зеркало из https://github.com/mozilla/gecko-dev.git
672 строки
24 KiB
C++
672 строки
24 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "mozilla/Assertions.h"
|
|
#include "mozilla/Attributes.h"
|
|
#include "mozilla/HashFunctions.h"
|
|
#include "mozilla/MemoryReporting.h"
|
|
#include "mozilla/MruCache.h"
|
|
#include "mozilla/Mutex.h"
|
|
#include "mozilla/DebugOnly.h"
|
|
#include "mozilla/Sprintf.h"
|
|
#include "mozilla/TextUtils.h"
|
|
#include "mozilla/Unused.h"
|
|
|
|
#include "nsAtom.h"
|
|
#include "nsAtomTable.h"
|
|
#include "nsCRT.h"
|
|
#include "nsDataHashtable.h"
|
|
#include "nsGkAtoms.h"
|
|
#include "nsHashKeys.h"
|
|
#include "nsPrintfCString.h"
|
|
#include "nsString.h"
|
|
#include "nsThreadUtils.h"
|
|
#include "nsUnicharUtils.h"
|
|
#include "PLDHashTable.h"
|
|
#include "prenv.h"
|
|
|
|
// There are two kinds of atoms handled by this module.
|
|
//
|
|
// - Dynamic: the atom itself is heap allocated, as is the char buffer it
|
|
// points to. |gAtomTable| holds weak references to dynamic atoms. When the
|
|
// refcount of a dynamic atom drops to zero, we increment a static counter.
|
|
// When that counter reaches a certain threshold, we iterate over the atom
|
|
// table, removing and deleting dynamic atoms with refcount zero. This allows
|
|
// us to avoid acquiring the atom table lock during normal refcounting.
|
|
//
|
|
// - Static: both the atom and its chars are statically allocated and
|
|
// immutable, so it ignores all AddRef/Release calls.
|
|
//
|
|
// Note that gAtomTable is used on multiple threads, and has internal
|
|
// synchronization.
|
|
|
|
using namespace mozilla;
|
|
|
|
//----------------------------------------------------------------------
|
|
|
|
enum class GCKind {
|
|
RegularOperation,
|
|
Shutdown,
|
|
};
|
|
|
|
//----------------------------------------------------------------------
|
|
|
|
// gUnusedAtomCount is incremented when an atom loses its last reference
|
|
// (and thus turned into unused state), and decremented when an unused
|
|
// atom gets a reference again. The atom table relies on this value to
|
|
// schedule GC. This value can temporarily go below zero when multiple
|
|
// threads are operating the same atom, so it has to be signed so that
|
|
// we wouldn't use overflow value for comparison.
|
|
// See nsAtom::AddRef() and nsAtom::Release().
|
|
// This atomic can be accessed during the GC and other places where recorded
|
|
// events are not allowed, so its value is not preserved when recording or
|
|
// replaying.
|
|
Atomic<int32_t, ReleaseAcquire> nsDynamicAtom::gUnusedAtomCount;
|
|
|
|
nsDynamicAtom::nsDynamicAtom(const nsAString& aString, uint32_t aHash,
|
|
bool aIsAsciiLowercase)
|
|
: nsAtom(aString, aHash, aIsAsciiLowercase), mRefCnt(1) {}
|
|
|
|
// Returns true if ToLowercaseASCII would return the string unchanged.
|
|
static bool IsAsciiLowercase(const char16_t* aString, const uint32_t aLength) {
|
|
for (uint32_t i = 0; i < aLength; ++i) {
|
|
if (IS_ASCII_UPPER(aString[i])) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
nsDynamicAtom* nsDynamicAtom::Create(const nsAString& aString, uint32_t aHash) {
|
|
// We tack the chars onto the end of the nsDynamicAtom object.
|
|
size_t numCharBytes = (aString.Length() + 1) * sizeof(char16_t);
|
|
size_t numTotalBytes = sizeof(nsDynamicAtom) + numCharBytes;
|
|
|
|
bool isAsciiLower = ::IsAsciiLowercase(aString.Data(), aString.Length());
|
|
|
|
nsDynamicAtom* atom = (nsDynamicAtom*)moz_xmalloc(numTotalBytes);
|
|
new (atom) nsDynamicAtom(aString, aHash, isAsciiLower);
|
|
memcpy(const_cast<char16_t*>(atom->String()),
|
|
PromiseFlatString(aString).get(), numCharBytes);
|
|
|
|
MOZ_ASSERT(atom->String()[atom->GetLength()] == char16_t(0));
|
|
MOZ_ASSERT(atom->Equals(aString));
|
|
MOZ_ASSERT(atom->mHash == HashString(atom->String(), atom->GetLength()));
|
|
MOZ_ASSERT(atom->mIsAsciiLowercase == isAsciiLower);
|
|
|
|
return atom;
|
|
}
|
|
|
|
void nsDynamicAtom::Destroy(nsDynamicAtom* aAtom) {
|
|
aAtom->~nsDynamicAtom();
|
|
free(aAtom);
|
|
}
|
|
|
|
void nsAtom::ToString(nsAString& aString) const {
|
|
// See the comment on |mString|'s declaration.
|
|
if (IsStatic()) {
|
|
// AssignLiteral() lets us assign without copying. This isn't a string
|
|
// literal, but it's a static atom and thus has an unbounded lifetime,
|
|
// which is what's important.
|
|
aString.AssignLiteral(AsStatic()->String(), mLength);
|
|
} else {
|
|
aString.Assign(AsDynamic()->String(), mLength);
|
|
}
|
|
}
|
|
|
|
void nsAtom::ToUTF8String(nsACString& aBuf) const {
|
|
CopyUTF16toUTF8(nsDependentString(GetUTF16String(), mLength), aBuf);
|
|
}
|
|
|
|
void nsAtom::AddSizeOfIncludingThis(MallocSizeOf aMallocSizeOf,
|
|
AtomsSizes& aSizes) const {
|
|
// Static atoms are in static memory, and so are not measured here.
|
|
if (IsDynamic()) {
|
|
aSizes.mDynamicAtoms += aMallocSizeOf(this);
|
|
}
|
|
}
|
|
|
|
char16ptr_t nsAtom::GetUTF16String() const {
|
|
return IsStatic() ? AsStatic()->String() : AsDynamic()->String();
|
|
}
|
|
|
|
//----------------------------------------------------------------------
|
|
|
|
struct AtomTableKey {
|
|
explicit AtomTableKey(const nsStaticAtom* aAtom)
|
|
: mUTF16String(aAtom->String()),
|
|
mUTF8String(nullptr),
|
|
mLength(aAtom->GetLength()),
|
|
mHash(aAtom->hash()) {
|
|
MOZ_ASSERT(HashString(mUTF16String, mLength) == mHash);
|
|
}
|
|
|
|
AtomTableKey(const char16_t* aUTF16String, uint32_t aLength)
|
|
: mUTF16String(aUTF16String), mUTF8String(nullptr), mLength(aLength) {
|
|
mHash = HashString(mUTF16String, mLength);
|
|
}
|
|
|
|
AtomTableKey(const char* aUTF8String, uint32_t aLength, bool* aErr)
|
|
: mUTF16String(nullptr), mUTF8String(aUTF8String), mLength(aLength) {
|
|
mHash = HashUTF8AsUTF16(mUTF8String, mLength, aErr);
|
|
}
|
|
|
|
const char16_t* mUTF16String;
|
|
const char* mUTF8String;
|
|
uint32_t mLength;
|
|
uint32_t mHash;
|
|
};
|
|
|
|
struct AtomTableEntry : public PLDHashEntryHdr {
|
|
// These references are either to dynamic atoms, in which case they are
|
|
// non-owning, or they are to static atoms, which aren't really refcounted.
|
|
// See the comment at the top of this file for more details.
|
|
nsAtom* MOZ_NON_OWNING_REF mAtom;
|
|
};
|
|
|
|
struct AtomCache : public MruCache<AtomTableKey, nsAtom*, AtomCache> {
|
|
static HashNumber Hash(const AtomTableKey& aKey) { return aKey.mHash; }
|
|
static bool Match(const AtomTableKey& aKey, const nsAtom* aVal) {
|
|
MOZ_ASSERT(aKey.mUTF16String);
|
|
return aVal->Equals(aKey.mUTF16String, aKey.mLength);
|
|
}
|
|
};
|
|
|
|
static AtomCache sRecentlyUsedMainThreadAtoms;
|
|
|
|
// In order to reduce locking contention for concurrent atomization, we segment
|
|
// the atom table into N subtables, each with a separate lock. If the hash
|
|
// values we use to select the subtable are evenly distributed, this reduces the
|
|
// probability of contention by a factor of N. See bug 1440824.
|
|
//
|
|
// NB: This is somewhat similar to the technique used by Java's
|
|
// ConcurrentHashTable.
|
|
class nsAtomSubTable {
|
|
friend class nsAtomTable;
|
|
Mutex mLock;
|
|
PLDHashTable mTable;
|
|
nsAtomSubTable();
|
|
void GCLocked(GCKind aKind);
|
|
void AddSizeOfExcludingThisLocked(MallocSizeOf aMallocSizeOf,
|
|
AtomsSizes& aSizes);
|
|
|
|
AtomTableEntry* Search(AtomTableKey& aKey) const {
|
|
mLock.AssertCurrentThreadOwns();
|
|
return static_cast<AtomTableEntry*>(mTable.Search(&aKey));
|
|
}
|
|
|
|
AtomTableEntry* Add(AtomTableKey& aKey) {
|
|
mLock.AssertCurrentThreadOwns();
|
|
return static_cast<AtomTableEntry*>(mTable.Add(&aKey)); // Infallible
|
|
}
|
|
};
|
|
|
|
// The outer atom table, which coordinates access to the inner array of
|
|
// subtables.
|
|
class nsAtomTable {
|
|
public:
|
|
nsAtomSubTable& SelectSubTable(AtomTableKey& aKey);
|
|
void AddSizeOfIncludingThis(MallocSizeOf aMallocSizeOf, AtomsSizes& aSizes);
|
|
void GC(GCKind aKind);
|
|
already_AddRefed<nsAtom> Atomize(const nsAString& aUTF16String);
|
|
already_AddRefed<nsAtom> Atomize(const nsACString& aUTF8String);
|
|
already_AddRefed<nsAtom> AtomizeMainThread(const nsAString& aUTF16String);
|
|
nsStaticAtom* GetStaticAtom(const nsAString& aUTF16String);
|
|
void RegisterStaticAtoms(const nsStaticAtom* aAtoms, size_t aAtomsLen);
|
|
|
|
// The result of this function may be imprecise if other threads are operating
|
|
// on atoms concurrently. It's also slow, since it triggers a GC before
|
|
// counting.
|
|
size_t RacySlowCount();
|
|
|
|
// This hash table op is a static member of this class so that it can take
|
|
// advantage of |friend| declarations.
|
|
static void AtomTableClearEntry(PLDHashTable* aTable,
|
|
PLDHashEntryHdr* aEntry);
|
|
|
|
// We achieve measurable reduction in locking contention in parallel CSS
|
|
// parsing by increasing the number of subtables up to 128. This has been
|
|
// measured to have neglible impact on the performance of initialization, GC,
|
|
// and shutdown.
|
|
//
|
|
// Another important consideration is memory, since we're adding fixed
|
|
// overhead per content process, which we try to avoid. Measuring a
|
|
// mostly-empty page [1] with various numbers of subtables, we get the
|
|
// following deep sizes for the atom table:
|
|
// 1 subtable: 278K
|
|
// 8 subtables: 279K
|
|
// 16 subtables: 282K
|
|
// 64 subtables: 286K
|
|
// 128 subtables: 290K
|
|
//
|
|
// So 128 subtables costs us 12K relative to a single table, and 4K relative
|
|
// to 64 subtables. Conversely, measuring parallel (6 thread) CSS parsing on
|
|
// tp6-facebook, a single table provides ~150ms of locking overhead per
|
|
// thread, 64 subtables provides ~2-3ms of overhead, and 128 subtables
|
|
// provides <1ms. And so while either 64 or 128 subtables would probably be
|
|
// acceptable, achieving a measurable reduction in contention for 4k of fixed
|
|
// memory overhead is probably worth it.
|
|
//
|
|
// [1] The numbers will look different for content processes with complex
|
|
// pages loaded, but in those cases the actual atoms will dominate memory
|
|
// usage and the overhead of extra tables will be negligible. We're mostly
|
|
// interested in the fixed cost for nearly-empty content processes.
|
|
const static size_t kNumSubTables = 128; // Must be power of two.
|
|
|
|
private:
|
|
nsAtomSubTable mSubTables[kNumSubTables];
|
|
};
|
|
|
|
// Static singleton instance for the atom table.
|
|
static nsAtomTable* gAtomTable;
|
|
|
|
static PLDHashNumber AtomTableGetHash(const void* aKey) {
|
|
const AtomTableKey* k = static_cast<const AtomTableKey*>(aKey);
|
|
return k->mHash;
|
|
}
|
|
|
|
static bool AtomTableMatchKey(const PLDHashEntryHdr* aEntry, const void* aKey) {
|
|
const AtomTableEntry* he = static_cast<const AtomTableEntry*>(aEntry);
|
|
const AtomTableKey* k = static_cast<const AtomTableKey*>(aKey);
|
|
|
|
if (k->mUTF8String) {
|
|
bool err = false;
|
|
return (CompareUTF8toUTF16(nsDependentCSubstring(
|
|
k->mUTF8String, k->mUTF8String + k->mLength),
|
|
nsDependentAtomString(he->mAtom), &err) == 0) &&
|
|
!err;
|
|
}
|
|
|
|
return he->mAtom->Equals(k->mUTF16String, k->mLength);
|
|
}
|
|
|
|
void nsAtomTable::AtomTableClearEntry(PLDHashTable* aTable,
|
|
PLDHashEntryHdr* aEntry) {
|
|
auto entry = static_cast<AtomTableEntry*>(aEntry);
|
|
entry->mAtom = nullptr;
|
|
}
|
|
|
|
static void AtomTableInitEntry(PLDHashEntryHdr* aEntry, const void* aKey) {
|
|
static_cast<AtomTableEntry*>(aEntry)->mAtom = nullptr;
|
|
}
|
|
|
|
static const PLDHashTableOps AtomTableOps = {
|
|
AtomTableGetHash, AtomTableMatchKey, PLDHashTable::MoveEntryStub,
|
|
nsAtomTable::AtomTableClearEntry, AtomTableInitEntry};
|
|
|
|
// The atom table very quickly gets 10,000+ entries in it (or even 100,000+).
|
|
// But choosing the best initial subtable length has some subtleties: we add
|
|
// ~2700 static atoms at start-up, and then we start adding and removing
|
|
// dynamic atoms. If we make the tables too big to start with, when the first
|
|
// dynamic atom gets removed from a given table the load factor will be < 25%
|
|
// and we will shrink it.
|
|
//
|
|
// So we first make the simplifying assumption that the atoms are more or less
|
|
// evenly-distributed across the subtables (which is the case empirically).
|
|
// Then, we take the total atom count when the first dynamic atom is removed
|
|
// (~2700), divide that across the N subtables, and the largest capacity that
|
|
// will allow each subtable to be > 25% full with that count.
|
|
//
|
|
// So want an initial subtable capacity less than (2700 / N) * 4 = 10800 / N.
|
|
// Rounding down to the nearest power of two gives us 8192 / N. Since the
|
|
// capacity is double the initial length, we end up with (4096 / N) per
|
|
// subtable.
|
|
#define INITIAL_SUBTABLE_LENGTH (4096 / nsAtomTable::kNumSubTables)
|
|
|
|
nsAtomSubTable& nsAtomTable::SelectSubTable(AtomTableKey& aKey) {
|
|
// There are a few considerations around how we select subtables.
|
|
//
|
|
// First, we want entries to be evenly distributed across the subtables. This
|
|
// can be achieved by using any bits in the hash key, assuming the key itself
|
|
// is evenly-distributed. Empirical measurements indicate that this method
|
|
// produces a roughly-even distribution across subtables.
|
|
//
|
|
// Second, we want to use the hash bits that are least likely to influence an
|
|
// entry's position within the subtable. If we used the exact same bits used
|
|
// by the subtables, then each subtable would compute the same position for
|
|
// every entry it observes, leading to pessimal performance. In this case,
|
|
// we're using PLDHashTable, whose primary hash function uses the N leftmost
|
|
// bits of the hash value (where N is the log2 capacity of the table). This
|
|
// means we should prefer the rightmost bits here.
|
|
//
|
|
// Note that the below is equivalent to mHash % kNumSubTables, a replacement
|
|
// which an optimizing compiler should make, but let's avoid any doubt.
|
|
static_assert((kNumSubTables & (kNumSubTables - 1)) == 0,
|
|
"must be power of two");
|
|
return mSubTables[aKey.mHash & (kNumSubTables - 1)];
|
|
}
|
|
|
|
void nsAtomTable::AddSizeOfIncludingThis(MallocSizeOf aMallocSizeOf,
|
|
AtomsSizes& aSizes) {
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
aSizes.mTable += aMallocSizeOf(this);
|
|
for (auto& table : mSubTables) {
|
|
MutexAutoLock lock(table.mLock);
|
|
table.AddSizeOfExcludingThisLocked(aMallocSizeOf, aSizes);
|
|
}
|
|
}
|
|
|
|
void nsAtomTable::GC(GCKind aKind) {
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
sRecentlyUsedMainThreadAtoms.Clear();
|
|
|
|
// Note that this is effectively an incremental GC, since only one subtable
|
|
// is locked at a time.
|
|
for (auto& table : mSubTables) {
|
|
MutexAutoLock lock(table.mLock);
|
|
table.GCLocked(aKind);
|
|
}
|
|
|
|
// We would like to assert that gUnusedAtomCount matches the number of atoms
|
|
// we found in the table which we removed. However, there are two problems
|
|
// with this:
|
|
// * We have multiple subtables, each with their own lock. For optimal
|
|
// performance we only want to hold one lock at a time, but this means
|
|
// that atoms can be added and removed between GC slices.
|
|
// * Even if we held all the locks and performed all GC slices atomically,
|
|
// the locks are not acquired for AddRef() and Release() calls. This means
|
|
// we might see a gUnusedAtomCount value in between, say, AddRef()
|
|
// incrementing mRefCnt and it decrementing gUnusedAtomCount.
|
|
//
|
|
// So, we don't bother asserting that there are no unused atoms at the end of
|
|
// a regular GC. But we can (and do) assert this just after the last GC at
|
|
// shutdown.
|
|
//
|
|
// Note that, barring refcounting bugs, an atom can only go from a zero
|
|
// refcount to a non-zero refcount while the atom table lock is held, so
|
|
// so we won't try to resurrect a zero refcount atom while trying to delete
|
|
// it.
|
|
|
|
MOZ_ASSERT_IF(aKind == GCKind::Shutdown,
|
|
nsDynamicAtom::gUnusedAtomCount == 0);
|
|
}
|
|
|
|
size_t nsAtomTable::RacySlowCount() {
|
|
// Trigger a GC so that the result is deterministic modulo other threads.
|
|
GC(GCKind::RegularOperation);
|
|
size_t count = 0;
|
|
for (auto& table : mSubTables) {
|
|
MutexAutoLock lock(table.mLock);
|
|
count += table.mTable.EntryCount();
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
nsAtomSubTable::nsAtomSubTable()
|
|
: mLock("Atom Sub-Table Lock"),
|
|
mTable(&AtomTableOps, sizeof(AtomTableEntry), INITIAL_SUBTABLE_LENGTH) {}
|
|
|
|
void nsAtomSubTable::GCLocked(GCKind aKind) {
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
mLock.AssertCurrentThreadOwns();
|
|
|
|
int32_t removedCount = 0; // A non-atomic temporary for cheaper increments.
|
|
nsAutoCString nonZeroRefcountAtoms;
|
|
uint32_t nonZeroRefcountAtomsCount = 0;
|
|
for (auto i = mTable.Iter(); !i.Done(); i.Next()) {
|
|
auto entry = static_cast<AtomTableEntry*>(i.Get());
|
|
if (entry->mAtom->IsStatic()) {
|
|
continue;
|
|
}
|
|
|
|
nsAtom* atom = entry->mAtom;
|
|
if (atom->IsDynamic() && atom->AsDynamic()->mRefCnt == 0) {
|
|
i.Remove();
|
|
nsDynamicAtom::Destroy(atom->AsDynamic());
|
|
++removedCount;
|
|
}
|
|
#ifdef NS_FREE_PERMANENT_DATA
|
|
else if (aKind == GCKind::Shutdown && PR_GetEnv("XPCOM_MEM_BLOAT_LOG")) {
|
|
// Only report leaking atoms in leak-checking builds in a run where we
|
|
// are checking for leaks, during shutdown. If something is anomalous,
|
|
// then we'll assert later in this function.
|
|
nsAutoCString name;
|
|
atom->ToUTF8String(name);
|
|
if (nonZeroRefcountAtomsCount == 0) {
|
|
nonZeroRefcountAtoms = name;
|
|
} else if (nonZeroRefcountAtomsCount < 20) {
|
|
nonZeroRefcountAtoms += NS_LITERAL_CSTRING(",") + name;
|
|
} else if (nonZeroRefcountAtomsCount == 20) {
|
|
nonZeroRefcountAtoms += NS_LITERAL_CSTRING(",...");
|
|
}
|
|
nonZeroRefcountAtomsCount++;
|
|
}
|
|
#endif
|
|
}
|
|
if (nonZeroRefcountAtomsCount) {
|
|
nsPrintfCString msg("%d dynamic atom(s) with non-zero refcount: %s",
|
|
nonZeroRefcountAtomsCount, nonZeroRefcountAtoms.get());
|
|
NS_ASSERTION(nonZeroRefcountAtomsCount == 0, msg.get());
|
|
}
|
|
|
|
nsDynamicAtom::gUnusedAtomCount -= removedCount;
|
|
}
|
|
|
|
void nsDynamicAtom::GCAtomTable() {
|
|
MOZ_ASSERT(gAtomTable);
|
|
if (NS_IsMainThread()) {
|
|
gAtomTable->GC(GCKind::RegularOperation);
|
|
}
|
|
}
|
|
|
|
//----------------------------------------------------------------------
|
|
|
|
// Have the static atoms been inserted into the table?
|
|
static bool gStaticAtomsDone = false;
|
|
|
|
void NS_InitAtomTable() {
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
MOZ_ASSERT(!gAtomTable);
|
|
|
|
// We register static atoms immediately so they're available for use as early
|
|
// as possible.
|
|
gAtomTable = new nsAtomTable();
|
|
gAtomTable->RegisterStaticAtoms(nsGkAtoms::sAtoms, nsGkAtoms::sAtomsLen);
|
|
gStaticAtomsDone = true;
|
|
}
|
|
|
|
void NS_ShutdownAtomTable() {
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
MOZ_ASSERT(gAtomTable);
|
|
|
|
#ifdef NS_FREE_PERMANENT_DATA
|
|
// Do a final GC to satisfy leak checking. We skip this step in release
|
|
// builds.
|
|
gAtomTable->GC(GCKind::Shutdown);
|
|
#endif
|
|
|
|
delete gAtomTable;
|
|
gAtomTable = nullptr;
|
|
}
|
|
|
|
void NS_AddSizeOfAtoms(MallocSizeOf aMallocSizeOf, AtomsSizes& aSizes) {
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
MOZ_ASSERT(gAtomTable);
|
|
return gAtomTable->AddSizeOfIncludingThis(aMallocSizeOf, aSizes);
|
|
}
|
|
|
|
void nsAtomSubTable::AddSizeOfExcludingThisLocked(MallocSizeOf aMallocSizeOf,
|
|
AtomsSizes& aSizes) {
|
|
mLock.AssertCurrentThreadOwns();
|
|
aSizes.mTable += mTable.ShallowSizeOfExcludingThis(aMallocSizeOf);
|
|
for (auto iter = mTable.Iter(); !iter.Done(); iter.Next()) {
|
|
auto entry = static_cast<AtomTableEntry*>(iter.Get());
|
|
entry->mAtom->AddSizeOfIncludingThis(aMallocSizeOf, aSizes);
|
|
}
|
|
}
|
|
|
|
void nsAtomTable::RegisterStaticAtoms(const nsStaticAtom* aAtoms,
|
|
size_t aAtomsLen) {
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
MOZ_RELEASE_ASSERT(!gStaticAtomsDone, "Static atom insertion is finished!");
|
|
|
|
for (uint32_t i = 0; i < aAtomsLen; ++i) {
|
|
const nsStaticAtom* atom = &aAtoms[i];
|
|
MOZ_ASSERT(IsAsciiNullTerminated(atom->String()));
|
|
MOZ_ASSERT(NS_strlen(atom->String()) == atom->GetLength());
|
|
MOZ_ASSERT(atom->IsAsciiLowercase() ==
|
|
::IsAsciiLowercase(atom->String(), atom->GetLength()));
|
|
|
|
// This assertion ensures the static atom's precomputed hash value matches
|
|
// what would be computed by mozilla::HashString(aStr), which is what we use
|
|
// when atomizing strings. We compute this hash in Atom.py.
|
|
MOZ_ASSERT(HashString(atom->String()) == atom->hash());
|
|
|
|
AtomTableKey key(atom);
|
|
nsAtomSubTable& table = SelectSubTable(key);
|
|
MutexAutoLock lock(table.mLock);
|
|
AtomTableEntry* he = table.Add(key);
|
|
|
|
if (he->mAtom) {
|
|
// There are two ways we could get here.
|
|
// - Register two static atoms with the same string.
|
|
// - Create a dynamic atom and then register a static atom with the same
|
|
// string while the dynamic atom is alive.
|
|
// Both cases can cause subtle bugs, and are disallowed. We're
|
|
// programming in C++ here, not Smalltalk.
|
|
nsAutoCString name;
|
|
he->mAtom->ToUTF8String(name);
|
|
MOZ_CRASH_UNSAFE_PRINTF("Atom for '%s' already exists", name.get());
|
|
}
|
|
he->mAtom = const_cast<nsStaticAtom*>(atom);
|
|
}
|
|
}
|
|
|
|
already_AddRefed<nsAtom> NS_Atomize(const char* aUTF8String) {
|
|
MOZ_ASSERT(gAtomTable);
|
|
return gAtomTable->Atomize(nsDependentCString(aUTF8String));
|
|
}
|
|
|
|
already_AddRefed<nsAtom> nsAtomTable::Atomize(const nsACString& aUTF8String) {
|
|
bool err;
|
|
AtomTableKey key(aUTF8String.Data(), aUTF8String.Length(), &err);
|
|
if (MOZ_UNLIKELY(err)) {
|
|
MOZ_ASSERT_UNREACHABLE("Tried to atomize invalid UTF-8.");
|
|
// The input was invalid UTF-8. Let's replace the errors with U+FFFD
|
|
// and atomize the result.
|
|
nsString str;
|
|
CopyUTF8toUTF16(aUTF8String, str);
|
|
return Atomize(str);
|
|
}
|
|
nsAtomSubTable& table = SelectSubTable(key);
|
|
MutexAutoLock lock(table.mLock);
|
|
AtomTableEntry* he = table.Add(key);
|
|
|
|
if (he->mAtom) {
|
|
RefPtr<nsAtom> atom = he->mAtom;
|
|
return atom.forget();
|
|
}
|
|
|
|
nsString str;
|
|
CopyUTF8toUTF16(aUTF8String, str);
|
|
RefPtr<nsAtom> atom = dont_AddRef(nsDynamicAtom::Create(str, key.mHash));
|
|
|
|
he->mAtom = atom;
|
|
|
|
return atom.forget();
|
|
}
|
|
|
|
already_AddRefed<nsAtom> NS_Atomize(const nsACString& aUTF8String) {
|
|
MOZ_ASSERT(gAtomTable);
|
|
return gAtomTable->Atomize(aUTF8String);
|
|
}
|
|
|
|
already_AddRefed<nsAtom> NS_Atomize(const char16_t* aUTF16String) {
|
|
MOZ_ASSERT(gAtomTable);
|
|
return gAtomTable->Atomize(nsDependentString(aUTF16String));
|
|
}
|
|
|
|
already_AddRefed<nsAtom> nsAtomTable::Atomize(const nsAString& aUTF16String) {
|
|
AtomTableKey key(aUTF16String.Data(), aUTF16String.Length());
|
|
nsAtomSubTable& table = SelectSubTable(key);
|
|
MutexAutoLock lock(table.mLock);
|
|
AtomTableEntry* he = table.Add(key);
|
|
|
|
if (he->mAtom) {
|
|
RefPtr<nsAtom> atom = he->mAtom;
|
|
return atom.forget();
|
|
}
|
|
|
|
RefPtr<nsAtom> atom =
|
|
dont_AddRef(nsDynamicAtom::Create(aUTF16String, key.mHash));
|
|
he->mAtom = atom;
|
|
|
|
return atom.forget();
|
|
}
|
|
|
|
already_AddRefed<nsAtom> NS_Atomize(const nsAString& aUTF16String) {
|
|
MOZ_ASSERT(gAtomTable);
|
|
return gAtomTable->Atomize(aUTF16String);
|
|
}
|
|
|
|
already_AddRefed<nsAtom> nsAtomTable::AtomizeMainThread(
|
|
const nsAString& aUTF16String) {
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
RefPtr<nsAtom> retVal;
|
|
AtomTableKey key(aUTF16String.Data(), aUTF16String.Length());
|
|
auto p = sRecentlyUsedMainThreadAtoms.Lookup(key);
|
|
if (p) {
|
|
retVal = p.Data();
|
|
return retVal.forget();
|
|
}
|
|
|
|
nsAtomSubTable& table = SelectSubTable(key);
|
|
MutexAutoLock lock(table.mLock);
|
|
AtomTableEntry* he = table.Add(key);
|
|
|
|
if (he->mAtom) {
|
|
retVal = he->mAtom;
|
|
} else {
|
|
RefPtr<nsAtom> newAtom =
|
|
dont_AddRef(nsDynamicAtom::Create(aUTF16String, key.mHash));
|
|
he->mAtom = newAtom;
|
|
retVal = std::move(newAtom);
|
|
}
|
|
|
|
p.Set(retVal);
|
|
return retVal.forget();
|
|
}
|
|
|
|
already_AddRefed<nsAtom> NS_AtomizeMainThread(const nsAString& aUTF16String) {
|
|
MOZ_ASSERT(gAtomTable);
|
|
return gAtomTable->AtomizeMainThread(aUTF16String);
|
|
}
|
|
|
|
nsrefcnt NS_GetNumberOfAtoms(void) {
|
|
MOZ_ASSERT(gAtomTable);
|
|
return gAtomTable->RacySlowCount();
|
|
}
|
|
|
|
int32_t NS_GetUnusedAtomCount(void) { return nsDynamicAtom::gUnusedAtomCount; }
|
|
|
|
nsStaticAtom* NS_GetStaticAtom(const nsAString& aUTF16String) {
|
|
MOZ_ASSERT(gStaticAtomsDone, "Static atom setup not yet done.");
|
|
MOZ_ASSERT(gAtomTable);
|
|
return gAtomTable->GetStaticAtom(aUTF16String);
|
|
}
|
|
|
|
nsStaticAtom* nsAtomTable::GetStaticAtom(const nsAString& aUTF16String) {
|
|
AtomTableKey key(aUTF16String.Data(), aUTF16String.Length());
|
|
nsAtomSubTable& table = SelectSubTable(key);
|
|
MutexAutoLock lock(table.mLock);
|
|
AtomTableEntry* he = table.Search(key);
|
|
return he && he->mAtom->IsStatic() ? static_cast<nsStaticAtom*>(he->mAtom)
|
|
: nullptr;
|
|
}
|
|
|
|
void ToLowerCaseASCII(RefPtr<nsAtom>& aAtom) {
|
|
// Assume the common case is that the atom is already ASCII lowercase.
|
|
if (aAtom->IsAsciiLowercase()) {
|
|
return;
|
|
}
|
|
|
|
nsAutoString lowercased;
|
|
ToLowerCaseASCII(nsDependentAtomString(aAtom), lowercased);
|
|
aAtom = NS_Atomize(lowercased);
|
|
}
|