gecko-dev/dom/base/nsRange.cpp

3370 строки
107 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/*
* Implementation of the DOM Range object.
*/
#include "nscore.h"
#include "nsRange.h"
#include "nsString.h"
#include "nsReadableUtils.h"
#include "nsIContent.h"
#include "mozilla/dom/Document.h"
#include "nsError.h"
#include "nsINodeList.h"
#include "nsGkAtoms.h"
#include "nsContentUtils.h"
#include "nsTextFrame.h"
#include "mozilla/ContentIterator.h"
#include "mozilla/dom/CharacterData.h"
#include "mozilla/dom/DocumentFragment.h"
#include "mozilla/dom/DocumentType.h"
#include "mozilla/dom/RangeBinding.h"
#include "mozilla/dom/DOMRect.h"
#include "mozilla/dom/DOMStringList.h"
#include "mozilla/dom/ShadowRoot.h"
#include "mozilla/dom/Selection.h"
#include "mozilla/dom/Text.h"
#include "mozilla/Telemetry.h"
#include "mozilla/UniquePtr.h"
#include "mozilla/Likely.h"
#include "nsCSSFrameConstructor.h"
#include "nsStyleStruct.h"
#include "nsStyleStructInlines.h"
#include "nsComputedDOMStyle.h"
#include "mozilla/dom/InspectorFontFace.h"
using namespace mozilla;
using namespace mozilla::dom;
JSObject* nsRange::WrapObject(JSContext* aCx,
JS::Handle<JSObject*> aGivenProto) {
return Range_Binding::Wrap(aCx, this, aGivenProto);
}
DocGroup* nsRange::GetDocGroup() const {
return mOwner ? mOwner->GetDocGroup() : nullptr;
}
/******************************************************
* stack based utilty class for managing monitor
******************************************************/
static void InvalidateAllFrames(nsINode* aNode) {
MOZ_ASSERT(aNode, "bad arg");
nsIFrame* frame = nullptr;
switch (aNode->NodeType()) {
case nsINode::TEXT_NODE:
case nsINode::ELEMENT_NODE: {
nsIContent* content = static_cast<nsIContent*>(aNode);
frame = content->GetPrimaryFrame();
break;
}
case nsINode::DOCUMENT_NODE: {
Document* doc = static_cast<Document*>(aNode);
nsIPresShell* shell = doc ? doc->GetShell() : nullptr;
frame = shell ? shell->GetRootFrame() : nullptr;
break;
}
}
for (nsIFrame* f = frame; f; f = f->GetNextContinuation()) {
f->InvalidateFrameSubtree();
}
}
// Utility routine to detect if a content node is completely contained in a
// range If outNodeBefore is returned true, then the node starts before the
// range does. If outNodeAfter is returned true, then the node ends after the
// range does. Note that both of the above might be true. If neither are true,
// the node is contained inside of the range.
// XXX - callers responsibility to ensure node in same doc as range!
// static
nsresult nsRange::CompareNodeToRange(nsINode* aNode, nsRange* aRange,
bool* outNodeBefore, bool* outNodeAfter) {
NS_ENSURE_STATE(aNode);
// create a pair of dom points that expresses location of node:
// NODE(start), NODE(end)
// Let incoming range be:
// {RANGE(start), RANGE(end)}
// if (RANGE(start) <= NODE(start)) and (RANGE(end) => NODE(end))
// then the Node is contained (completely) by the Range.
if (!aRange || !aRange->IsPositioned()) return NS_ERROR_UNEXPECTED;
// gather up the dom point info
int32_t nodeStart, nodeEnd;
nsINode* parent = aNode->GetParentNode();
if (!parent) {
// can't make a parent/offset pair to represent start or
// end of the root node, because it has no parent.
// so instead represent it by (node,0) and (node,numChildren)
parent = aNode;
nodeStart = 0;
uint32_t childCount = aNode->GetChildCount();
MOZ_ASSERT(childCount <= INT32_MAX,
"There shouldn't be over INT32_MAX children");
nodeEnd = static_cast<int32_t>(childCount);
} else {
nodeStart = parent->ComputeIndexOf(aNode);
nodeEnd = nodeStart + 1;
MOZ_ASSERT(nodeStart < nodeEnd, "nodeStart shouldn't be INT32_MAX");
}
nsINode* rangeStartContainer = aRange->GetStartContainer();
nsINode* rangeEndContainer = aRange->GetEndContainer();
uint32_t rangeStartOffset = aRange->StartOffset();
uint32_t rangeEndOffset = aRange->EndOffset();
// is RANGE(start) <= NODE(start) ?
bool disconnected = false;
*outNodeBefore =
nsContentUtils::ComparePoints(rangeStartContainer,
static_cast<int32_t>(rangeStartOffset),
parent, nodeStart, &disconnected) > 0;
NS_ENSURE_TRUE(!disconnected, NS_ERROR_DOM_WRONG_DOCUMENT_ERR);
// is RANGE(end) >= NODE(end) ?
*outNodeAfter = nsContentUtils::ComparePoints(
rangeEndContainer, static_cast<int32_t>(rangeEndOffset),
parent, nodeEnd, &disconnected) < 0;
NS_ENSURE_TRUE(!disconnected, NS_ERROR_DOM_WRONG_DOCUMENT_ERR);
return NS_OK;
}
static nsINode* GetNextRangeCommonAncestor(nsINode* aNode) {
while (aNode && !aNode->IsCommonAncestorForRangeInSelection()) {
if (!aNode->IsDescendantOfCommonAncestorForRangeInSelection()) {
return nullptr;
}
aNode = aNode->GetParentNode();
}
return aNode;
}
/**
* A Comparator suitable for mozilla::BinarySearchIf for searching a collection
* of nsRange* for an overlap of (mNode, mStartOffset) .. (mNode, mEndOffset).
*/
struct IsItemInRangeComparator {
nsINode* mNode;
uint32_t mStartOffset;
uint32_t mEndOffset;
nsContentUtils::ComparePointsCache* mCache;
int operator()(const nsRange* const aRange) const {
int32_t cmp = nsContentUtils::ComparePoints(
mNode, static_cast<int32_t>(mEndOffset), aRange->GetStartContainer(),
static_cast<int32_t>(aRange->StartOffset()), nullptr, mCache);
if (cmp == 1) {
cmp = nsContentUtils::ComparePoints(
mNode, static_cast<int32_t>(mStartOffset), aRange->GetEndContainer(),
static_cast<int32_t>(aRange->EndOffset()), nullptr, mCache);
if (cmp == -1) {
return 0;
}
return 1;
}
return -1;
}
};
/* static */
bool nsRange::IsNodeSelected(nsINode* aNode, uint32_t aStartOffset,
uint32_t aEndOffset) {
MOZ_ASSERT(aNode, "bad arg");
nsINode* n = GetNextRangeCommonAncestor(aNode);
NS_ASSERTION(n || !aNode->IsSelectionDescendant(),
"orphan selection descendant");
// Collect the selection objects for potential ranges.
nsTHashtable<nsPtrHashKey<Selection>> ancestorSelections;
Selection* prevSelection = nullptr;
uint32_t maxRangeCount = 0;
for (; n; n = GetNextRangeCommonAncestor(n->GetParentNode())) {
LinkedList<nsRange>* ranges = n->GetExistingCommonAncestorRanges();
if (!ranges) {
continue;
}
for (nsRange* range : *ranges) {
MOZ_ASSERT(range->IsInSelection(),
"Why is this range registeed with a node?");
// Looks like that IsInSelection() assert fails sometimes...
if (range->IsInSelection()) {
Selection* selection = range->mSelection;
if (prevSelection != selection) {
prevSelection = selection;
ancestorSelections.PutEntry(selection);
}
maxRangeCount = std::max(maxRangeCount, selection->RangeCount());
}
}
}
nsContentUtils::ComparePointsCache cache;
IsItemInRangeComparator comparator = {aNode, aStartOffset, aEndOffset,
&cache};
if (!ancestorSelections.IsEmpty()) {
for (auto iter = ancestorSelections.ConstIter(); !iter.Done();
iter.Next()) {
Selection* selection = iter.Get()->GetKey();
// Binary search the sorted ranges in this selection.
// (Selection::GetRangeAt returns its ranges ordered).
size_t low = 0;
size_t high = selection->RangeCount();
while (high != low) {
size_t middle = low + (high - low) / 2;
const nsRange* const range = selection->GetRangeAt(middle);
int result = comparator(range);
if (result == 0) {
if (!range->Collapsed()) return true;
const nsRange* middlePlus1;
const nsRange* middleMinus1;
// if node end > start of middle+1, result = 1
if (middle + 1 < high &&
(middlePlus1 = selection->GetRangeAt(middle + 1)) &&
nsContentUtils::ComparePoints(
aNode, static_cast<int32_t>(aEndOffset),
middlePlus1->GetStartContainer(),
static_cast<int32_t>(middlePlus1->StartOffset()), nullptr,
&cache) > 0) {
result = 1;
// if node start < end of middle - 1, result = -1
} else if (middle >= 1 &&
(middleMinus1 = selection->GetRangeAt(middle - 1)) &&
nsContentUtils::ComparePoints(
aNode, static_cast<int32_t>(aStartOffset),
middleMinus1->GetEndContainer(),
static_cast<int32_t>(middleMinus1->EndOffset()),
nullptr, &cache) < 0) {
result = -1;
} else {
break;
}
}
if (result < 0) {
high = middle;
} else {
low = middle + 1;
}
}
}
}
return false;
}
/******************************************************
* constructor/destructor
******************************************************/
nsRange::~nsRange() {
NS_ASSERTION(!IsInSelection(), "deleting nsRange that is in use");
// we want the side effects (releases and list removals)
DoSetRange(RawRangeBoundary(), RawRangeBoundary(), nullptr);
}
nsRange::nsRange(nsINode* aNode)
: mRoot(nullptr),
mRegisteredCommonAncestor(nullptr),
mNextStartRef(nullptr),
mNextEndRef(nullptr),
mIsPositioned(false),
mIsGenerated(false),
mCalledByJS(false) {
MOZ_ASSERT(aNode, "range isn't in a document!");
mOwner = aNode->OwnerDoc();
}
/* static */
nsresult nsRange::CreateRange(nsINode* aStartContainer, uint32_t aStartOffset,
nsINode* aEndParent, uint32_t aEndOffset,
nsRange** aRange) {
MOZ_ASSERT(aRange);
*aRange = nullptr;
RefPtr<nsRange> range = new nsRange(aStartContainer);
nsresult rv = range->SetStartAndEnd(aStartContainer, aStartOffset, aEndParent,
aEndOffset);
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
range.forget(aRange);
return NS_OK;
}
/* static */
nsresult nsRange::CreateRange(const RawRangeBoundary& aStart,
const RawRangeBoundary& aEnd, nsRange** aRange) {
RefPtr<nsRange> range = new nsRange(aStart.Container());
nsresult rv = range->SetStartAndEnd(aStart, aEnd);
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
range.forget(aRange);
return NS_OK;
}
/******************************************************
* nsISupports
******************************************************/
NS_IMPL_MAIN_THREAD_ONLY_CYCLE_COLLECTING_ADDREF(nsRange)
NS_IMPL_MAIN_THREAD_ONLY_CYCLE_COLLECTING_RELEASE_WITH_LAST_RELEASE(
nsRange, DoSetRange(RawRangeBoundary(), RawRangeBoundary(), nullptr))
// QueryInterface implementation for nsRange
NS_INTERFACE_MAP_BEGIN_CYCLE_COLLECTION(nsRange)
NS_WRAPPERCACHE_INTERFACE_MAP_ENTRY
NS_INTERFACE_MAP_ENTRY(nsIMutationObserver)
NS_INTERFACE_MAP_ENTRY(nsISupports)
NS_INTERFACE_MAP_END
NS_IMPL_CYCLE_COLLECTION_CLASS(nsRange)
NS_IMPL_CYCLE_COLLECTION_UNLINK_BEGIN(nsRange)
NS_IMPL_CYCLE_COLLECTION_UNLINK_PRESERVED_WRAPPER
NS_IMPL_CYCLE_COLLECTION_UNLINK(mOwner);
// We _could_ just rely on Reset() to UnregisterCommonAncestor(),
// but it wouldn't know we're calling it from Unlink and so would do
// more work than it really needs to.
if (tmp->mRegisteredCommonAncestor) {
tmp->UnregisterCommonAncestor(tmp->mRegisteredCommonAncestor, true);
}
tmp->Reset();
MOZ_DIAGNOSTIC_ASSERT(!tmp->isInList(),
"Shouldn't be registered now that we're unlinking");
NS_IMPL_CYCLE_COLLECTION_UNLINK_END
NS_IMPL_CYCLE_COLLECTION_TRAVERSE_BEGIN(nsRange)
NS_IMPL_CYCLE_COLLECTION_TRAVERSE(mOwner)
NS_IMPL_CYCLE_COLLECTION_TRAVERSE(mStart)
NS_IMPL_CYCLE_COLLECTION_TRAVERSE(mEnd)
NS_IMPL_CYCLE_COLLECTION_TRAVERSE(mRoot)
NS_IMPL_CYCLE_COLLECTION_TRAVERSE_END
NS_IMPL_CYCLE_COLLECTION_TRACE_BEGIN(nsRange)
NS_IMPL_CYCLE_COLLECTION_TRACE_PRESERVED_WRAPPER
NS_IMPL_CYCLE_COLLECTION_TRACE_END
static void MarkDescendants(nsINode* aNode) {
// Set NodeIsDescendantOfCommonAncestorForRangeInSelection on aNode's
// descendants unless aNode is already marked as a range common ancestor
// or a descendant of one, in which case all of our descendants have the
// bit set already.
if (!aNode->IsSelectionDescendant()) {
// don't set the Descendant bit on |aNode| itself
nsINode* node = aNode->GetNextNode(aNode);
while (node) {
node->SetDescendantOfCommonAncestorForRangeInSelection();
if (!node->IsCommonAncestorForRangeInSelection()) {
node = node->GetNextNode(aNode);
} else {
// optimize: skip this sub-tree since it's marked already.
node = node->GetNextNonChildNode(aNode);
}
}
}
}
static void UnmarkDescendants(nsINode* aNode) {
// Unset NodeIsDescendantOfCommonAncestorForRangeInSelection on aNode's
// descendants unless aNode is a descendant of another range common ancestor.
// Also, exclude descendants of range common ancestors (but not the common
// ancestor itself).
if (!aNode->IsDescendantOfCommonAncestorForRangeInSelection()) {
// we know |aNode| doesn't have any bit set
nsINode* node = aNode->GetNextNode(aNode);
while (node) {
node->ClearDescendantOfCommonAncestorForRangeInSelection();
if (!node->IsCommonAncestorForRangeInSelection()) {
node = node->GetNextNode(aNode);
} else {
// We found an ancestor of an overlapping range, skip its descendants.
node = node->GetNextNonChildNode(aNode);
}
}
}
}
void nsRange::RegisterCommonAncestor(nsINode* aNode) {
MOZ_ASSERT(aNode, "bad arg");
MOZ_DIAGNOSTIC_ASSERT(IsInSelection(), "registering range not in selection");
mRegisteredCommonAncestor = aNode;
MarkDescendants(aNode);
UniquePtr<LinkedList<nsRange>>& ranges = aNode->GetCommonAncestorRangesPtr();
if (!ranges) {
ranges = MakeUnique<LinkedList<nsRange>>();
}
MOZ_DIAGNOSTIC_ASSERT(!isInList());
ranges->insertBack(this);
aNode->SetCommonAncestorForRangeInSelection();
}
void nsRange::UnregisterCommonAncestor(nsINode* aNode, bool aIsUnlinking) {
MOZ_ASSERT(aNode, "bad arg");
NS_ASSERTION(aNode->IsCommonAncestorForRangeInSelection(), "wrong node");
MOZ_DIAGNOSTIC_ASSERT(aNode == mRegisteredCommonAncestor, "wrong node");
LinkedList<nsRange>* ranges = aNode->GetExistingCommonAncestorRanges();
MOZ_ASSERT(ranges);
mRegisteredCommonAncestor = nullptr;
#ifdef DEBUG
bool found = false;
for (nsRange* range : *ranges) {
if (range == this) {
found = true;
break;
}
}
MOZ_ASSERT(found,
"We should be in the list on our registered common ancestor");
#endif // DEBUG
remove();
// We don't want to waste time unmarking flags on nodes that are
// being unlinked anyway.
if (!aIsUnlinking && ranges->isEmpty()) {
aNode->ClearCommonAncestorForRangeInSelection();
UnmarkDescendants(aNode);
}
}
/******************************************************
* nsIMutationObserver implementation
******************************************************/
void nsRange::CharacterDataChanged(nsIContent* aContent,
const CharacterDataChangeInfo& aInfo) {
// If this is called when this is not positioned, it means that this range
// will be initialized again or destroyed soon. See Selection::mCachedRange.
if (!mIsPositioned) {
MOZ_ASSERT(mRoot);
return;
}
MOZ_ASSERT(!mNextEndRef);
MOZ_ASSERT(!mNextStartRef);
nsINode* newRoot = nullptr;
RawRangeBoundary newStart;
RawRangeBoundary newEnd;
if (aInfo.mDetails &&
aInfo.mDetails->mType == CharacterDataChangeInfo::Details::eSplit) {
// If the splitted text node is immediately before a range boundary point
// that refers to a child index (i.e. its parent is the boundary container)
// then we need to adjust the corresponding boundary to account for the new
// text node that will be inserted. However, because the new sibling hasn't
// been inserted yet, that would result in an invalid boundary. Therefore,
// we store the new child in mNext*Ref to make sure we adjust the boundary
// in the next ContentInserted or ContentAppended call.
nsINode* parentNode = aContent->GetParentNode();
if (parentNode == mEnd.Container()) {
if (aContent == mEnd.Ref()) {
MOZ_ASSERT(aInfo.mDetails->mNextSibling);
mNextEndRef = aInfo.mDetails->mNextSibling;
}
}
if (parentNode == mStart.Container()) {
if (aContent == mStart.Ref()) {
MOZ_ASSERT(aInfo.mDetails->mNextSibling);
mNextStartRef = aInfo.mDetails->mNextSibling;
}
}
}
// If the changed node contains our start boundary and the change starts
// before the boundary we'll need to adjust the offset.
if (aContent == mStart.Container() && aInfo.mChangeStart < mStart.Offset()) {
if (aInfo.mDetails) {
// splitText(), aInfo->mDetails->mNextSibling is the new text node
NS_ASSERTION(
aInfo.mDetails->mType == CharacterDataChangeInfo::Details::eSplit,
"only a split can start before the end");
NS_ASSERTION(mStart.Offset() <= aInfo.mChangeEnd + 1,
"mStart.Offset() is beyond the end of this node");
int32_t newStartOffset = mStart.Offset() - aInfo.mChangeStart;
newStart.Set(aInfo.mDetails->mNextSibling, newStartOffset);
if (MOZ_UNLIKELY(aContent == mRoot)) {
newRoot = IsValidBoundary(newStart.Container());
}
bool isCommonAncestor =
IsInSelection() && mStart.Container() == mEnd.Container();
if (isCommonAncestor) {
UnregisterCommonAncestor(mStart.Container(), false);
RegisterCommonAncestor(newStart.Container());
}
if (mStart.Container()
->IsDescendantOfCommonAncestorForRangeInSelection()) {
newStart.Container()
->SetDescendantOfCommonAncestorForRangeInSelection();
}
} else {
// If boundary is inside changed text, position it before change
// else adjust start offset for the change in length.
int32_t newStartOffset = mStart.Offset() <= aInfo.mChangeEnd
? aInfo.mChangeStart
: mStart.Offset() + aInfo.mChangeStart -
aInfo.mChangeEnd +
aInfo.mReplaceLength;
newStart.Set(mStart.Container(), newStartOffset);
}
}
// Do the same thing for the end boundary, except for splitText of a node
// with no parent then only switch to the new node if the start boundary
// did so too (otherwise the range would end up with disconnected nodes).
if (aContent == mEnd.Container() && aInfo.mChangeStart < mEnd.Offset()) {
if (aInfo.mDetails && (aContent->GetParentNode() || newStart.Container())) {
// splitText(), aInfo.mDetails->mNextSibling is the new text node
NS_ASSERTION(
aInfo.mDetails->mType == CharacterDataChangeInfo::Details::eSplit,
"only a split can start before the end");
NS_ASSERTION(mEnd.Offset() <= aInfo.mChangeEnd + 1,
"mEnd.Offset() is beyond the end of this node");
newEnd.Set(aInfo.mDetails->mNextSibling,
mEnd.Offset() - aInfo.mChangeStart);
bool isCommonAncestor =
IsInSelection() && mStart.Container() == mEnd.Container();
if (isCommonAncestor && !newStart.Container()) {
// The split occurs inside the range.
UnregisterCommonAncestor(mStart.Container(), false);
RegisterCommonAncestor(mStart.Container()->GetParentNode());
newEnd.Container()->SetDescendantOfCommonAncestorForRangeInSelection();
} else if (mEnd.Container()
->IsDescendantOfCommonAncestorForRangeInSelection()) {
newEnd.Container()->SetDescendantOfCommonAncestorForRangeInSelection();
}
} else {
int32_t newEndOffset = mEnd.Offset() <= aInfo.mChangeEnd
? aInfo.mChangeStart
: mEnd.Offset() + aInfo.mChangeStart -
aInfo.mChangeEnd + aInfo.mReplaceLength;
newEnd.Set(mEnd.Container(), newEndOffset);
}
}
if (aInfo.mDetails &&
aInfo.mDetails->mType == CharacterDataChangeInfo::Details::eMerge) {
// normalize(), aInfo.mDetails->mNextSibling is the merged text node
// that will be removed
nsIContent* removed = aInfo.mDetails->mNextSibling;
if (removed == mStart.Container()) {
newStart.Set(aContent, mStart.Offset() + aInfo.mChangeStart);
if (MOZ_UNLIKELY(removed == mRoot)) {
newRoot = IsValidBoundary(newStart.Container());
}
}
if (removed == mEnd.Container()) {
newEnd.Set(aContent, mEnd.Offset() + aInfo.mChangeStart);
if (MOZ_UNLIKELY(removed == mRoot)) {
newRoot = IsValidBoundary(newEnd.Container());
}
}
// When the removed text node's parent is one of our boundary nodes we may
// need to adjust the offset to account for the removed node. However,
// there will also be a ContentRemoved notification later so the only cases
// we need to handle here is when the removed node is the text node after
// the boundary. (The m*Offset > 0 check is an optimization - a boundary
// point before the first child is never affected by normalize().)
nsINode* parentNode = aContent->GetParentNode();
if (parentNode == mStart.Container() && mStart.Offset() > 0 &&
mStart.Offset() < parentNode->GetChildCount() &&
removed == mStart.GetChildAtOffset()) {
newStart.Set(aContent, aInfo.mChangeStart);
}
if (parentNode == mEnd.Container() && mEnd.Offset() > 0 &&
mEnd.Offset() < parentNode->GetChildCount() &&
removed == mEnd.GetChildAtOffset()) {
newEnd.Set(aContent, aInfo.mChangeEnd);
}
}
if (newStart.IsSet() || newEnd.IsSet()) {
if (!newStart.IsSet()) {
newStart = mStart;
}
if (!newEnd.IsSet()) {
newEnd = mEnd;
}
DoSetRange(newStart, newEnd, newRoot ? newRoot : mRoot.get(),
!newEnd.Container()->GetParentNode() ||
!newStart.Container()->GetParentNode());
}
}
void nsRange::ContentAppended(nsIContent* aFirstNewContent) {
// If this is called when this is not positioned, it means that this range
// will be initialized again or destroyed soon. See Selection::mCachedRange.
if (!mIsPositioned) {
MOZ_ASSERT(mRoot);
return;
}
nsINode* container = aFirstNewContent->GetParentNode();
MOZ_ASSERT(container);
if (container->IsSelectionDescendant() && IsInSelection()) {
nsINode* child = aFirstNewContent;
while (child) {
if (!child->IsDescendantOfCommonAncestorForRangeInSelection()) {
MarkDescendants(child);
child->SetDescendantOfCommonAncestorForRangeInSelection();
}
child = child->GetNextSibling();
}
}
if (mNextStartRef || mNextEndRef) {
// A splitText has occurred, if any mNext*Ref was set, we need to adjust
// the range boundaries.
if (mNextStartRef) {
mStart.SetAfterRef(mStart.Container(), mNextStartRef);
MOZ_ASSERT(mNextStartRef == aFirstNewContent);
mNextStartRef = nullptr;
}
if (mNextEndRef) {
mEnd.SetAfterRef(mEnd.Container(), mNextEndRef);
MOZ_ASSERT(mNextEndRef == aFirstNewContent);
mNextEndRef = nullptr;
}
DoSetRange(mStart.AsRaw(), mEnd.AsRaw(), mRoot, true);
}
}
void nsRange::ContentInserted(nsIContent* aChild) {
// If this is called when this is not positioned, it means that this range
// will be initialized again or destroyed soon. See Selection::mCachedRange.
if (!mIsPositioned) {
MOZ_ASSERT(mRoot);
return;
}
bool updateBoundaries = false;
nsINode* container = aChild->GetParentNode();
MOZ_ASSERT(container);
RawRangeBoundary newStart(mStart);
RawRangeBoundary newEnd(mEnd);
MOZ_ASSERT(aChild->GetParentNode() == container);
// Invalidate boundary offsets if a child that may have moved them was
// inserted.
if (container == mStart.Container()) {
newStart.InvalidateOffset();
updateBoundaries = true;
}
if (container == mEnd.Container()) {
newEnd.InvalidateOffset();
updateBoundaries = true;
}
if (container->IsSelectionDescendant() &&
!aChild->IsDescendantOfCommonAncestorForRangeInSelection()) {
MarkDescendants(aChild);
aChild->SetDescendantOfCommonAncestorForRangeInSelection();
}
if (mNextStartRef || mNextEndRef) {
if (mNextStartRef) {
newStart.SetAfterRef(mStart.Container(), mNextStartRef);
MOZ_ASSERT(mNextStartRef == aChild);
mNextStartRef = nullptr;
}
if (mNextEndRef) {
newEnd.SetAfterRef(mEnd.Container(), mNextEndRef);
MOZ_ASSERT(mNextEndRef == aChild);
mNextEndRef = nullptr;
}
updateBoundaries = true;
}
if (updateBoundaries) {
DoSetRange(newStart, newEnd, mRoot);
}
}
void nsRange::ContentRemoved(nsIContent* aChild, nsIContent* aPreviousSibling) {
// If this is called when this is not positioned, it means that this range
// will be initialized again or destroyed soon. See Selection::mCachedRange.
if (!mIsPositioned) {
MOZ_ASSERT(mRoot);
return;
}
nsINode* container = aChild->GetParentNode();
MOZ_ASSERT(container);
RawRangeBoundary newStart;
RawRangeBoundary newEnd;
Maybe<bool> gravitateStart;
bool gravitateEnd;
// Adjust position if a sibling was removed...
if (container == mStart.Container()) {
// We're only interested if our boundary reference was removed, otherwise
// we can just invalidate the offset.
if (aChild == mStart.Ref()) {
newStart.SetAfterRef(container, aPreviousSibling);
} else {
newStart = mStart;
newStart.InvalidateOffset();
}
} else {
gravitateStart =
Some(nsContentUtils::ContentIsDescendantOf(mStart.Container(), aChild));
if (gravitateStart.value()) {
newStart.SetAfterRef(container, aPreviousSibling);
}
}
// Do same thing for end boundry.
if (container == mEnd.Container()) {
if (aChild == mEnd.Ref()) {
newEnd.SetAfterRef(container, aPreviousSibling);
} else {
newEnd = mEnd;
newEnd.InvalidateOffset();
}
} else {
if (mStart.Container() == mEnd.Container() && gravitateStart.isSome()) {
gravitateEnd = gravitateStart.value();
} else {
gravitateEnd =
nsContentUtils::ContentIsDescendantOf(mEnd.Container(), aChild);
}
if (gravitateEnd) {
newEnd.SetAfterRef(container, aPreviousSibling);
}
}
if (newStart.IsSet() || newEnd.IsSet()) {
DoSetRange(newStart.IsSet() ? newStart : mStart.AsRaw(),
newEnd.IsSet() ? newEnd : mEnd.AsRaw(), mRoot);
}
MOZ_ASSERT(mStart.Ref() != aChild);
MOZ_ASSERT(mEnd.Ref() != aChild);
if (container->IsSelectionDescendant() &&
aChild->IsDescendantOfCommonAncestorForRangeInSelection()) {
aChild->ClearDescendantOfCommonAncestorForRangeInSelection();
UnmarkDescendants(aChild);
}
}
void nsRange::ParentChainChanged(nsIContent* aContent) {
NS_ASSERTION(mRoot == aContent, "Wrong ParentChainChanged notification?");
nsINode* newRoot = IsValidBoundary(mStart.Container());
NS_ASSERTION(newRoot, "No valid boundary or root found!");
if (newRoot != IsValidBoundary(mEnd.Container())) {
// Sometimes ordering involved in cycle collection can lead to our
// start parent and/or end parent being disconnected from our root
// without our getting a ContentRemoved notification.
// See bug 846096 for more details.
NS_ASSERTION(mEnd.Container()->IsInNativeAnonymousSubtree(),
"This special case should happen only with "
"native-anonymous content");
// When that happens, bail out and set pointers to null; since we're
// in cycle collection and unreachable it shouldn't matter.
Reset();
return;
}
// This is safe without holding a strong ref to self as long as the change
// of mRoot is the last thing in DoSetRange.
DoSetRange(mStart.AsRaw(), mEnd.AsRaw(), newRoot);
}
bool nsRange::IsPointInRange(const RawRangeBoundary& aPoint, ErrorResult& aRv) {
uint16_t compareResult = ComparePoint(aPoint, aRv);
// If the node isn't in the range's document, it clearly isn't in the range.
if (aRv.ErrorCodeIs(NS_ERROR_DOM_WRONG_DOCUMENT_ERR)) {
aRv.SuppressException();
return false;
}
return compareResult == 0;
}
int16_t nsRange::ComparePoint(const RawRangeBoundary& aPoint,
ErrorResult& aRv) {
if (NS_WARN_IF(!aPoint.IsSet())) {
// FYI: Shouldn't reach this case if it's called by JS. Therefore, it's
// okay to warn.
aRv.Throw(NS_ERROR_DOM_INVALID_NODE_TYPE_ERR);
return 0;
}
// our range is in a good state?
if (!mIsPositioned) {
aRv.Throw(NS_ERROR_NOT_INITIALIZED);
return 0;
}
if (!nsContentUtils::ContentIsDescendantOf(aPoint.Container(), mRoot)) {
aRv.Throw(NS_ERROR_DOM_WRONG_DOCUMENT_ERR);
return 0;
}
if (aPoint.Container()->NodeType() == nsINode::DOCUMENT_TYPE_NODE) {
aRv.Throw(NS_ERROR_DOM_INVALID_NODE_TYPE_ERR);
return 0;
}
if (aPoint.Offset() > aPoint.Container()->Length()) {
aRv.Throw(NS_ERROR_DOM_INDEX_SIZE_ERR);
return 0;
}
int32_t cmp = nsContentUtils::ComparePoints(aPoint, mStart.AsRaw());
if (cmp <= 0) {
return cmp;
}
if (nsContentUtils::ComparePoints(mEnd.AsRaw(), aPoint) == -1) {
return 1;
}
return 0;
}
bool nsRange::IntersectsNode(nsINode& aNode, ErrorResult& aRv) {
if (!mIsPositioned) {
aRv.Throw(NS_ERROR_NOT_INITIALIZED);
return false;
}
// Step 3.
nsINode* parent = aNode.GetParentNode();
if (!parent) {
// Steps 2 and 4.
// |parent| is null, so |node|'s root is |node| itself.
return GetRoot() == &aNode;
}
// Step 5.
int32_t nodeIndex = parent->ComputeIndexOf(&aNode);
// Steps 6-7.
// Note: if disconnected is true, ComparePoints returns 1.
bool disconnected = false;
bool result =
nsContentUtils::ComparePoints(mStart.Container(), mStart.Offset(), parent,
nodeIndex + 1, &disconnected) < 0 &&
nsContentUtils::ComparePoints(parent, nodeIndex, mEnd.Container(),
mEnd.Offset(), &disconnected) < 0;
// Step 2.
if (disconnected) {
result = false;
}
return result;
}
void nsRange::NotifySelectionListenersAfterRangeSet() {
if (mSelection) {
// Our internal code should not move focus with using this instance while
// it's calling Selection::NotifySelectionListeners() which may move focus
// or calls selection listeners. So, let's set mCalledByJS to false here
// since non-*JS() methods don't set it to false.
AutoCalledByJSRestore calledByJSRestorer(*this);
mCalledByJS = false;
// Be aware, this range may be modified or stop being a range for selection
// after this call. Additionally, the selection instance may have gone.
RefPtr<Selection> selection = mSelection.get();
selection->NotifySelectionListeners(calledByJSRestorer.SavedValue());
}
}
/******************************************************
* Private helper routines
******************************************************/
// It's important that all setting of the range start/end points
// go through this function, which will do all the right voodoo
// for content notification of range ownership.
// Calling DoSetRange with either parent argument null will collapse
// the range to have both endpoints point to the other node
void nsRange::DoSetRange(const RawRangeBoundary& aStart,
const RawRangeBoundary& aEnd, nsINode* aRoot,
bool aNotInsertedYet) {
MOZ_ASSERT((aStart.IsSet() && aEnd.IsSet() && aRoot) ||
(!aStart.IsSet() && !aEnd.IsSet()),
"Set all or none");
MOZ_ASSERT(
!aRoot || (!aStart.IsSet() && !aEnd.IsSet()) || aNotInsertedYet ||
(nsContentUtils::ContentIsDescendantOf(aStart.Container(), aRoot) &&
nsContentUtils::ContentIsDescendantOf(aEnd.Container(), aRoot) &&
aRoot == IsValidBoundary(aStart.Container()) &&
aRoot == IsValidBoundary(aEnd.Container())),
"Wrong root");
MOZ_ASSERT(
!aRoot || (!aStart.IsSet() && !aEnd.IsSet()) ||
(aStart.Container()->IsContent() && aEnd.Container()->IsContent() &&
aRoot == static_cast<nsIContent*>(aStart.Container())
->GetBindingParent() &&
aRoot == static_cast<nsIContent*>(aEnd.Container())
->GetBindingParent()) ||
(!aRoot->GetParentNode() && (aRoot->IsDocument() || aRoot->IsAttr() ||
aRoot->IsDocumentFragment() ||
/*For backward compatibility*/
aRoot->IsContent())),
"Bad root");
if (mRoot != aRoot) {
if (mRoot) {
mRoot->RemoveMutationObserver(this);
}
if (aRoot) {
aRoot->AddMutationObserver(this);
}
}
bool checkCommonAncestor = (mStart.Container() != aStart.Container() ||
mEnd.Container() != aEnd.Container()) &&
IsInSelection() && !aNotInsertedYet;
// GetCommonAncestor is unreliable while we're unlinking (could
// return null if our start/end have already been unlinked), so make
// sure to not use it here to determine our "old" current ancestor.
mStart = aStart;
mEnd = aEnd;
mIsPositioned = !!mStart.Container();
if (checkCommonAncestor) {
nsINode* oldCommonAncestor = mRegisteredCommonAncestor;
nsINode* newCommonAncestor = GetCommonAncestor();
if (newCommonAncestor != oldCommonAncestor) {
if (oldCommonAncestor) {
UnregisterCommonAncestor(oldCommonAncestor, false);
}
if (newCommonAncestor) {
RegisterCommonAncestor(newCommonAncestor);
} else {
NS_ASSERTION(!mIsPositioned, "unexpected disconnected nodes");
mSelection = nullptr;
MOZ_DIAGNOSTIC_ASSERT(
!mRegisteredCommonAncestor,
"How can we have a registered common ancestor when we "
"didn't register ourselves?");
MOZ_DIAGNOSTIC_ASSERT(!isInList(),
"Shouldn't be registered if we have no "
"mRegisteredCommonAncestor");
}
}
}
// This needs to be the last thing this function does, other than notifying
// selection listeners. See comment in ParentChainChanged.
mRoot = aRoot;
// Notify any selection listeners. This has to occur last because otherwise
// the world could be observed by a selection listener while the range was in
// an invalid state. So we run it off of a script runner to ensure it runs
// after the mutation observers have finished running.
if (mSelection) {
nsContentUtils::AddScriptRunner(
NewRunnableMethod("NotifySelectionListenersAfterRangeSet", this,
&nsRange::NotifySelectionListenersAfterRangeSet));
}
}
static int32_t IndexOf(nsINode* aChild) {
nsINode* parent = aChild->GetParentNode();
return parent ? parent->ComputeIndexOf(aChild) : -1;
}
void nsRange::SetSelection(mozilla::dom::Selection* aSelection) {
if (mSelection == aSelection) {
return;
}
// At least one of aSelection and mSelection must be null
// aSelection will be null when we are removing from a selection
// and a range can't be in more than one selection at a time,
// thus mSelection must be null too.
MOZ_ASSERT(!aSelection || !mSelection);
// Extra step in case our parent failed to ensure the above
// invariant.
if (aSelection && mSelection) {
mSelection->RemoveRange(*this, IgnoreErrors());
}
mSelection = aSelection;
if (mSelection) {
nsINode* commonAncestor = GetCommonAncestor();
NS_ASSERTION(commonAncestor, "unexpected disconnected nodes");
RegisterCommonAncestor(commonAncestor);
} else if (mRegisteredCommonAncestor) {
UnregisterCommonAncestor(mRegisteredCommonAncestor, false);
MOZ_DIAGNOSTIC_ASSERT(
!mRegisteredCommonAncestor,
"How can we have a registered common ancestor when we "
"just unregistered?");
MOZ_DIAGNOSTIC_ASSERT(!isInList(),
"Shouldn't be registered if we have no "
"mRegisteredCommonAncestor after unregistering");
}
}
nsINode* nsRange::GetCommonAncestor() const {
return mIsPositioned ? nsContentUtils::GetCommonAncestor(mStart.Container(),
mEnd.Container())
: nullptr;
}
void nsRange::Reset() {
DoSetRange(RawRangeBoundary(), RawRangeBoundary(), nullptr);
}
/******************************************************
* public functionality
******************************************************/
nsINode* nsRange::GetStartContainer(ErrorResult& aRv) const {
if (!mIsPositioned) {
aRv.Throw(NS_ERROR_NOT_INITIALIZED);
return nullptr;
}
return mStart.Container();
}
uint32_t nsRange::GetStartOffset(ErrorResult& aRv) const {
if (!mIsPositioned) {
aRv.Throw(NS_ERROR_NOT_INITIALIZED);
return 0;
}
return mStart.Offset();
}
nsINode* nsRange::GetEndContainer(ErrorResult& aRv) const {
if (!mIsPositioned) {
aRv.Throw(NS_ERROR_NOT_INITIALIZED);
return nullptr;
}
return mEnd.Container();
}
uint32_t nsRange::GetEndOffset(ErrorResult& aRv) const {
if (!mIsPositioned) {
aRv.Throw(NS_ERROR_NOT_INITIALIZED);
return 0;
}
return mEnd.Offset();
}
nsINode* nsRange::GetCommonAncestorContainer(ErrorResult& aRv) const {
if (!mIsPositioned) {
aRv.Throw(NS_ERROR_NOT_INITIALIZED);
return nullptr;
}
return nsContentUtils::GetCommonAncestor(mStart.Container(),
mEnd.Container());
}
/* static */
bool nsRange::IsValidOffset(nsINode* aNode, uint32_t aOffset) {
return aNode && IsValidOffset(aOffset) &&
static_cast<size_t>(aOffset) <= aNode->Length();
}
/* static */
nsINode* nsRange::ComputeRootNode(nsINode* aNode) {
if (!aNode) {
return nullptr;
}
if (aNode->IsContent()) {
if (aNode->NodeInfo()->NameAtom() == nsGkAtoms::documentTypeNodeName) {
return nullptr;
}
nsIContent* content = aNode->AsContent();
// If the node is in a shadow tree then the ShadowRoot is the root.
if (ShadowRoot* containingShadow = content->GetContainingShadow()) {
return containingShadow;
}
// If the node has a binding parent, that should be the root.
// XXXbz maybe only for native anonymous content?
if (nsINode* root = content->GetBindingParent()) {
return root;
}
}
// Elements etc. must be in document or in document fragment,
// text nodes in document, in document fragment or in attribute.
if (nsINode* root = aNode->GetUncomposedDoc()) {
return root;
}
NS_ASSERTION(!aNode->SubtreeRoot()->IsDocument(),
"GetUncomposedDoc should have returned a doc");
// We allow this because of backward compatibility.
return aNode->SubtreeRoot();
}
/* static */
bool nsRange::IsValidPoints(nsINode* aStartContainer, uint32_t aStartOffset,
nsINode* aEndContainer, uint32_t aEndOffset) {
// Use NS_WARN_IF() only for the cases where the arguments are unexpected.
if (NS_WARN_IF(!aStartContainer) || NS_WARN_IF(!aEndContainer) ||
NS_WARN_IF(!IsValidOffset(aStartContainer, aStartOffset)) ||
NS_WARN_IF(!IsValidOffset(aEndContainer, aEndOffset))) {
return false;
}
// Otherwise, don't use NS_WARN_IF() for preventing to make console messy.
// Instead, check one by one since it is easier to catch the error reason
// with debugger.
if (ComputeRootNode(aStartContainer) != ComputeRootNode(aEndContainer)) {
return false;
}
bool disconnected = false;
int32_t order = nsContentUtils::ComparePoints(
aStartContainer, static_cast<int32_t>(aStartOffset), aEndContainer,
static_cast<int32_t>(aEndOffset), &disconnected);
// FYI: disconnected should be false unless |order| is 1.
if (order == 1 || NS_WARN_IF(disconnected)) {
return false;
}
return true;
}
void nsRange::SetStartJS(nsINode& aNode, uint32_t aOffset, ErrorResult& aErr) {
AutoCalledByJSRestore calledByJSRestorer(*this);
mCalledByJS = true;
SetStart(aNode, aOffset, aErr);
}
bool nsRange::CanAccess(const nsINode& aNode) const {
if (nsContentUtils::LegacyIsCallerNativeCode()) {
return true;
}
return nsContentUtils::CanCallerAccess(&aNode);
}
void nsRange::SetStart(nsINode& aNode, uint32_t aOffset, ErrorResult& aRv) {
if (!CanAccess(aNode)) {
aRv.Throw(NS_ERROR_DOM_SECURITY_ERR);
return;
}
AutoInvalidateSelection atEndOfBlock(this);
SetStart(RawRangeBoundary(&aNode, aOffset), aRv);
}
void nsRange::SetStart(const RawRangeBoundary& aPoint, ErrorResult& aRv) {
nsINode* newRoot = IsValidBoundary(aPoint.Container());
if (!newRoot) {
aRv.Throw(NS_ERROR_DOM_INVALID_NODE_TYPE_ERR);
return;
}
if (!aPoint.IsSetAndValid()) {
aRv.Throw(NS_ERROR_DOM_INDEX_SIZE_ERR);
return;
}
// Collapse if not positioned yet, if positioned in another doc or
// if the new start is after end.
if (!mIsPositioned || newRoot != mRoot ||
nsContentUtils::ComparePoints(aPoint, mEnd.AsRaw()) == 1) {
DoSetRange(aPoint, aPoint, newRoot);
return;
}
DoSetRange(aPoint, mEnd.AsRaw(), mRoot);
}
void nsRange::SetStartBeforeJS(nsINode& aNode, ErrorResult& aErr) {
AutoCalledByJSRestore calledByJSRestorer(*this);
mCalledByJS = true;
SetStartBefore(aNode, aErr);
}
void nsRange::SetStartBefore(nsINode& aNode, ErrorResult& aRv) {
if (!CanAccess(aNode)) {
aRv.Throw(NS_ERROR_DOM_SECURITY_ERR);
return;
}
AutoInvalidateSelection atEndOfBlock(this);
// If the node is being removed from its parent, GetContainerAndOffsetBefore()
// returns nullptr. Then, SetStart() will throw
// NS_ERROR_DOM_INVALID_NODE_TYPE_ERR.
uint32_t offset = UINT32_MAX;
nsINode* container = GetContainerAndOffsetBefore(&aNode, &offset);
aRv = SetStart(container, offset);
}
void nsRange::SetStartAfterJS(nsINode& aNode, ErrorResult& aErr) {
AutoCalledByJSRestore calledByJSRestorer(*this);
mCalledByJS = true;
SetStartAfter(aNode, aErr);
}
void nsRange::SetStartAfter(nsINode& aNode, ErrorResult& aRv) {
if (!CanAccess(aNode)) {
aRv.Throw(NS_ERROR_DOM_SECURITY_ERR);
return;
}
AutoInvalidateSelection atEndOfBlock(this);
// If the node is being removed from its parent, GetContainerAndOffsetAfter()
// returns nullptr. Then, SetStart() will throw
// NS_ERROR_DOM_INVALID_NODE_TYPE_ERR.
uint32_t offset = UINT32_MAX;
nsINode* container = GetContainerAndOffsetAfter(&aNode, &offset);
aRv = SetStart(container, offset);
}
void nsRange::SetEndJS(nsINode& aNode, uint32_t aOffset, ErrorResult& aErr) {
AutoCalledByJSRestore calledByJSRestorer(*this);
mCalledByJS = true;
SetEnd(aNode, aOffset, aErr);
}
void nsRange::SetEnd(nsINode& aNode, uint32_t aOffset, ErrorResult& aRv) {
if (!CanAccess(aNode)) {
aRv.Throw(NS_ERROR_DOM_SECURITY_ERR);
return;
}
AutoInvalidateSelection atEndOfBlock(this);
SetEnd(RawRangeBoundary(&aNode, aOffset), aRv);
}
void nsRange::SetEnd(const RawRangeBoundary& aPoint, ErrorResult& aRv) {
nsINode* newRoot = IsValidBoundary(aPoint.Container());
if (!newRoot) {
aRv.Throw(NS_ERROR_DOM_INVALID_NODE_TYPE_ERR);
return;
}
if (!aPoint.IsSetAndValid()) {
aRv.Throw(NS_ERROR_DOM_INDEX_SIZE_ERR);
return;
}
// Collapse if not positioned yet, if positioned in another doc or
// if the new end is before start.
if (!mIsPositioned || newRoot != mRoot ||
nsContentUtils::ComparePoints(mStart.AsRaw(), aPoint) == 1) {
DoSetRange(aPoint, aPoint, newRoot);
return;
}
DoSetRange(mStart.AsRaw(), aPoint, mRoot);
}
void nsRange::SelectNodesInContainer(nsINode* aContainer,
nsIContent* aStartContent,
nsIContent* aEndContent) {
MOZ_ASSERT(aContainer);
MOZ_ASSERT(aContainer->ComputeIndexOf(aStartContent) <=
aContainer->ComputeIndexOf(aEndContent));
MOZ_ASSERT(aStartContent && aContainer->ComputeIndexOf(aStartContent) != -1);
MOZ_ASSERT(aEndContent && aContainer->ComputeIndexOf(aEndContent) != -1);
nsINode* newRoot = ComputeRootNode(aContainer);
MOZ_ASSERT(newRoot);
if (!newRoot) {
return;
}
RawRangeBoundary start(aContainer, aStartContent->GetPreviousSibling());
RawRangeBoundary end(aContainer, aEndContent);
DoSetRange(start, end, newRoot);
}
nsresult nsRange::SetStartAndEnd(const RawRangeBoundary& aStart,
const RawRangeBoundary& aEnd) {
if (NS_WARN_IF(!aStart.IsSet()) || NS_WARN_IF(!aEnd.IsSet())) {
return NS_ERROR_INVALID_ARG;
}
nsINode* newStartRoot = IsValidBoundary(aStart.Container());
if (!newStartRoot) {
return NS_ERROR_DOM_INVALID_NODE_TYPE_ERR;
}
if (!aStart.IsSetAndValid()) {
return NS_ERROR_DOM_INDEX_SIZE_ERR;
}
if (aStart.Container() == aEnd.Container()) {
if (!aEnd.IsSetAndValid()) {
return NS_ERROR_DOM_INDEX_SIZE_ERR;
}
// XXX: Offsets - handle this more efficiently.
// If the end offset is less than the start offset, this should be
// collapsed at the end offset.
if (aStart.Offset() > aEnd.Offset()) {
DoSetRange(aEnd, aEnd, newStartRoot);
} else {
DoSetRange(aStart, aEnd, newStartRoot);
}
return NS_OK;
}
nsINode* newEndRoot = IsValidBoundary(aEnd.Container());
if (!newEndRoot) {
return NS_ERROR_DOM_INVALID_NODE_TYPE_ERR;
}
if (!aEnd.IsSetAndValid()) {
return NS_ERROR_DOM_INDEX_SIZE_ERR;
}
// If they have different root, this should be collapsed at the end point.
if (newStartRoot != newEndRoot) {
DoSetRange(aEnd, aEnd, newEndRoot);
return NS_OK;
}
// If the end point is before the start point, this should be collapsed at
// the end point.
if (nsContentUtils::ComparePoints(aStart, aEnd) == 1) {
DoSetRange(aEnd, aEnd, newEndRoot);
return NS_OK;
}
// Otherwise, set the range as specified.
DoSetRange(aStart, aEnd, newStartRoot);
return NS_OK;
}
void nsRange::SetEndBeforeJS(nsINode& aNode, ErrorResult& aErr) {
AutoCalledByJSRestore calledByJSRestorer(*this);
mCalledByJS = true;
SetEndBefore(aNode, aErr);
}
void nsRange::SetEndBefore(nsINode& aNode, ErrorResult& aRv) {
if (!CanAccess(aNode)) {
aRv.Throw(NS_ERROR_DOM_SECURITY_ERR);
return;
}
AutoInvalidateSelection atEndOfBlock(this);
// If the node is being removed from its parent, GetContainerAndOffsetBefore()
// returns nullptr. Then, SetEnd() will throw
// NS_ERROR_DOM_INVALID_NODE_TYPE_ERR.
uint32_t offset = UINT32_MAX;
nsINode* container = GetContainerAndOffsetBefore(&aNode, &offset);
aRv = SetEnd(container, offset);
}
void nsRange::SetEndAfterJS(nsINode& aNode, ErrorResult& aErr) {
AutoCalledByJSRestore calledByJSRestorer(*this);
mCalledByJS = true;
SetEndAfter(aNode, aErr);
}
void nsRange::SetEndAfter(nsINode& aNode, ErrorResult& aRv) {
if (!CanAccess(aNode)) {
aRv.Throw(NS_ERROR_DOM_SECURITY_ERR);
return;
}
AutoInvalidateSelection atEndOfBlock(this);
// If the node is being removed from its parent, GetContainerAndOffsetAfter()
// returns nullptr. Then, SetEnd() will throw
// NS_ERROR_DOM_INVALID_NODE_TYPE_ERR.
uint32_t offset = UINT32_MAX;
nsINode* container = GetContainerAndOffsetAfter(&aNode, &offset);
aRv = SetEnd(container, offset);
}
void nsRange::Collapse(bool aToStart) {
if (!mIsPositioned) return;
AutoInvalidateSelection atEndOfBlock(this);
if (aToStart) {
DoSetRange(mStart.AsRaw(), mStart.AsRaw(), mRoot);
} else {
DoSetRange(mEnd.AsRaw(), mEnd.AsRaw(), mRoot);
}
}
void nsRange::CollapseJS(bool aToStart) {
AutoCalledByJSRestore calledByJSRestorer(*this);
mCalledByJS = true;
Collapse(aToStart);
}
void nsRange::SelectNodeJS(nsINode& aNode, ErrorResult& aErr) {
AutoCalledByJSRestore calledByJSRestorer(*this);
mCalledByJS = true;
SelectNode(aNode, aErr);
}
void nsRange::SelectNode(nsINode& aNode, ErrorResult& aRv) {
if (!CanAccess(aNode)) {
aRv.Throw(NS_ERROR_DOM_SECURITY_ERR);
return;
}
nsINode* container = aNode.GetParentNode();
nsINode* newRoot = IsValidBoundary(container);
if (!newRoot) {
aRv.Throw(NS_ERROR_DOM_INVALID_NODE_TYPE_ERR);
return;
}
int32_t index = container->ComputeIndexOf(&aNode);
// MOZ_ASSERT(index != -1);
// We need to compute the index here unfortunately, because, while we have
// support for XBL, |container| may be the node's binding parent without
// actually containing it.
if (NS_WARN_IF(index < 0) || !IsValidOffset(static_cast<uint32_t>(index)) ||
!IsValidOffset(static_cast<uint32_t>(index) + 1)) {
aRv.Throw(NS_ERROR_DOM_INVALID_NODE_TYPE_ERR);
return;
}
AutoInvalidateSelection atEndOfBlock(this);
DoSetRange(RawRangeBoundary(container, index),
RawRangeBoundary(container, index + 1), newRoot);
}
void nsRange::SelectNodeContentsJS(nsINode& aNode, ErrorResult& aErr) {
AutoCalledByJSRestore calledByJSRestorer(*this);
mCalledByJS = true;
SelectNodeContents(aNode, aErr);
}
void nsRange::SelectNodeContents(nsINode& aNode, ErrorResult& aRv) {
if (!CanAccess(aNode)) {
aRv.Throw(NS_ERROR_DOM_SECURITY_ERR);
return;
}
nsINode* newRoot = IsValidBoundary(&aNode);
if (!newRoot) {
aRv.Throw(NS_ERROR_DOM_INVALID_NODE_TYPE_ERR);
return;
}
AutoInvalidateSelection atEndOfBlock(this);
DoSetRange(RawRangeBoundary(&aNode, 0),
RawRangeBoundary(&aNode, aNode.Length()), newRoot);
}
// The Subtree Content Iterator only returns subtrees that are
// completely within a given range. It doesn't return a CharacterData
// node that contains either the start or end point of the range.,
// nor does it return element nodes when nothing in the element is selected.
// We need an iterator that will also include these start/end points
// so that our methods/algorithms aren't cluttered with special
// case code that tries to include these points while iterating.
//
// The RangeSubtreeIterator class mimics the ContentSubtreeIterator
// methods we need, so should the Content Iterator support the
// start/end points in the future, we can switchover relatively
// easy.
class MOZ_STACK_CLASS RangeSubtreeIterator {
private:
enum RangeSubtreeIterState { eDone = 0, eUseStart, eUseIterator, eUseEnd };
UniquePtr<ContentSubtreeIterator> mSubtreeIter;
RangeSubtreeIterState mIterState;
nsCOMPtr<nsINode> mStart;
nsCOMPtr<nsINode> mEnd;
public:
RangeSubtreeIterator() : mIterState(eDone) {}
~RangeSubtreeIterator() {}
nsresult Init(nsRange* aRange);
already_AddRefed<nsINode> GetCurrentNode();
void First();
void Last();
void Next();
void Prev();
bool IsDone() { return mIterState == eDone; }
};
nsresult RangeSubtreeIterator::Init(nsRange* aRange) {
mIterState = eDone;
if (aRange->Collapsed()) {
return NS_OK;
}
// Grab the start point of the range and QI it to
// a CharacterData pointer. If it is CharacterData store
// a pointer to the node.
ErrorResult rv;
nsCOMPtr<nsINode> node = aRange->GetStartContainer(rv);
if (!node) return NS_ERROR_FAILURE;
if (node->IsCharacterData() ||
(node->IsElement() &&
node->AsElement()->GetChildCount() == aRange->GetStartOffset(rv))) {
mStart = node;
}
// Grab the end point of the range and QI it to
// a CharacterData pointer. If it is CharacterData store
// a pointer to the node.
node = aRange->GetEndContainer(rv);
if (!node) return NS_ERROR_FAILURE;
if (node->IsCharacterData() ||
(node->IsElement() && aRange->GetEndOffset(rv) == 0)) {
mEnd = node;
}
if (mStart && mStart == mEnd) {
// The range starts and stops in the same CharacterData
// node. Null out the end pointer so we only visit the
// node once!
mEnd = nullptr;
} else {
// Now create a Content Subtree Iterator to be used
// for the subtrees between the end points!
mSubtreeIter = MakeUnique<ContentSubtreeIterator>();
nsresult res = mSubtreeIter->Init(aRange);
if (NS_FAILED(res)) return res;
if (mSubtreeIter->IsDone()) {
// The subtree iterator thinks there's nothing
// to iterate over, so just free it up so we
// don't accidentally call into it.
mSubtreeIter = nullptr;
}
}
// Initialize the iterator by calling First().
// Note that we are ignoring the return value on purpose!
First();
return NS_OK;
}
already_AddRefed<nsINode> RangeSubtreeIterator::GetCurrentNode() {
nsCOMPtr<nsINode> node;
if (mIterState == eUseStart && mStart) {
node = mStart;
} else if (mIterState == eUseEnd && mEnd) {
node = mEnd;
} else if (mIterState == eUseIterator && mSubtreeIter) {
node = mSubtreeIter->GetCurrentNode();
}
return node.forget();
}
void RangeSubtreeIterator::First() {
if (mStart)
mIterState = eUseStart;
else if (mSubtreeIter) {
mSubtreeIter->First();
mIterState = eUseIterator;
} else if (mEnd)
mIterState = eUseEnd;
else
mIterState = eDone;
}
void RangeSubtreeIterator::Last() {
if (mEnd)
mIterState = eUseEnd;
else if (mSubtreeIter) {
mSubtreeIter->Last();
mIterState = eUseIterator;
} else if (mStart)
mIterState = eUseStart;
else
mIterState = eDone;
}
void RangeSubtreeIterator::Next() {
if (mIterState == eUseStart) {
if (mSubtreeIter) {
mSubtreeIter->First();
mIterState = eUseIterator;
} else if (mEnd)
mIterState = eUseEnd;
else
mIterState = eDone;
} else if (mIterState == eUseIterator) {
mSubtreeIter->Next();
if (mSubtreeIter->IsDone()) {
if (mEnd)
mIterState = eUseEnd;
else
mIterState = eDone;
}
} else
mIterState = eDone;
}
void RangeSubtreeIterator::Prev() {
if (mIterState == eUseEnd) {
if (mSubtreeIter) {
mSubtreeIter->Last();
mIterState = eUseIterator;
} else if (mStart)
mIterState = eUseStart;
else
mIterState = eDone;
} else if (mIterState == eUseIterator) {
mSubtreeIter->Prev();
if (mSubtreeIter->IsDone()) {
if (mStart)
mIterState = eUseStart;
else
mIterState = eDone;
}
} else
mIterState = eDone;
}
// CollapseRangeAfterDelete() is a utility method that is used by
// DeleteContents() and ExtractContents() to collapse the range
// in the correct place, under the range's root container (the
// range end points common container) as outlined by the Range spec:
//
// http://www.w3.org/TR/2000/REC-DOM-Level-2-Traversal-Range-20001113/ranges.html
// The assumption made by this method is that the delete or extract
// has been done already, and left the range in a state where there is
// no content between the 2 end points.
static nsresult CollapseRangeAfterDelete(nsRange* aRange) {
NS_ENSURE_ARG_POINTER(aRange);
// Check if range gravity took care of collapsing the range for us!
if (aRange->Collapsed()) {
// aRange is collapsed so there's nothing for us to do.
//
// There are 2 possible scenarios here:
//
// 1. aRange could've been collapsed prior to the delete/extract,
// which would've resulted in nothing being removed, so aRange
// is already where it should be.
//
// 2. Prior to the delete/extract, aRange's start and end were in
// the same container which would mean everything between them
// was removed, causing range gravity to collapse the range.
return NS_OK;
}
// aRange isn't collapsed so figure out the appropriate place to collapse!
// First get both end points and their common ancestor.
ErrorResult rv;
nsCOMPtr<nsINode> commonAncestor = aRange->GetCommonAncestorContainer(rv);
if (rv.Failed()) return rv.StealNSResult();
nsCOMPtr<nsINode> startContainer = aRange->GetStartContainer(rv);
if (rv.Failed()) return rv.StealNSResult();
nsCOMPtr<nsINode> endContainer = aRange->GetEndContainer(rv);
if (rv.Failed()) return rv.StealNSResult();
// Collapse to one of the end points if they are already in the
// commonAncestor. This should work ok since this method is called
// immediately after a delete or extract that leaves no content
// between the 2 end points!
if (startContainer == commonAncestor) {
aRange->Collapse(true);
return NS_OK;
}
if (endContainer == commonAncestor) {
aRange->Collapse(false);
return NS_OK;
}
// End points are at differing levels. We want to collapse to the
// point that is between the 2 subtrees that contain each point,
// under the common ancestor.
nsCOMPtr<nsINode> nodeToSelect(startContainer);
while (nodeToSelect) {
nsCOMPtr<nsINode> parent = nodeToSelect->GetParentNode();
if (parent == commonAncestor) break; // We found the nodeToSelect!
nodeToSelect = parent;
}
if (!nodeToSelect) return NS_ERROR_FAILURE; // This should never happen!
aRange->SelectNode(*nodeToSelect, rv);
if (rv.Failed()) return rv.StealNSResult();
aRange->Collapse(false);
return NS_OK;
}
NS_IMETHODIMP
PrependChild(nsINode* aContainer, nsINode* aChild) {
nsCOMPtr<nsINode> first = aContainer->GetFirstChild();
ErrorResult rv;
aContainer->InsertBefore(*aChild, first, rv);
return rv.StealNSResult();
}
// Helper function for CutContents, making sure that the current node wasn't
// removed by mutation events (bug 766426)
static bool ValidateCurrentNode(nsRange* aRange, RangeSubtreeIterator& aIter) {
bool before, after;
nsCOMPtr<nsINode> node = aIter.GetCurrentNode();
if (!node) {
// We don't have to worry that the node was removed if it doesn't exist,
// e.g., the iterator is done.
return true;
}
nsresult res = nsRange::CompareNodeToRange(node, aRange, &before, &after);
NS_ENSURE_SUCCESS(res, false);
if (before || after) {
if (node->IsCharacterData()) {
// If we're dealing with the start/end container which is a character
// node, pretend that the node is in the range.
if (before && node == aRange->GetStartContainer()) {
before = false;
}
if (after && node == aRange->GetEndContainer()) {
after = false;
}
}
}
return !before && !after;
}
nsresult nsRange::CutContents(DocumentFragment** aFragment) {
if (aFragment) {
*aFragment = nullptr;
}
if (!CanAccess(*mStart.Container()) || !CanAccess(*mEnd.Container())) {
return NS_ERROR_DOM_SECURITY_ERR;
}
nsCOMPtr<Document> doc = mStart.Container()->OwnerDoc();
ErrorResult res;
nsCOMPtr<nsINode> commonAncestor = GetCommonAncestorContainer(res);
NS_ENSURE_TRUE(!res.Failed(), res.StealNSResult());
// If aFragment isn't null, create a temporary fragment to hold our return.
RefPtr<DocumentFragment> retval;
if (aFragment) {
retval = new DocumentFragment(doc->NodeInfoManager());
}
nsCOMPtr<nsINode> commonCloneAncestor = retval.get();
// Batch possible DOMSubtreeModified events.
mozAutoSubtreeModified subtree(mRoot ? mRoot->OwnerDoc() : nullptr, nullptr);
// Save the range end points locally to avoid interference
// of Range gravity during our edits!
nsCOMPtr<nsINode> startContainer = mStart.Container();
uint32_t startOffset = mStart.Offset();
nsCOMPtr<nsINode> endContainer = mEnd.Container();
uint32_t endOffset = mEnd.Offset();
if (retval) {
// For extractContents(), abort early if there's a doctype (bug 719533).
// This can happen only if the common ancestor is a document, in which case
// we just need to find its doctype child and check if that's in the range.
nsCOMPtr<Document> commonAncestorDocument =
do_QueryInterface(commonAncestor);
if (commonAncestorDocument) {
RefPtr<DocumentType> doctype = commonAncestorDocument->GetDoctype();
if (doctype &&
nsContentUtils::ComparePoints(startContainer,
static_cast<int32_t>(startOffset),
doctype, 0) < 0 &&
nsContentUtils::ComparePoints(doctype, 0, endContainer,
static_cast<int32_t>(endOffset)) < 0) {
return NS_ERROR_DOM_HIERARCHY_REQUEST_ERR;
}
}
}
// Create and initialize a subtree iterator that will give
// us all the subtrees within the range.
RangeSubtreeIterator iter;
nsresult rv = iter.Init(this);
if (NS_FAILED(rv)) return rv;
if (iter.IsDone()) {
// There's nothing for us to delete.
rv = CollapseRangeAfterDelete(this);
if (NS_SUCCEEDED(rv) && aFragment) {
retval.forget(aFragment);
}
return rv;
}
iter.First();
bool handled = false;
// With the exception of text nodes that contain one of the range
// end points, the subtree iterator should only give us back subtrees
// that are completely contained between the range's end points.
while (!iter.IsDone()) {
nsCOMPtr<nsINode> nodeToResult;
nsCOMPtr<nsINode> node = iter.GetCurrentNode();
// Before we delete anything, advance the iterator to the next node that's
// not a descendant of this one. XXX It's a bit silly to iterate through
// the descendants only to throw them out, we should use an iterator that
// skips the descendants to begin with.
iter.Next();
nsCOMPtr<nsINode> nextNode = iter.GetCurrentNode();
while (nextNode && nsContentUtils::ContentIsDescendantOf(nextNode, node)) {
iter.Next();
nextNode = iter.GetCurrentNode();
}
handled = false;
// If it's CharacterData, make sure we might need to delete
// part of the data, instead of removing the whole node.
//
// XXX_kin: We need to also handle ProcessingInstruction
// XXX_kin: according to the spec.
if (auto charData = CharacterData::FromNode(node)) {
uint32_t dataLength = 0;
if (node == startContainer) {
if (node == endContainer) {
// This range is completely contained within a single text node.
// Delete or extract the data between startOffset and endOffset.
if (endOffset > startOffset) {
if (retval) {
nsAutoString cutValue;
ErrorResult err;
charData->SubstringData(startOffset, endOffset - startOffset,
cutValue, err);
if (NS_WARN_IF(err.Failed())) {
return err.StealNSResult();
}
nsCOMPtr<nsINode> clone = node->CloneNode(false, err);
if (NS_WARN_IF(err.Failed())) {
return err.StealNSResult();
}
clone->SetNodeValue(cutValue, err);
if (NS_WARN_IF(err.Failed())) {
return err.StealNSResult();
}
nodeToResult = clone;
}
nsMutationGuard guard;
ErrorResult err;
charData->DeleteData(startOffset, endOffset - startOffset, err);
if (NS_WARN_IF(err.Failed())) {
return err.StealNSResult();
}
NS_ENSURE_STATE(!guard.Mutated(0) ||
ValidateCurrentNode(this, iter));
}
handled = true;
} else {
// Delete or extract everything after startOffset.
dataLength = charData->Length();
if (dataLength >= startOffset) {
if (retval) {
nsAutoString cutValue;
ErrorResult err;
charData->SubstringData(startOffset, dataLength, cutValue, err);
if (NS_WARN_IF(err.Failed())) {
return err.StealNSResult();
}
nsCOMPtr<nsINode> clone = node->CloneNode(false, err);
if (NS_WARN_IF(err.Failed())) {
return err.StealNSResult();
}
clone->SetNodeValue(cutValue, err);
if (NS_WARN_IF(err.Failed())) {
return err.StealNSResult();
}
nodeToResult = clone;
}
nsMutationGuard guard;
ErrorResult err;
charData->DeleteData(startOffset, dataLength, err);
if (NS_WARN_IF(err.Failed())) {
return err.StealNSResult();
}
NS_ENSURE_SUCCESS(rv, rv);
NS_ENSURE_STATE(!guard.Mutated(0) ||
ValidateCurrentNode(this, iter));
}
handled = true;
}
} else if (node == endContainer) {
// Delete or extract everything before endOffset.
if (retval) {
nsAutoString cutValue;
ErrorResult err;
charData->SubstringData(0, endOffset, cutValue, err);
if (NS_WARN_IF(err.Failed())) {
return err.StealNSResult();
}
nsCOMPtr<nsINode> clone = node->CloneNode(false, err);
if (NS_WARN_IF(err.Failed())) {
return err.StealNSResult();
}
clone->SetNodeValue(cutValue, err);
if (NS_WARN_IF(err.Failed())) {
return err.StealNSResult();
}
nodeToResult = clone;
}
nsMutationGuard guard;
ErrorResult err;
charData->DeleteData(0, endOffset, err);
if (NS_WARN_IF(err.Failed())) {
return err.StealNSResult();
}
NS_ENSURE_STATE(!guard.Mutated(0) || ValidateCurrentNode(this, iter));
handled = true;
}
}
if (!handled && (node == endContainer || node == startContainer)) {
if (node && node->IsElement() &&
((node == endContainer && endOffset == 0) ||
(node == startContainer &&
node->AsElement()->GetChildCount() == startOffset))) {
if (retval) {
ErrorResult rv;
nodeToResult = node->CloneNode(false, rv);
NS_ENSURE_TRUE(!rv.Failed(), rv.StealNSResult());
}
handled = true;
}
}
if (!handled) {
// node was not handled above, so it must be completely contained
// within the range. Just remove it from the tree!
nodeToResult = node;
}
uint32_t parentCount = 0;
// Set the result to document fragment if we have 'retval'.
if (retval) {
nsCOMPtr<nsINode> oldCommonAncestor = commonAncestor;
if (!iter.IsDone()) {
// Setup the parameters for the next iteration of the loop.
NS_ENSURE_STATE(nextNode);
// Get node's and nextNode's common parent. Do this before moving
// nodes from original DOM to result fragment.
commonAncestor = nsContentUtils::GetCommonAncestor(node, nextNode);
NS_ENSURE_STATE(commonAncestor);
nsCOMPtr<nsINode> parentCounterNode = node;
while (parentCounterNode && parentCounterNode != commonAncestor) {
++parentCount;
parentCounterNode = parentCounterNode->GetParentNode();
NS_ENSURE_STATE(parentCounterNode);
}
}
// Clone the parent hierarchy between commonAncestor and node.
nsCOMPtr<nsINode> closestAncestor, farthestAncestor;
rv = CloneParentsBetween(oldCommonAncestor, node,
getter_AddRefs(closestAncestor),
getter_AddRefs(farthestAncestor));
NS_ENSURE_SUCCESS(rv, rv);
ErrorResult res;
if (farthestAncestor) {
commonCloneAncestor->AppendChild(*farthestAncestor, res);
res.WouldReportJSException();
if (NS_WARN_IF(res.Failed())) {
return res.StealNSResult();
}
}
nsMutationGuard guard;
nsCOMPtr<nsINode> parent = nodeToResult->GetParentNode();
if (closestAncestor) {
closestAncestor->AppendChild(*nodeToResult, res);
} else {
commonCloneAncestor->AppendChild(*nodeToResult, res);
}
res.WouldReportJSException();
if (NS_WARN_IF(res.Failed())) {
return res.StealNSResult();
}
NS_ENSURE_STATE(!guard.Mutated(parent ? 2 : 1) ||
ValidateCurrentNode(this, iter));
} else if (nodeToResult) {
nsMutationGuard guard;
nsCOMPtr<nsINode> node = nodeToResult;
nsCOMPtr<nsINode> parent = node->GetParentNode();
if (parent) {
mozilla::ErrorResult error;
parent->RemoveChild(*node, error);
NS_ENSURE_FALSE(error.Failed(), error.StealNSResult());
}
NS_ENSURE_STATE(!guard.Mutated(1) || ValidateCurrentNode(this, iter));
}
if (!iter.IsDone() && retval) {
// Find the equivalent of commonAncestor in the cloned tree.
nsCOMPtr<nsINode> newCloneAncestor = nodeToResult;
for (uint32_t i = parentCount; i; --i) {
newCloneAncestor = newCloneAncestor->GetParentNode();
NS_ENSURE_STATE(newCloneAncestor);
}
commonCloneAncestor = newCloneAncestor;
}
}
rv = CollapseRangeAfterDelete(this);
if (NS_SUCCEEDED(rv) && aFragment) {
retval.forget(aFragment);
}
return rv;
}
void nsRange::DeleteContents(ErrorResult& aRv) { aRv = CutContents(nullptr); }
already_AddRefed<DocumentFragment> nsRange::ExtractContents(ErrorResult& rv) {
RefPtr<DocumentFragment> fragment;
rv = CutContents(getter_AddRefs(fragment));
return fragment.forget();
}
int16_t nsRange::CompareBoundaryPoints(uint16_t aHow, nsRange& aOtherRange,
ErrorResult& rv) {
if (!mIsPositioned || !aOtherRange.IsPositioned()) {
rv.Throw(NS_ERROR_NOT_INITIALIZED);
return 0;
}
nsINode *ourNode, *otherNode;
uint32_t ourOffset, otherOffset;
switch (aHow) {
case Range_Binding::START_TO_START:
ourNode = mStart.Container();
ourOffset = mStart.Offset();
otherNode = aOtherRange.GetStartContainer();
otherOffset = aOtherRange.StartOffset();
break;
case Range_Binding::START_TO_END:
ourNode = mEnd.Container();
ourOffset = mEnd.Offset();
otherNode = aOtherRange.GetStartContainer();
otherOffset = aOtherRange.StartOffset();
break;
case Range_Binding::END_TO_START:
ourNode = mStart.Container();
ourOffset = mStart.Offset();
otherNode = aOtherRange.GetEndContainer();
otherOffset = aOtherRange.EndOffset();
break;
case Range_Binding::END_TO_END:
ourNode = mEnd.Container();
ourOffset = mEnd.Offset();
otherNode = aOtherRange.GetEndContainer();
otherOffset = aOtherRange.EndOffset();
break;
default:
// We were passed an illegal value
rv.Throw(NS_ERROR_DOM_NOT_SUPPORTED_ERR);
return 0;
}
if (mRoot != aOtherRange.GetRoot()) {
rv.Throw(NS_ERROR_DOM_WRONG_DOCUMENT_ERR);
return 0;
}
return nsContentUtils::ComparePoints(ourNode, static_cast<int32_t>(ourOffset),
otherNode,
static_cast<int32_t>(otherOffset));
}
/* static */
nsresult nsRange::CloneParentsBetween(nsINode* aAncestor, nsINode* aNode,
nsINode** aClosestAncestor,
nsINode** aFarthestAncestor) {
NS_ENSURE_ARG_POINTER(
(aAncestor && aNode && aClosestAncestor && aFarthestAncestor));
*aClosestAncestor = nullptr;
*aFarthestAncestor = nullptr;
if (aAncestor == aNode) return NS_OK;
AutoTArray<nsCOMPtr<nsINode>, 16> parentStack;
nsCOMPtr<nsINode> parent = aNode->GetParentNode();
while (parent && parent != aAncestor) {
parentStack.AppendElement(parent);
parent = parent->GetParentNode();
}
nsCOMPtr<nsINode> firstParent;
nsCOMPtr<nsINode> lastParent;
for (int32_t i = parentStack.Length() - 1; i >= 0; i--) {
ErrorResult rv;
nsCOMPtr<nsINode> clone = parentStack[i]->CloneNode(false, rv);
if (rv.Failed()) {
return rv.StealNSResult();
}
if (!clone) {
return NS_ERROR_FAILURE;
}
if (!lastParent) {
lastParent = clone;
} else {
firstParent->AppendChild(*clone, rv);
if (rv.Failed()) {
return rv.StealNSResult();
}
}
firstParent = clone;
}
firstParent.forget(aClosestAncestor);
lastParent.forget(aFarthestAncestor);
return NS_OK;
}
already_AddRefed<DocumentFragment> nsRange::CloneContents(ErrorResult& aRv) {
nsCOMPtr<nsINode> commonAncestor = GetCommonAncestorContainer(aRv);
MOZ_ASSERT(!aRv.Failed(), "GetCommonAncestorContainer() shouldn't fail!");
nsCOMPtr<Document> doc = mStart.Container()->OwnerDoc();
NS_ASSERTION(doc, "CloneContents needs a document to continue.");
if (!doc) {
aRv.Throw(NS_ERROR_FAILURE);
return nullptr;
}
// Create a new document fragment in the context of this document,
// which might be null
RefPtr<DocumentFragment> clonedFrag =
new DocumentFragment(doc->NodeInfoManager());
nsCOMPtr<nsINode> commonCloneAncestor = clonedFrag.get();
// Create and initialize a subtree iterator that will give
// us all the subtrees within the range.
RangeSubtreeIterator iter;
aRv = iter.Init(this);
if (aRv.Failed()) {
return nullptr;
}
if (iter.IsDone()) {
// There's nothing to add to the doc frag, we must be done!
return clonedFrag.forget();
}
iter.First();
// With the exception of text nodes that contain one of the range
// end points and elements which don't have any content selected the subtree
// iterator should only give us back subtrees that are completely contained
// between the range's end points.
//
// Unfortunately these subtrees don't contain the parent hierarchy/context
// that the Range spec requires us to return. This loop clones the
// parent hierarchy, adds a cloned version of the subtree, to it, then
// correctly places this new subtree into the doc fragment.
while (!iter.IsDone()) {
nsCOMPtr<nsINode> node = iter.GetCurrentNode();
bool deepClone = !node->IsElement() ||
(!(node == mEnd.Container() && mEnd.Offset() == 0) &&
!(node == mStart.Container() &&
mStart.Offset() == node->AsElement()->GetChildCount()));
// Clone the current subtree!
nsCOMPtr<nsINode> clone = node->CloneNode(deepClone, aRv);
if (aRv.Failed()) {
return nullptr;
}
// If it's CharacterData, make sure we only clone what
// is in the range.
//
// XXX_kin: We need to also handle ProcessingInstruction
// XXX_kin: according to the spec.
if (auto charData = CharacterData::FromNode(clone)) {
if (node == mEnd.Container()) {
// We only need the data before mEndOffset, so get rid of any
// data after it.
uint32_t dataLength = charData->Length();
if (dataLength > (uint32_t)mEnd.Offset()) {
charData->DeleteData(mEnd.Offset(), dataLength - mEnd.Offset(), aRv);
if (aRv.Failed()) {
return nullptr;
}
}
}
if (node == mStart.Container()) {
// We don't need any data before mStartOffset, so just
// delete it!
if (mStart.Offset() > 0) {
charData->DeleteData(0, mStart.Offset(), aRv);
if (aRv.Failed()) {
return nullptr;
}
}
}
}
// Clone the parent hierarchy between commonAncestor and node.
nsCOMPtr<nsINode> closestAncestor, farthestAncestor;
aRv = CloneParentsBetween(commonAncestor, node,
getter_AddRefs(closestAncestor),
getter_AddRefs(farthestAncestor));
if (aRv.Failed()) {
return nullptr;
}
// Hook the parent hierarchy/context of the subtree into the clone tree.
if (farthestAncestor) {
commonCloneAncestor->AppendChild(*farthestAncestor, aRv);
if (aRv.Failed()) {
return nullptr;
}
}
// Place the cloned subtree into the cloned doc frag tree!
nsCOMPtr<nsINode> cloneNode = clone;
if (closestAncestor) {
// Append the subtree under closestAncestor since it is the
// immediate parent of the subtree.
closestAncestor->AppendChild(*cloneNode, aRv);
} else {
// If we get here, there is no missing parent hierarchy between
// commonAncestor and node, so just append clone to commonCloneAncestor.
commonCloneAncestor->AppendChild(*cloneNode, aRv);
}
if (aRv.Failed()) {
return nullptr;
}
// Get the next subtree to be processed. The idea here is to setup
// the parameters for the next iteration of the loop.
iter.Next();
if (iter.IsDone()) break; // We must be done!
nsCOMPtr<nsINode> nextNode = iter.GetCurrentNode();
if (!nextNode) {
aRv.Throw(NS_ERROR_FAILURE);
return nullptr;
}
// Get node and nextNode's common parent.
commonAncestor = nsContentUtils::GetCommonAncestor(node, nextNode);
if (!commonAncestor) {
aRv.Throw(NS_ERROR_FAILURE);
return nullptr;
}
// Find the equivalent of commonAncestor in the cloned tree!
while (node && node != commonAncestor) {
node = node->GetParentNode();
if (aRv.Failed()) {
return nullptr;
}
if (!node) {
aRv.Throw(NS_ERROR_FAILURE);
return nullptr;
}
cloneNode = cloneNode->GetParentNode();
if (!cloneNode) {
aRv.Throw(NS_ERROR_FAILURE);
return nullptr;
}
}
commonCloneAncestor = cloneNode;
}
return clonedFrag.forget();
}
already_AddRefed<nsRange> nsRange::CloneRange() const {
RefPtr<nsRange> range = new nsRange(mOwner);
range->DoSetRange(mStart.AsRaw(), mEnd.AsRaw(), mRoot);
return range.forget();
}
void nsRange::InsertNode(nsINode& aNode, ErrorResult& aRv) {
if (!CanAccess(aNode)) {
aRv.Throw(NS_ERROR_DOM_SECURITY_ERR);
return;
}
uint32_t tStartOffset = StartOffset();
nsCOMPtr<nsINode> tStartContainer = GetStartContainer(aRv);
if (aRv.Failed()) {
return;
}
if (!CanAccess(*tStartContainer)) {
aRv.Throw(NS_ERROR_DOM_SECURITY_ERR);
return;
}
if (&aNode == tStartContainer) {
aRv.Throw(NS_ERROR_DOM_HIERARCHY_REQUEST_ERR);
return;
}
// This is the node we'll be inserting before, and its parent
nsCOMPtr<nsINode> referenceNode;
nsCOMPtr<nsINode> referenceParentNode = tStartContainer;
RefPtr<Text> startTextNode = tStartContainer->GetAsText();
nsCOMPtr<nsINodeList> tChildList;
if (startTextNode) {
referenceParentNode = tStartContainer->GetParentNode();
if (!referenceParentNode) {
aRv.Throw(NS_ERROR_DOM_HIERARCHY_REQUEST_ERR);
return;
}
referenceParentNode->EnsurePreInsertionValidity(aNode, tStartContainer,
aRv);
if (aRv.Failed()) {
return;
}
RefPtr<Text> secondPart = startTextNode->SplitText(tStartOffset, aRv);
if (aRv.Failed()) {
return;
}
referenceNode = secondPart;
} else {
tChildList = tStartContainer->ChildNodes();
// find the insertion point in the DOM and insert the Node
referenceNode = tChildList->Item(tStartOffset);
tStartContainer->EnsurePreInsertionValidity(aNode, referenceNode, aRv);
if (aRv.Failed()) {
return;
}
}
// We might need to update the end to include the new node (bug 433662).
// Ideally we'd only do this if needed, but it's tricky to know when it's
// needed in advance (bug 765799).
uint32_t newOffset;
if (referenceNode) {
int32_t indexInParent = IndexOf(referenceNode);
if (NS_WARN_IF(indexInParent < 0)) {
aRv.Throw(NS_ERROR_FAILURE);
return;
}
newOffset = static_cast<uint32_t>(indexInParent);
} else {
newOffset = tChildList->Length();
}
if (aNode.NodeType() == nsINode::DOCUMENT_FRAGMENT_NODE) {
newOffset += aNode.GetChildCount();
} else {
newOffset++;
}
// Now actually insert the node
nsCOMPtr<nsINode> tResultNode;
tResultNode = referenceParentNode->InsertBefore(aNode, referenceNode, aRv);
if (aRv.Failed()) {
return;
}
if (Collapsed()) {
aRv = SetEnd(referenceParentNode, newOffset);
}
}
void nsRange::SurroundContents(nsINode& aNewParent, ErrorResult& aRv) {
if (!CanAccess(aNewParent)) {
aRv.Throw(NS_ERROR_DOM_SECURITY_ERR);
return;
}
if (!mRoot) {
aRv.Throw(NS_ERROR_DOM_INVALID_STATE_ERR);
return;
}
// INVALID_STATE_ERROR: Raised if the Range partially selects a non-text
// node.
if (mStart.Container() != mEnd.Container()) {
bool startIsText = mStart.Container()->IsText();
bool endIsText = mEnd.Container()->IsText();
nsINode* startGrandParent = mStart.Container()->GetParentNode();
nsINode* endGrandParent = mEnd.Container()->GetParentNode();
if (!((startIsText && endIsText && startGrandParent &&
startGrandParent == endGrandParent) ||
(startIsText && startGrandParent &&
startGrandParent == mEnd.Container()) ||
(endIsText && endGrandParent &&
endGrandParent == mStart.Container()))) {
aRv.Throw(NS_ERROR_DOM_INVALID_STATE_ERR);
return;
}
}
// INVALID_NODE_TYPE_ERROR if aNewParent is something that can't be inserted
// (Document, DocumentType, DocumentFragment)
uint16_t nodeType = aNewParent.NodeType();
if (nodeType == nsINode::DOCUMENT_NODE ||
nodeType == nsINode::DOCUMENT_TYPE_NODE ||
nodeType == nsINode::DOCUMENT_FRAGMENT_NODE) {
aRv.Throw(NS_ERROR_DOM_INVALID_NODE_TYPE_ERR);
return;
}
// Extract the contents within the range.
RefPtr<DocumentFragment> docFrag = ExtractContents(aRv);
if (aRv.Failed()) {
return;
}
if (!docFrag) {
aRv.Throw(NS_ERROR_FAILURE);
return;
}
// Spec says we need to remove all of aNewParent's
// children prior to insertion.
nsCOMPtr<nsINodeList> children = aNewParent.ChildNodes();
if (!children) {
aRv.Throw(NS_ERROR_FAILURE);
return;
}
uint32_t numChildren = children->Length();
while (numChildren) {
nsCOMPtr<nsINode> child = children->Item(--numChildren);
if (!child) {
aRv.Throw(NS_ERROR_FAILURE);
return;
}
aNewParent.RemoveChild(*child, aRv);
if (aRv.Failed()) {
return;
}
}
// Insert aNewParent at the range's start point.
InsertNode(aNewParent, aRv);
if (aRv.Failed()) {
return;
}
// Append the content we extracted under aNewParent.
aNewParent.AppendChild(*docFrag, aRv);
if (aRv.Failed()) {
return;
}
// Select aNewParent, and its contents.
SelectNode(aNewParent, aRv);
}
void nsRange::ToString(nsAString& aReturn, ErrorResult& aErr) {
// clear the string
aReturn.Truncate();
// If we're unpositioned, return the empty string
if (!mIsPositioned) {
return;
}
#ifdef DEBUG_range
printf("Range dump: -----------------------\n");
#endif /* DEBUG */
// effeciency hack for simple case
if (mStart.Container() == mEnd.Container()) {
Text* textNode =
mStart.Container() ? mStart.Container()->GetAsText() : nullptr;
if (textNode) {
#ifdef DEBUG_range
// If debug, dump it:
textNode->List(stdout);
printf("End Range dump: -----------------------\n");
#endif /* DEBUG */
// grab the text
textNode->SubstringData(mStart.Offset(), mEnd.Offset() - mStart.Offset(),
aReturn, aErr);
return;
}
}
/* complex case: mStart.Container() != mEnd.Container(), or mStartParent not a
text node revisit - there are potential optimizations here and also
tradeoffs.
*/
PostContentIterator postOrderIter;
nsresult rv = postOrderIter.Init(this);
if (NS_WARN_IF(NS_FAILED(rv))) {
aErr.Throw(rv);
return;
}
nsString tempString;
// loop through the content iterator, which returns nodes in the range in
// close tag order, and grab the text from any text node
for (; !postOrderIter.IsDone(); postOrderIter.Next()) {
nsINode* n = postOrderIter.GetCurrentNode();
#ifdef DEBUG_range
// If debug, dump it:
n->List(stdout);
#endif /* DEBUG */
Text* textNode = n->GetAsText();
if (textNode) // if it's a text node, get the text
{
if (n == mStart.Container()) { // only include text past start offset
uint32_t strLength = textNode->Length();
textNode->SubstringData(mStart.Offset(), strLength - mStart.Offset(),
tempString, IgnoreErrors());
aReturn += tempString;
} else if (n ==
mEnd.Container()) { // only include text before end offset
textNode->SubstringData(0, mEnd.Offset(), tempString, IgnoreErrors());
aReturn += tempString;
} else { // grab the whole kit-n-kaboodle
textNode->GetData(tempString);
aReturn += tempString;
}
}
}
#ifdef DEBUG_range
printf("End Range dump: -----------------------\n");
#endif /* DEBUG */
}
void nsRange::Detach() {}
already_AddRefed<DocumentFragment> nsRange::CreateContextualFragment(
const nsAString& aFragment, ErrorResult& aRv) {
if (!mIsPositioned) {
aRv.Throw(NS_ERROR_FAILURE);
return nullptr;
}
return nsContentUtils::CreateContextualFragment(mStart.Container(), aFragment,
false, aRv);
}
static void ExtractRectFromOffset(nsIFrame* aFrame, const int32_t aOffset,
nsRect* aR, bool aFlushToOriginEdge,
bool aClampToEdge) {
MOZ_ASSERT(aFrame);
MOZ_ASSERT(aR);
nsPoint point;
aFrame->GetPointFromOffset(aOffset, &point);
// Determine if aFrame has a vertical writing mode, which will change our math
// on the output rect.
bool isVertical = aFrame->GetWritingMode().IsVertical();
if (!aClampToEdge && !aR->Contains(point)) {
// If point is outside aR, and we aren't clamping, output an empty rect
// with origin at the point.
if (isVertical) {
aR->SetHeight(0);
aR->y = point.y;
} else {
aR->SetWidth(0);
aR->x = point.x;
}
return;
}
if (aClampToEdge) {
point = aR->ClampPoint(point);
}
// point is within aR, and now we'll modify aR to output a rect that has point
// on one edge. But which edge?
if (aFlushToOriginEdge) {
// The output rect should be flush to the edge of aR that contains the
// origin.
if (isVertical) {
aR->SetHeight(point.y - aR->y);
} else {
aR->SetWidth(point.x - aR->x);
}
} else {
// The output rect should be flush to the edge of aR opposite the origin.
if (isVertical) {
aR->SetHeight(aR->YMost() - point.y);
aR->y = point.y;
} else {
aR->SetWidth(aR->XMost() - point.x);
aR->x = point.x;
}
}
}
static nsTextFrame* GetTextFrameForContent(nsIContent* aContent,
bool aFlushLayout) {
Document* doc = aContent->OwnerDoc();
nsIPresShell* presShell = doc->GetShell();
if (!presShell) {
return nullptr;
}
// Try to un-suppress whitespace if needed, but only if we'll be able to flush
// to immediately see the results of the un-suppression. If we can't flush
// here, then calling EnsureFrameForTextNodeIsCreatedAfterFlush would be
// pointless anyway.
if (aFlushLayout) {
const bool frameWillBeUnsuppressed =
presShell->FrameConstructor()
->EnsureFrameForTextNodeIsCreatedAfterFlush(
static_cast<CharacterData*>(aContent));
if (frameWillBeUnsuppressed) {
doc->FlushPendingNotifications(FlushType::Layout);
}
}
nsIFrame* frame = aContent->GetPrimaryFrame();
if (!frame || !frame->IsTextFrame()) {
return nullptr;
}
return static_cast<nsTextFrame*>(frame);
}
static nsresult GetPartialTextRect(nsLayoutUtils::RectCallback* aCallback,
Sequence<nsString>* aTextList,
nsIContent* aContent, int32_t aStartOffset,
int32_t aEndOffset, bool aClampToEdge,
bool aFlushLayout) {
nsTextFrame* textFrame = GetTextFrameForContent(aContent, aFlushLayout);
if (textFrame) {
nsIFrame* relativeTo =
nsLayoutUtils::GetContainingBlockForClientRect(textFrame);
for (nsTextFrame* f = textFrame; f;
f = static_cast<nsTextFrame*>(f->GetNextContinuation())) {
int32_t fstart = f->GetContentOffset(), fend = f->GetContentEnd();
if (fend <= aStartOffset || fstart >= aEndOffset) continue;
// Calculate the text content offsets we'll need if text is requested.
int32_t textContentStart = fstart;
int32_t textContentEnd = fend;
// overlapping with the offset we want
f->EnsureTextRun(nsTextFrame::eInflated);
NS_ENSURE_TRUE(f->GetTextRun(nsTextFrame::eInflated),
NS_ERROR_OUT_OF_MEMORY);
bool rtl = f->GetTextRun(nsTextFrame::eInflated)->IsRightToLeft();
nsRect r = f->GetRectRelativeToSelf();
if (fstart < aStartOffset) {
// aStartOffset is within this frame
ExtractRectFromOffset(f, aStartOffset, &r, rtl, aClampToEdge);
textContentStart = aStartOffset;
}
if (fend > aEndOffset) {
// aEndOffset is in the middle of this frame
ExtractRectFromOffset(f, aEndOffset, &r, !rtl, aClampToEdge);
textContentEnd = aEndOffset;
}
r = nsLayoutUtils::TransformFrameRectToAncestor(f, r, relativeTo);
aCallback->AddRect(r);
// Finally capture the text, if requested.
if (aTextList) {
nsIFrame::RenderedText renderedText = f->GetRenderedText(
textContentStart, textContentEnd,
nsIFrame::TextOffsetType::OFFSETS_IN_CONTENT_TEXT,
nsIFrame::TrailingWhitespace::DONT_TRIM_TRAILING_WHITESPACE);
aTextList->AppendElement(renderedText.mString, fallible);
}
}
}
return NS_OK;
}
/* static */
void nsRange::CollectClientRectsAndText(
nsLayoutUtils::RectCallback* aCollector, Sequence<nsString>* aTextList,
nsRange* aRange, nsINode* aStartContainer, uint32_t aStartOffset,
nsINode* aEndContainer, uint32_t aEndOffset, bool aClampToEdge,
bool aFlushLayout) {
// Currently, this method is called with start of end offset of nsRange.
// So, they must be between 0 - INT32_MAX.
MOZ_ASSERT(IsValidOffset(aStartOffset));
MOZ_ASSERT(IsValidOffset(aEndOffset));
// Hold strong pointers across the flush
nsCOMPtr<nsINode> startContainer = aStartContainer;
nsCOMPtr<nsINode> endContainer = aEndContainer;
// Flush out layout so our frames are up to date.
if (!aStartContainer->IsInComposedDoc()) {
return;
}
if (aFlushLayout) {
aStartContainer->OwnerDoc()->FlushPendingNotifications(FlushType::Layout);
// Recheck whether we're still in the document
if (!aStartContainer->IsInComposedDoc()) {
return;
}
}
RangeSubtreeIterator iter;
nsresult rv = iter.Init(aRange);
if (NS_FAILED(rv)) return;
if (iter.IsDone()) {
// the range is collapsed, only continue if the cursor is in a text node
if (aStartContainer->IsText()) {
nsTextFrame* textFrame =
GetTextFrameForContent(aStartContainer->AsText(), aFlushLayout);
if (textFrame) {
int32_t outOffset;
nsIFrame* outFrame;
textFrame->GetChildFrameContainingOffset(
static_cast<int32_t>(aStartOffset), false, &outOffset, &outFrame);
if (outFrame) {
nsIFrame* relativeTo =
nsLayoutUtils::GetContainingBlockForClientRect(outFrame);
nsRect r = outFrame->GetRectRelativeToSelf();
ExtractRectFromOffset(outFrame, static_cast<int32_t>(aStartOffset),
&r, false, aClampToEdge);
r.SetWidth(0);
r = nsLayoutUtils::TransformFrameRectToAncestor(outFrame, r,
relativeTo);
aCollector->AddRect(r);
}
}
}
return;
}
do {
nsCOMPtr<nsINode> node = iter.GetCurrentNode();
iter.Next();
nsCOMPtr<nsIContent> content = do_QueryInterface(node);
if (!content) continue;
if (content->IsText()) {
if (node == startContainer) {
int32_t offset = startContainer == endContainer
? static_cast<int32_t>(aEndOffset)
: content->GetText()->GetLength();
GetPartialTextRect(aCollector, aTextList, content,
static_cast<int32_t>(aStartOffset), offset,
aClampToEdge, aFlushLayout);
continue;
} else if (node == endContainer) {
GetPartialTextRect(aCollector, aTextList, content, 0,
static_cast<int32_t>(aEndOffset), aClampToEdge,
aFlushLayout);
continue;
}
}
nsIFrame* frame = content->GetPrimaryFrame();
if (frame) {
nsLayoutUtils::GetAllInFlowRectsAndTexts(
frame, nsLayoutUtils::GetContainingBlockForClientRect(frame),
aCollector, aTextList, nsLayoutUtils::RECTS_ACCOUNT_FOR_TRANSFORMS);
}
} while (!iter.IsDone());
}
already_AddRefed<DOMRect> nsRange::GetBoundingClientRect(bool aClampToEdge,
bool aFlushLayout) {
RefPtr<DOMRect> rect = new DOMRect(ToSupports(this));
if (!mStart.Container()) {
return rect.forget();
}
nsLayoutUtils::RectAccumulator accumulator;
CollectClientRectsAndText(&accumulator, nullptr, this, mStart.Container(),
mStart.Offset(), mEnd.Container(), mEnd.Offset(),
aClampToEdge, aFlushLayout);
nsRect r = accumulator.mResultRect.IsEmpty() ? accumulator.mFirstRect
: accumulator.mResultRect;
rect->SetLayoutRect(r);
return rect.forget();
}
already_AddRefed<DOMRectList> nsRange::GetClientRects(bool aClampToEdge,
bool aFlushLayout) {
if (!mStart.Container()) {
return nullptr;
}
RefPtr<DOMRectList> rectList = new DOMRectList(this);
nsLayoutUtils::RectListBuilder builder(rectList);
CollectClientRectsAndText(&builder, nullptr, this, mStart.Container(),
mStart.Offset(), mEnd.Container(), mEnd.Offset(),
aClampToEdge, aFlushLayout);
return rectList.forget();
}
void nsRange::GetClientRectsAndTexts(mozilla::dom::ClientRectsAndTexts& aResult,
ErrorResult& aErr) {
if (!mStart.Container()) {
return;
}
aResult.mRectList = new DOMRectList(this);
nsLayoutUtils::RectListBuilder builder(aResult.mRectList);
CollectClientRectsAndText(&builder, &aResult.mTextList, this,
mStart.Container(), mStart.Offset(),
mEnd.Container(), mEnd.Offset(), true, true);
}
nsresult nsRange::GetUsedFontFaces(nsLayoutUtils::UsedFontFaceList& aResult,
uint32_t aMaxRanges,
bool aSkipCollapsedWhitespace) {
NS_ENSURE_TRUE(mStart.Container(), NS_ERROR_UNEXPECTED);
nsCOMPtr<nsINode> startContainer = mStart.Container();
nsCOMPtr<nsINode> endContainer = mEnd.Container();
// Flush out layout so our frames are up to date.
Document* doc = mStart.Container()->OwnerDoc();
NS_ENSURE_TRUE(doc, NS_ERROR_UNEXPECTED);
doc->FlushPendingNotifications(FlushType::Frames);
// Recheck whether we're still in the document
NS_ENSURE_TRUE(mStart.Container()->IsInComposedDoc(), NS_ERROR_UNEXPECTED);
// A table to map gfxFontEntry objects to InspectorFontFace objects.
// This table does NOT own the InspectorFontFace objects, it only holds
// raw pointers to them. They are owned by the aResult array.
nsLayoutUtils::UsedFontFaceTable fontFaces;
RangeSubtreeIterator iter;
nsresult rv = iter.Init(this);
NS_ENSURE_SUCCESS(rv, rv);
while (!iter.IsDone()) {
// only collect anything if the range is not collapsed
nsCOMPtr<nsINode> node = iter.GetCurrentNode();
iter.Next();
nsCOMPtr<nsIContent> content = do_QueryInterface(node);
if (!content) {
continue;
}
nsIFrame* frame = content->GetPrimaryFrame();
if (!frame) {
continue;
}
if (content->IsText()) {
if (node == startContainer) {
int32_t offset = startContainer == endContainer
? mEnd.Offset()
: content->GetText()->GetLength();
nsLayoutUtils::GetFontFacesForText(frame, mStart.Offset(), offset, true,
aResult, fontFaces, aMaxRanges,
aSkipCollapsedWhitespace);
continue;
}
if (node == endContainer) {
nsLayoutUtils::GetFontFacesForText(frame, 0, mEnd.Offset(), true,
aResult, fontFaces, aMaxRanges,
aSkipCollapsedWhitespace);
continue;
}
}
nsLayoutUtils::GetFontFacesForFrames(frame, aResult, fontFaces, aMaxRanges,
aSkipCollapsedWhitespace);
}
return NS_OK;
}
nsINode* nsRange::GetRegisteredCommonAncestor() {
MOZ_ASSERT(IsInSelection(),
"GetRegisteredCommonAncestor only valid for range in selection");
MOZ_ASSERT(mRegisteredCommonAncestor);
return mRegisteredCommonAncestor;
}
/* static */
bool nsRange::AutoInvalidateSelection::sIsNested;
nsRange::AutoInvalidateSelection::~AutoInvalidateSelection() {
if (!mCommonAncestor) {
return;
}
sIsNested = false;
::InvalidateAllFrames(mCommonAncestor);
// Our range might not be in a selection anymore, because one of our selection
// listeners might have gone ahead and run script of various sorts that messed
// with selections, ranges, etc. But if it still is, we should check whether
// we have a different common ancestor now, and if so invalidate its subtree
// so it paints the selection it's in now.
if (mRange->IsInSelection()) {
nsINode* commonAncestor = mRange->GetRegisteredCommonAncestor();
// XXXbz can commonAncestor really be null here? I wouldn't think so! If
// it _were_, then in a debug build GetRegisteredCommonAncestor() would have
// fatally asserted.
if (commonAncestor && commonAncestor != mCommonAncestor) {
::InvalidateAllFrames(commonAncestor);
}
}
}
/* static */
already_AddRefed<nsRange> nsRange::Constructor(const GlobalObject& aGlobal,
ErrorResult& aRv) {
nsCOMPtr<nsPIDOMWindowInner> window =
do_QueryInterface(aGlobal.GetAsSupports());
if (!window || !window->GetDoc()) {
aRv.Throw(NS_ERROR_FAILURE);
return nullptr;
}
return window->GetDoc()->CreateRange(aRv);
}
static bool ExcludeIfNextToNonSelectable(nsIContent* aContent) {
return aContent->IsText() &&
aContent->HasFlag(NS_CREATE_FRAME_IF_NON_WHITESPACE);
}
void nsRange::ExcludeNonSelectableNodes(nsTArray<RefPtr<nsRange>>* aOutRanges) {
MOZ_ASSERT(mIsPositioned);
MOZ_ASSERT(mEnd.Container());
MOZ_ASSERT(mStart.Container());
nsRange* range = this;
RefPtr<nsRange> newRange;
while (range) {
PreContentIterator preOrderIter;
nsresult rv = preOrderIter.Init(range);
if (NS_FAILED(rv)) {
return;
}
bool added = false;
bool seenSelectable = false;
// |firstNonSelectableContent| is the first node in a consecutive sequence
// of non-IsSelectable nodes. When we find a selectable node after such
// a sequence we'll end the last nsRange, create a new one and restart
// the outer loop.
nsIContent* firstNonSelectableContent = nullptr;
while (true) {
ErrorResult err;
nsINode* node = preOrderIter.GetCurrentNode();
preOrderIter.Next();
bool selectable = true;
nsIContent* content =
node && node->IsContent() ? node->AsContent() : nullptr;
if (content) {
if (firstNonSelectableContent &&
ExcludeIfNextToNonSelectable(content)) {
// Ignorable whitespace next to a sequence of non-selectable nodes
// counts as non-selectable (bug 1216001).
selectable = false;
}
if (selectable) {
nsIFrame* frame = content->GetPrimaryFrame();
for (nsIContent* p = content; !frame && (p = p->GetParent());) {
frame = p->GetPrimaryFrame();
}
if (frame) {
selectable = frame->IsSelectable(nullptr);
}
}
}
if (!selectable) {
if (!firstNonSelectableContent) {
firstNonSelectableContent = content;
}
if (preOrderIter.IsDone() && seenSelectable) {
// The tail end of the initial range is non-selectable - truncate the
// current range before the first non-selectable node.
range->SetEndBefore(*firstNonSelectableContent, err);
}
} else if (firstNonSelectableContent) {
if (range == this && !seenSelectable) {
// This is the initial range and all its nodes until now are
// non-selectable so just trim them from the start.
range->SetStartBefore(*node, err);
if (err.Failed()) {
return;
}
break; // restart the same range with a new iterator
} else {
// Save the end point before truncating the range.
nsINode* endContainer = range->mEnd.Container();
int32_t endOffset = range->mEnd.Offset();
// Truncate the current range before the first non-selectable node.
range->SetEndBefore(*firstNonSelectableContent, err);
// Store it in the result (strong ref) - do this before creating
// a new range in |newRange| below so we don't drop the last ref
// to the range created in the previous iteration.
if (!added && !err.Failed()) {
aOutRanges->AppendElement(range);
}
// Create a new range for the remainder.
nsINode* startContainer = node;
int32_t startOffset = 0;
// Don't start *inside* a node with independent selection though
// (e.g. <input>).
if (content && content->HasIndependentSelection()) {
nsINode* parent = startContainer->GetParent();
if (parent) {
startOffset = parent->ComputeIndexOf(startContainer);
startContainer = parent;
}
}
rv = CreateRange(startContainer, startOffset, endContainer, endOffset,
getter_AddRefs(newRange));
if (NS_FAILED(rv) || newRange->Collapsed()) {
newRange = nullptr;
}
range = newRange;
break; // create a new iterator for the new range, if any
}
} else {
seenSelectable = true;
if (!added) {
added = true;
aOutRanges->AppendElement(range);
}
}
if (preOrderIter.IsDone()) {
return;
}
}
}
}
struct InnerTextAccumulator {
explicit InnerTextAccumulator(mozilla::dom::DOMString& aValue)
: mString(aValue.AsAString()), mRequiredLineBreakCount(0) {}
void FlushLineBreaks() {
while (mRequiredLineBreakCount > 0) {
// Required line breaks at the start of the text are suppressed.
if (!mString.IsEmpty()) {
mString.Append('\n');
}
--mRequiredLineBreakCount;
}
}
void Append(char aCh) { Append(nsAutoString(aCh)); }
void Append(const nsAString& aString) {
if (aString.IsEmpty()) {
return;
}
FlushLineBreaks();
mString.Append(aString);
}
void AddRequiredLineBreakCount(int8_t aCount) {
mRequiredLineBreakCount = std::max(mRequiredLineBreakCount, aCount);
}
nsAString& mString;
int8_t mRequiredLineBreakCount;
};
static bool IsVisibleAndNotInReplacedElement(nsIFrame* aFrame) {
if (!aFrame || !aFrame->StyleVisibility()->IsVisible()) {
return false;
}
for (nsIFrame* f = aFrame->GetParent(); f; f = f->GetParent()) {
if (f->IsFrameOfType(nsIFrame::eReplaced) &&
!f->GetContent()->IsHTMLElement(nsGkAtoms::button) &&
!f->GetContent()->IsHTMLElement(nsGkAtoms::select)) {
return false;
}
}
return true;
}
static void AppendTransformedText(InnerTextAccumulator& aResult,
nsIContent* aContainer) {
auto textNode = static_cast<CharacterData*>(aContainer);
nsIFrame* frame = textNode->GetPrimaryFrame();
if (!IsVisibleAndNotInReplacedElement(frame)) {
return;
}
nsIFrame::RenderedText text =
frame->GetRenderedText(0, aContainer->GetChildCount());
aResult.Append(text.mString);
}
/**
* States for tree traversal. AT_NODE means that we are about to enter
* the current DOM node. AFTER_NODE means that we have just finished traversing
* the children of the current DOM node and are about to apply any
* "after processing the node's children" steps before we finish visiting
* the node.
*/
enum TreeTraversalState { AT_NODE, AFTER_NODE };
static int8_t GetRequiredInnerTextLineBreakCount(nsIFrame* aFrame) {
if (aFrame->GetContent()->IsHTMLElement(nsGkAtoms::p)) {
return 2;
}
const nsStyleDisplay* styleDisplay = aFrame->StyleDisplay();
if (styleDisplay->IsBlockOutside(aFrame) ||
styleDisplay->mDisplay == StyleDisplay::TableCaption) {
return 1;
}
return 0;
}
static bool IsLastCellOfRow(nsIFrame* aFrame) {
LayoutFrameType type = aFrame->Type();
if (type != LayoutFrameType::TableCell &&
type != LayoutFrameType::BCTableCell) {
return true;
}
for (nsIFrame* c = aFrame; c; c = c->GetNextContinuation()) {
if (c->GetNextSibling()) {
return false;
}
}
return true;
}
static bool IsLastRowOfRowGroup(nsIFrame* aFrame) {
if (!aFrame->IsTableRowFrame()) {
return true;
}
for (nsIFrame* c = aFrame; c; c = c->GetNextContinuation()) {
if (c->GetNextSibling()) {
return false;
}
}
return true;
}
static bool IsLastNonemptyRowGroupOfTable(nsIFrame* aFrame) {
if (!aFrame->IsTableRowGroupFrame()) {
return true;
}
for (nsIFrame* c = aFrame; c; c = c->GetNextContinuation()) {
for (nsIFrame* next = c->GetNextSibling(); next;
next = next->GetNextSibling()) {
if (next->PrincipalChildList().FirstChild()) {
return false;
}
}
}
return true;
}
void nsRange::GetInnerTextNoFlush(DOMString& aValue, ErrorResult& aError,
nsIContent* aContainer) {
InnerTextAccumulator result(aValue);
if (aContainer->IsText()) {
AppendTransformedText(result, aContainer);
return;
}
nsIContent* currentNode = aContainer;
TreeTraversalState currentState = AFTER_NODE;
nsIContent* endNode = aContainer;
TreeTraversalState endState = AFTER_NODE;
nsIContent* firstChild = aContainer->GetFirstChild();
if (firstChild) {
currentNode = firstChild;
currentState = AT_NODE;
}
while (currentNode != endNode || currentState != endState) {
nsIFrame* f = currentNode->GetPrimaryFrame();
bool isVisibleAndNotReplaced = IsVisibleAndNotInReplacedElement(f);
if (currentState == AT_NODE) {
bool isText = currentNode->IsText();
if (isVisibleAndNotReplaced) {
result.AddRequiredLineBreakCount(GetRequiredInnerTextLineBreakCount(f));
if (isText) {
nsIFrame::RenderedText text = f->GetRenderedText();
result.Append(text.mString);
}
}
nsIContent* child = currentNode->GetFirstChild();
if (child) {
currentNode = child;
continue;
}
currentState = AFTER_NODE;
}
if (currentNode == endNode && currentState == endState) {
break;
}
if (isVisibleAndNotReplaced) {
if (currentNode->IsHTMLElement(nsGkAtoms::br)) {
result.Append('\n');
}
switch (f->StyleDisplay()->mDisplay) {
case StyleDisplay::TableCell:
if (!IsLastCellOfRow(f)) {
result.Append('\t');
}
break;
case StyleDisplay::TableRow:
if (!IsLastRowOfRowGroup(f) ||
!IsLastNonemptyRowGroupOfTable(f->GetParent())) {
result.Append('\n');
}
break;
default:
break; // Do nothing
}
result.AddRequiredLineBreakCount(GetRequiredInnerTextLineBreakCount(f));
}
nsIContent* next = currentNode->GetNextSibling();
if (next) {
currentNode = next;
currentState = AT_NODE;
} else {
currentNode = currentNode->GetParent();
}
}
// Do not flush trailing line breaks! Required breaks at the end of the text
// are suppressed.
}