScopes(Element* aElement) const
{
if (aElement->IsInNativeAnonymousSubtree()) {
// Document style sheets are never applied to native anonymous content,
// so it's not possible for them to be in a <style scoped> scope.
return;
}
Element* cur = aElement->GetParentElementCrossingShadowRoot();
while (cur) {
if (cur->IsScopedStyleRoot()) {
MOZ_ASSERT(mStyleScopes.Contains(cur));
}
cur = cur->GetParentElementCrossingShadowRoot();
}
}
#endif