зеркало из https://github.com/mozilla/gecko-dev.git
1877 строки
55 KiB
C++
1877 строки
55 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "nsThread.h"
|
|
|
|
#include "base/message_loop.h"
|
|
|
|
// Chromium's logging can sometimes leak through...
|
|
#ifdef LOG
|
|
#undef LOG
|
|
#endif
|
|
|
|
#include "mozilla/ReentrantMonitor.h"
|
|
#include "nsMemoryPressure.h"
|
|
#include "nsThreadManager.h"
|
|
#include "nsIClassInfoImpl.h"
|
|
#include "nsAutoPtr.h"
|
|
#include "nsCOMPtr.h"
|
|
#include "nsQueryObject.h"
|
|
#include "pratom.h"
|
|
#include "mozilla/CycleCollectedJSContext.h"
|
|
#include "mozilla/Logging.h"
|
|
#include "nsIObserverService.h"
|
|
#include "mozilla/HangMonitor.h"
|
|
#include "mozilla/IOInterposer.h"
|
|
#include "mozilla/ipc/MessageChannel.h"
|
|
#include "mozilla/ipc/BackgroundChild.h"
|
|
#include "mozilla/SchedulerGroup.h"
|
|
#include "mozilla/Services.h"
|
|
#include "nsXPCOMPrivate.h"
|
|
#include "mozilla/ChaosMode.h"
|
|
#include "mozilla/Telemetry.h"
|
|
#include "mozilla/TimeStamp.h"
|
|
#include "mozilla/Unused.h"
|
|
#include "mozilla/dom/ScriptSettings.h"
|
|
#include "nsIIdlePeriod.h"
|
|
#include "nsIIdleRunnable.h"
|
|
#include "nsThreadSyncDispatch.h"
|
|
#include "LeakRefPtr.h"
|
|
#include "GeckoProfiler.h"
|
|
#include "InputEventStatistics.h"
|
|
|
|
#ifdef MOZ_CRASHREPORTER
|
|
#include "nsServiceManagerUtils.h"
|
|
#include "nsICrashReporter.h"
|
|
#include "mozilla/dom/ContentChild.h"
|
|
#endif
|
|
|
|
#ifdef XP_LINUX
|
|
#include <sys/time.h>
|
|
#include <sys/resource.h>
|
|
#include <sched.h>
|
|
#endif
|
|
|
|
#define HAVE_UALARM _BSD_SOURCE || (_XOPEN_SOURCE >= 500 || \
|
|
_XOPEN_SOURCE && _XOPEN_SOURCE_EXTENDED) && \
|
|
!(_POSIX_C_SOURCE >= 200809L || _XOPEN_SOURCE >= 700)
|
|
|
|
#if defined(XP_LINUX) && !defined(ANDROID) && defined(_GNU_SOURCE)
|
|
#define HAVE_SCHED_SETAFFINITY
|
|
#endif
|
|
|
|
#ifdef XP_MACOSX
|
|
#include <mach/mach.h>
|
|
#include <mach/thread_policy.h>
|
|
#endif
|
|
|
|
#ifdef MOZ_CANARY
|
|
# include <unistd.h>
|
|
# include <execinfo.h>
|
|
# include <signal.h>
|
|
# include <fcntl.h>
|
|
# include "nsXULAppAPI.h"
|
|
#endif
|
|
|
|
#if defined(NS_FUNCTION_TIMER) && defined(_MSC_VER)
|
|
#include "nsTimerImpl.h"
|
|
#include "mozilla/StackWalk.h"
|
|
#endif
|
|
#ifdef NS_FUNCTION_TIMER
|
|
#include "nsCRT.h"
|
|
#endif
|
|
|
|
#ifdef MOZ_TASK_TRACER
|
|
#include "GeckoTaskTracer.h"
|
|
#include "TracedTaskCommon.h"
|
|
using namespace mozilla::tasktracer;
|
|
#endif
|
|
|
|
using namespace mozilla;
|
|
|
|
static LazyLogModule sThreadLog("nsThread");
|
|
#ifdef LOG
|
|
#undef LOG
|
|
#endif
|
|
#define LOG(args) MOZ_LOG(sThreadLog, mozilla::LogLevel::Debug, args)
|
|
|
|
NS_DECL_CI_INTERFACE_GETTER(nsThread)
|
|
|
|
Array<char, nsThread::kRunnableNameBufSize> nsThread::sMainThreadRunnableName;
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Because we do not have our own nsIFactory, we have to implement nsIClassInfo
|
|
// somewhat manually.
|
|
|
|
class nsThreadClassInfo : public nsIClassInfo
|
|
{
|
|
public:
|
|
NS_DECL_ISUPPORTS_INHERITED // no mRefCnt
|
|
NS_DECL_NSICLASSINFO
|
|
|
|
nsThreadClassInfo()
|
|
{
|
|
}
|
|
};
|
|
|
|
NS_IMETHODIMP_(MozExternalRefCountType)
|
|
nsThreadClassInfo::AddRef()
|
|
{
|
|
return 2;
|
|
}
|
|
NS_IMETHODIMP_(MozExternalRefCountType)
|
|
nsThreadClassInfo::Release()
|
|
{
|
|
return 1;
|
|
}
|
|
NS_IMPL_QUERY_INTERFACE(nsThreadClassInfo, nsIClassInfo)
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadClassInfo::GetInterfaces(uint32_t* aCount, nsIID*** aArray)
|
|
{
|
|
return NS_CI_INTERFACE_GETTER_NAME(nsThread)(aCount, aArray);
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadClassInfo::GetScriptableHelper(nsIXPCScriptable** aResult)
|
|
{
|
|
*aResult = nullptr;
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadClassInfo::GetContractID(char** aResult)
|
|
{
|
|
*aResult = nullptr;
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadClassInfo::GetClassDescription(char** aResult)
|
|
{
|
|
*aResult = nullptr;
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadClassInfo::GetClassID(nsCID** aResult)
|
|
{
|
|
*aResult = nullptr;
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadClassInfo::GetFlags(uint32_t* aResult)
|
|
{
|
|
*aResult = THREADSAFE;
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadClassInfo::GetClassIDNoAlloc(nsCID* aResult)
|
|
{
|
|
return NS_ERROR_NOT_AVAILABLE;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
NS_IMPL_ADDREF(nsThread)
|
|
NS_IMPL_RELEASE(nsThread)
|
|
NS_INTERFACE_MAP_BEGIN(nsThread)
|
|
NS_INTERFACE_MAP_ENTRY(nsIThread)
|
|
NS_INTERFACE_MAP_ENTRY(nsIThreadInternal)
|
|
NS_INTERFACE_MAP_ENTRY(nsIEventTarget)
|
|
NS_INTERFACE_MAP_ENTRY(nsISerialEventTarget)
|
|
NS_INTERFACE_MAP_ENTRY(nsISupportsPriority)
|
|
NS_INTERFACE_MAP_ENTRY_AMBIGUOUS(nsISupports, nsIThread)
|
|
if (aIID.Equals(NS_GET_IID(nsIClassInfo))) {
|
|
static nsThreadClassInfo sThreadClassInfo;
|
|
foundInterface = static_cast<nsIClassInfo*>(&sThreadClassInfo);
|
|
} else
|
|
NS_INTERFACE_MAP_END
|
|
NS_IMPL_CI_INTERFACE_GETTER(nsThread, nsIThread, nsIThreadInternal,
|
|
nsIEventTarget, nsISupportsPriority)
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
class nsThreadStartupEvent : public Runnable
|
|
{
|
|
public:
|
|
nsThreadStartupEvent()
|
|
: Runnable("nsThreadStartupEvent")
|
|
, mMon("nsThreadStartupEvent.mMon")
|
|
, mInitialized(false)
|
|
{
|
|
}
|
|
|
|
// This method does not return until the thread startup object is in the
|
|
// completion state.
|
|
void Wait()
|
|
{
|
|
ReentrantMonitorAutoEnter mon(mMon);
|
|
while (!mInitialized) {
|
|
mon.Wait();
|
|
}
|
|
}
|
|
|
|
// This method needs to be public to support older compilers (xlC_r on AIX).
|
|
// It should be called directly as this class type is reference counted.
|
|
virtual ~nsThreadStartupEvent() {}
|
|
|
|
private:
|
|
NS_IMETHOD Run() override
|
|
{
|
|
ReentrantMonitorAutoEnter mon(mMon);
|
|
mInitialized = true;
|
|
mon.Notify();
|
|
return NS_OK;
|
|
}
|
|
|
|
ReentrantMonitor mMon;
|
|
bool mInitialized;
|
|
};
|
|
//-----------------------------------------------------------------------------
|
|
|
|
namespace {
|
|
class DelayedRunnable : public Runnable,
|
|
public nsITimerCallback
|
|
{
|
|
public:
|
|
DelayedRunnable(already_AddRefed<nsIThread> aTargetThread,
|
|
already_AddRefed<nsIRunnable> aRunnable,
|
|
uint32_t aDelay)
|
|
: mozilla::Runnable("DelayedRunnable")
|
|
, mTargetThread(aTargetThread)
|
|
, mWrappedRunnable(aRunnable)
|
|
, mDelayedFrom(TimeStamp::NowLoRes())
|
|
, mDelay(aDelay)
|
|
{ }
|
|
|
|
NS_DECL_ISUPPORTS_INHERITED
|
|
|
|
nsresult Init()
|
|
{
|
|
nsresult rv;
|
|
mTimer = do_CreateInstance(NS_TIMER_CONTRACTID, &rv);
|
|
NS_ENSURE_SUCCESS(rv, rv);
|
|
|
|
MOZ_ASSERT(mTimer);
|
|
rv = mTimer->SetTarget(mTargetThread);
|
|
|
|
NS_ENSURE_SUCCESS(rv, rv);
|
|
return mTimer->InitWithCallback(this, mDelay, nsITimer::TYPE_ONE_SHOT);
|
|
}
|
|
|
|
nsresult DoRun()
|
|
{
|
|
nsCOMPtr<nsIRunnable> r = mWrappedRunnable.forget();
|
|
return r->Run();
|
|
}
|
|
|
|
NS_IMETHOD Run() override
|
|
{
|
|
// Already ran?
|
|
if (!mWrappedRunnable) {
|
|
return NS_OK;
|
|
}
|
|
|
|
// Are we too early?
|
|
if ((TimeStamp::NowLoRes() - mDelayedFrom).ToMilliseconds() < mDelay) {
|
|
return NS_OK; // Let the nsITimer run us.
|
|
}
|
|
|
|
mTimer->Cancel();
|
|
return DoRun();
|
|
}
|
|
|
|
NS_IMETHOD Notify(nsITimer* aTimer) override
|
|
{
|
|
// If we already ran, the timer should have been canceled.
|
|
MOZ_ASSERT(mWrappedRunnable);
|
|
MOZ_ASSERT(aTimer == mTimer);
|
|
|
|
return DoRun();
|
|
}
|
|
|
|
private:
|
|
~DelayedRunnable() {}
|
|
|
|
nsCOMPtr<nsIThread> mTargetThread;
|
|
nsCOMPtr<nsIRunnable> mWrappedRunnable;
|
|
nsCOMPtr<nsITimer> mTimer;
|
|
TimeStamp mDelayedFrom;
|
|
uint32_t mDelay;
|
|
};
|
|
|
|
NS_IMPL_ISUPPORTS_INHERITED(DelayedRunnable, Runnable, nsITimerCallback)
|
|
|
|
} // anonymous namespace
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
struct nsThreadShutdownContext
|
|
{
|
|
nsThreadShutdownContext(NotNull<nsThread*> aTerminatingThread,
|
|
NotNull<nsThread*> aJoiningThread,
|
|
bool aAwaitingShutdownAck)
|
|
: mTerminatingThread(aTerminatingThread)
|
|
, mJoiningThread(aJoiningThread)
|
|
, mAwaitingShutdownAck(aAwaitingShutdownAck)
|
|
{
|
|
MOZ_COUNT_CTOR(nsThreadShutdownContext);
|
|
}
|
|
~nsThreadShutdownContext()
|
|
{
|
|
MOZ_COUNT_DTOR(nsThreadShutdownContext);
|
|
}
|
|
|
|
// NB: This will be the last reference.
|
|
NotNull<RefPtr<nsThread>> mTerminatingThread;
|
|
NotNull<nsThread*> MOZ_UNSAFE_REF("Thread manager is holding reference to joining thread")
|
|
mJoiningThread;
|
|
bool mAwaitingShutdownAck;
|
|
};
|
|
|
|
// This event is responsible for notifying nsThread::Shutdown that it is time
|
|
// to call PR_JoinThread. It implements nsICancelableRunnable so that it can
|
|
// run on a DOM Worker thread (where all events must implement
|
|
// nsICancelableRunnable.)
|
|
class nsThreadShutdownAckEvent : public CancelableRunnable
|
|
{
|
|
public:
|
|
explicit nsThreadShutdownAckEvent(NotNull<nsThreadShutdownContext*> aCtx)
|
|
: CancelableRunnable("nsThreadShutdownAckEvent")
|
|
, mShutdownContext(aCtx)
|
|
{
|
|
}
|
|
NS_IMETHOD Run() override
|
|
{
|
|
mShutdownContext->mTerminatingThread->ShutdownComplete(mShutdownContext);
|
|
return NS_OK;
|
|
}
|
|
nsresult Cancel() override
|
|
{
|
|
return Run();
|
|
}
|
|
private:
|
|
virtual ~nsThreadShutdownAckEvent() { }
|
|
|
|
NotNull<nsThreadShutdownContext*> mShutdownContext;
|
|
};
|
|
|
|
// This event is responsible for setting mShutdownContext
|
|
class nsThreadShutdownEvent : public Runnable
|
|
{
|
|
public:
|
|
nsThreadShutdownEvent(NotNull<nsThread*> aThr,
|
|
NotNull<nsThreadShutdownContext*> aCtx)
|
|
: Runnable("nsThreadShutdownEvent")
|
|
, mThread(aThr)
|
|
, mShutdownContext(aCtx)
|
|
{
|
|
}
|
|
NS_IMETHOD Run() override
|
|
{
|
|
mThread->mShutdownContext = mShutdownContext;
|
|
MessageLoop::current()->Quit();
|
|
return NS_OK;
|
|
}
|
|
private:
|
|
NotNull<RefPtr<nsThread>> mThread;
|
|
NotNull<nsThreadShutdownContext*> mShutdownContext;
|
|
};
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
static void
|
|
SetThreadAffinity(unsigned int cpu)
|
|
{
|
|
#ifdef HAVE_SCHED_SETAFFINITY
|
|
cpu_set_t cpus;
|
|
CPU_ZERO(&cpus);
|
|
CPU_SET(cpu, &cpus);
|
|
sched_setaffinity(0, sizeof(cpus), &cpus);
|
|
// Don't assert sched_setaffinity's return value because it intermittently (?)
|
|
// fails with EINVAL on Linux x64 try runs.
|
|
#elif defined(XP_MACOSX)
|
|
// OS X does not provide APIs to pin threads to specific processors, but you
|
|
// can tag threads as belonging to the same "affinity set" and the OS will try
|
|
// to run them on the same processor. To run threads on different processors,
|
|
// tag them as belonging to different affinity sets. Tag 0, the default, means
|
|
// "no affinity" so let's pretend each CPU has its own tag `cpu+1`.
|
|
thread_affinity_policy_data_t policy;
|
|
policy.affinity_tag = cpu + 1;
|
|
MOZ_ALWAYS_TRUE(thread_policy_set(mach_thread_self(), THREAD_AFFINITY_POLICY,
|
|
&policy.affinity_tag, 1) == KERN_SUCCESS);
|
|
#elif defined(XP_WIN)
|
|
MOZ_ALWAYS_TRUE(SetThreadIdealProcessor(GetCurrentThread(), cpu) != -1);
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
SetupCurrentThreadForChaosMode()
|
|
{
|
|
if (!ChaosMode::isActive(ChaosFeature::ThreadScheduling)) {
|
|
return;
|
|
}
|
|
|
|
#ifdef XP_LINUX
|
|
// PR_SetThreadPriority doesn't really work since priorities >
|
|
// PR_PRIORITY_NORMAL can't be set by non-root users. Instead we'll just use
|
|
// setpriority(2) to set random 'nice values'. In regular Linux this is only
|
|
// a dynamic adjustment so it still doesn't really do what we want, but tools
|
|
// like 'rr' can be more aggressive about honoring these values.
|
|
// Some of these calls may fail due to trying to lower the priority
|
|
// (e.g. something may have already called setpriority() for this thread).
|
|
// This makes it hard to have non-main threads with higher priority than the
|
|
// main thread, but that's hard to fix. Tools like rr can choose to honor the
|
|
// requested values anyway.
|
|
// Use just 4 priorities so there's a reasonable chance of any two threads
|
|
// having equal priority.
|
|
setpriority(PRIO_PROCESS, 0, ChaosMode::randomUint32LessThan(4));
|
|
#else
|
|
// We should set the affinity here but NSPR doesn't provide a way to expose it.
|
|
uint32_t priority = ChaosMode::randomUint32LessThan(PR_PRIORITY_LAST + 1);
|
|
PR_SetThreadPriority(PR_GetCurrentThread(), PRThreadPriority(priority));
|
|
#endif
|
|
|
|
// Force half the threads to CPU 0 so they compete for CPU
|
|
if (ChaosMode::randomUint32LessThan(2)) {
|
|
SetThreadAffinity(0);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct ThreadInitData {
|
|
nsThread* thread;
|
|
const nsACString& name;
|
|
};
|
|
|
|
}
|
|
|
|
/*static*/ void
|
|
nsThread::ThreadFunc(void* aArg)
|
|
{
|
|
using mozilla::ipc::BackgroundChild;
|
|
|
|
char stackTop;
|
|
|
|
ThreadInitData* initData = static_cast<ThreadInitData*>(aArg);
|
|
nsThread* self = initData->thread; // strong reference
|
|
|
|
self->mThread = PR_GetCurrentThread();
|
|
self->mVirtualThread = GetCurrentVirtualThread();
|
|
SetupCurrentThreadForChaosMode();
|
|
|
|
if (!initData->name.IsEmpty()) {
|
|
NS_SetCurrentThreadName(initData->name.BeginReading());
|
|
}
|
|
|
|
// Inform the ThreadManager
|
|
nsThreadManager::get().RegisterCurrentThread(*self);
|
|
|
|
mozilla::IOInterposer::RegisterCurrentThread();
|
|
|
|
// This must come after the call to nsThreadManager::RegisterCurrentThread(),
|
|
// because that call is needed to properly set up this thread as an nsThread,
|
|
// which profiler_register_thread() requires. See bug 1347007.
|
|
if (!initData->name.IsEmpty()) {
|
|
profiler_register_thread(initData->name.BeginReading(), &stackTop);
|
|
}
|
|
|
|
// Wait for and process startup event
|
|
nsCOMPtr<nsIRunnable> event;
|
|
{
|
|
MutexAutoLock lock(self->mLock);
|
|
if (!self->mEvents->GetEvent(true, getter_AddRefs(event), nullptr, lock)) {
|
|
NS_WARNING("failed waiting for thread startup event");
|
|
return;
|
|
}
|
|
}
|
|
|
|
initData = nullptr; // clear before unblocking nsThread::Init
|
|
|
|
event->Run(); // unblocks nsThread::Init
|
|
event = nullptr;
|
|
|
|
{
|
|
// Scope for MessageLoop.
|
|
nsAutoPtr<MessageLoop> loop(
|
|
new MessageLoop(MessageLoop::TYPE_MOZILLA_NONMAINTHREAD, self));
|
|
|
|
// Now, process incoming events...
|
|
loop->Run();
|
|
|
|
BackgroundChild::CloseForCurrentThread();
|
|
|
|
// NB: The main thread does not shut down here! It shuts down via
|
|
// nsThreadManager::Shutdown.
|
|
|
|
// Do NS_ProcessPendingEvents but with special handling to set
|
|
// mEventsAreDoomed atomically with the removal of the last event. The key
|
|
// invariant here is that we will never permit PutEvent to succeed if the
|
|
// event would be left in the queue after our final call to
|
|
// NS_ProcessPendingEvents. We also have to keep processing events as long
|
|
// as we have outstanding mRequestedShutdownContexts.
|
|
while (true) {
|
|
// Check and see if we're waiting on any threads.
|
|
self->WaitForAllAsynchronousShutdowns();
|
|
|
|
{
|
|
MutexAutoLock lock(self->mLock);
|
|
if (!self->mEvents->HasPendingEvent(lock)) {
|
|
// No events in the queue, so we will stop now. Don't let any more
|
|
// events be added, since they won't be processed. It is critical
|
|
// that no PutEvent can occur between testing that the event queue is
|
|
// empty and setting mEventsAreDoomed!
|
|
self->mEventsAreDoomed = true;
|
|
break;
|
|
}
|
|
}
|
|
NS_ProcessPendingEvents(self);
|
|
}
|
|
}
|
|
|
|
mozilla::IOInterposer::UnregisterCurrentThread();
|
|
|
|
// Inform the threadmanager that this thread is going away
|
|
nsThreadManager::get().UnregisterCurrentThread(*self);
|
|
|
|
profiler_unregister_thread();
|
|
|
|
// Dispatch shutdown ACK
|
|
NotNull<nsThreadShutdownContext*> context =
|
|
WrapNotNull(self->mShutdownContext);
|
|
MOZ_ASSERT(context->mTerminatingThread == self);
|
|
event = do_QueryObject(new nsThreadShutdownAckEvent(context));
|
|
context->mJoiningThread->Dispatch(event, NS_DISPATCH_NORMAL);
|
|
|
|
// Release any observer of the thread here.
|
|
self->SetObserver(nullptr);
|
|
|
|
#ifdef MOZ_TASK_TRACER
|
|
FreeTraceInfo();
|
|
#endif
|
|
|
|
NS_RELEASE(self);
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#ifdef MOZ_CRASHREPORTER
|
|
// Tell the crash reporter to save a memory report if our heuristics determine
|
|
// that an OOM failure is likely to occur soon.
|
|
// Memory usage will not be checked more than every 30 seconds or saved more
|
|
// than every 3 minutes
|
|
// If |aShouldSave == kForceReport|, a report will be saved regardless of
|
|
// whether the process is low on memory or not. However, it will still not be
|
|
// saved if a report was saved less than 3 minutes ago.
|
|
bool
|
|
nsThread::SaveMemoryReportNearOOM(ShouldSaveMemoryReport aShouldSave)
|
|
{
|
|
// Keep an eye on memory usage (cheap, ~7ms) somewhat frequently,
|
|
// but save memory reports (expensive, ~75ms) less frequently.
|
|
const size_t kLowMemoryCheckSeconds = 30;
|
|
const size_t kLowMemorySaveSeconds = 3 * 60;
|
|
|
|
static TimeStamp nextCheck = TimeStamp::NowLoRes()
|
|
+ TimeDuration::FromSeconds(kLowMemoryCheckSeconds);
|
|
static bool recentlySavedReport = false; // Keeps track of whether a report
|
|
// was saved last time we checked
|
|
|
|
// Are we checking again too soon?
|
|
TimeStamp now = TimeStamp::NowLoRes();
|
|
if ((aShouldSave == ShouldSaveMemoryReport::kMaybeReport ||
|
|
recentlySavedReport) && now < nextCheck) {
|
|
return false;
|
|
}
|
|
|
|
bool needMemoryReport = (aShouldSave == ShouldSaveMemoryReport::kForceReport);
|
|
#ifdef XP_WIN // XXX implement on other platforms as needed
|
|
// If the report is forced there is no need to check whether it is necessary
|
|
if (aShouldSave != ShouldSaveMemoryReport::kForceReport) {
|
|
const size_t LOWMEM_THRESHOLD_VIRTUAL = 200 * 1024 * 1024;
|
|
MEMORYSTATUSEX statex;
|
|
statex.dwLength = sizeof(statex);
|
|
if (GlobalMemoryStatusEx(&statex)) {
|
|
if (statex.ullAvailVirtual < LOWMEM_THRESHOLD_VIRTUAL) {
|
|
needMemoryReport = true;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (needMemoryReport) {
|
|
if (XRE_IsContentProcess()) {
|
|
dom::ContentChild* cc = dom::ContentChild::GetSingleton();
|
|
if (cc) {
|
|
cc->SendNotifyLowMemory();
|
|
}
|
|
} else {
|
|
nsCOMPtr<nsICrashReporter> cr =
|
|
do_GetService("@mozilla.org/toolkit/crash-reporter;1");
|
|
if (cr) {
|
|
cr->SaveMemoryReport();
|
|
}
|
|
}
|
|
recentlySavedReport = true;
|
|
nextCheck = now + TimeDuration::FromSeconds(kLowMemorySaveSeconds);
|
|
} else {
|
|
recentlySavedReport = false;
|
|
nextCheck = now + TimeDuration::FromSeconds(kLowMemoryCheckSeconds);
|
|
}
|
|
|
|
return recentlySavedReport;
|
|
}
|
|
#endif
|
|
|
|
#ifdef MOZ_CANARY
|
|
int sCanaryOutputFD = -1;
|
|
#endif
|
|
|
|
nsThread::nsThread(MainThreadFlag aMainThread, uint32_t aStackSize)
|
|
: mLock("nsThread.mLock")
|
|
, mScriptObserver(nullptr)
|
|
, mEvents(WrapNotNull(&mEventsRoot))
|
|
, mEventsRoot(mLock)
|
|
, mIdleEventsAvailable(mLock, "[nsThread.mEventsAvailable]")
|
|
, mIdleEvents(mIdleEventsAvailable, nsEventQueue::eNormalQueue)
|
|
, mPriority(PRIORITY_NORMAL)
|
|
, mThread(nullptr)
|
|
, mNestedEventLoopDepth(0)
|
|
, mStackSize(aStackSize)
|
|
, mShutdownContext(nullptr)
|
|
, mShutdownRequired(false)
|
|
, mEventsAreDoomed(false)
|
|
, mIsMainThread(aMainThread)
|
|
, mLastUnlabeledRunnable(TimeStamp::Now())
|
|
, mCanInvokeJS(false)
|
|
, mHasPendingEventsPromisedIdleEvent(false)
|
|
{
|
|
}
|
|
|
|
nsThread::~nsThread()
|
|
{
|
|
NS_ASSERTION(mRequestedShutdownContexts.IsEmpty(),
|
|
"shouldn't be waiting on other threads to shutdown");
|
|
#ifdef DEBUG
|
|
// We deliberately leak these so they can be tracked by the leak checker.
|
|
// If you're having nsThreadShutdownContext leaks, you can set:
|
|
// XPCOM_MEM_LOG_CLASSES=nsThreadShutdownContext
|
|
// during a test run and that will at least tell you what thread is
|
|
// requesting shutdown on another, which can be helpful for diagnosing
|
|
// the leak.
|
|
for (size_t i = 0; i < mRequestedShutdownContexts.Length(); ++i) {
|
|
Unused << mRequestedShutdownContexts[i].forget();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
nsresult
|
|
nsThread::Init(const nsACString& aName)
|
|
{
|
|
// spawn thread and wait until it is fully setup
|
|
RefPtr<nsThreadStartupEvent> startup = new nsThreadStartupEvent();
|
|
|
|
NS_ADDREF_THIS();
|
|
|
|
mIdlePeriod = new IdlePeriod();
|
|
|
|
mShutdownRequired = true;
|
|
|
|
ThreadInitData initData = { this, aName };
|
|
|
|
// ThreadFunc is responsible for setting mThread
|
|
if (!PR_CreateThread(PR_USER_THREAD, ThreadFunc, &initData,
|
|
PR_PRIORITY_NORMAL, PR_GLOBAL_THREAD,
|
|
PR_JOINABLE_THREAD, mStackSize)) {
|
|
NS_RELEASE_THIS();
|
|
return NS_ERROR_OUT_OF_MEMORY;
|
|
}
|
|
|
|
// ThreadFunc will wait for this event to be run before it tries to access
|
|
// mThread. By delaying insertion of this event into the queue, we ensure
|
|
// that mThread is set properly.
|
|
{
|
|
MutexAutoLock lock(mLock);
|
|
mEventsRoot.PutEvent(startup, lock); // retain a reference
|
|
}
|
|
|
|
// Wait for thread to call ThreadManager::SetupCurrentThread, which completes
|
|
// initialization of ThreadFunc.
|
|
startup->Wait();
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult
|
|
nsThread::InitCurrentThread()
|
|
{
|
|
mThread = PR_GetCurrentThread();
|
|
mVirtualThread = GetCurrentVirtualThread();
|
|
SetupCurrentThreadForChaosMode();
|
|
|
|
mIdlePeriod = new IdlePeriod();
|
|
|
|
nsThreadManager::get().RegisterCurrentThread(*this);
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult
|
|
nsThread::PutEvent(nsIRunnable* aEvent, nsNestedEventTarget* aTarget)
|
|
{
|
|
nsCOMPtr<nsIRunnable> event(aEvent);
|
|
return PutEvent(event.forget(), aTarget);
|
|
}
|
|
|
|
nsresult
|
|
nsThread::PutEvent(already_AddRefed<nsIRunnable> aEvent, nsNestedEventTarget* aTarget)
|
|
{
|
|
// We want to leak the reference when we fail to dispatch it, so that
|
|
// we won't release the event in a wrong thread.
|
|
LeakRefPtr<nsIRunnable> event(Move(aEvent));
|
|
nsCOMPtr<nsIThreadObserver> obs;
|
|
|
|
{
|
|
MutexAutoLock lock(mLock);
|
|
nsChainedEventQueue* queue = aTarget ? aTarget->mQueue : &mEventsRoot;
|
|
if (!queue || (queue == &mEventsRoot && mEventsAreDoomed)) {
|
|
NS_WARNING("An event was posted to a thread that will never run it (rejected)");
|
|
return NS_ERROR_UNEXPECTED;
|
|
}
|
|
queue->PutEvent(event.take(), lock);
|
|
|
|
// Make sure to grab the observer before dropping the lock, otherwise the
|
|
// event that we just placed into the queue could run and eventually delete
|
|
// this nsThread before the calling thread is scheduled again. We would then
|
|
// crash while trying to access a dead nsThread.
|
|
obs = mObserver;
|
|
}
|
|
|
|
if (obs) {
|
|
obs->OnDispatchedEvent();
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult
|
|
nsThread::DispatchInternal(already_AddRefed<nsIRunnable> aEvent, uint32_t aFlags,
|
|
nsNestedEventTarget* aTarget)
|
|
{
|
|
// We want to leak the reference when we fail to dispatch it, so that
|
|
// we won't release the event in a wrong thread.
|
|
LeakRefPtr<nsIRunnable> event(Move(aEvent));
|
|
if (NS_WARN_IF(!event)) {
|
|
return NS_ERROR_INVALID_ARG;
|
|
}
|
|
|
|
if (gXPCOMThreadsShutDown && MAIN_THREAD != mIsMainThread && !aTarget) {
|
|
NS_ASSERTION(false, "Failed Dispatch after xpcom-shutdown-threads");
|
|
return NS_ERROR_ILLEGAL_DURING_SHUTDOWN;
|
|
}
|
|
|
|
#ifdef MOZ_TASK_TRACER
|
|
nsCOMPtr<nsIRunnable> tracedRunnable = CreateTracedRunnable(event.take());
|
|
(static_cast<TracedRunnable*>(tracedRunnable.get()))->DispatchTask();
|
|
// XXX tracedRunnable will always leaked when we fail to disptch.
|
|
event = tracedRunnable.forget();
|
|
#endif
|
|
|
|
if (aFlags & DISPATCH_SYNC) {
|
|
nsThread* thread = nsThreadManager::get().GetCurrentThread();
|
|
if (NS_WARN_IF(!thread)) {
|
|
return NS_ERROR_NOT_AVAILABLE;
|
|
}
|
|
|
|
// XXX we should be able to do something better here... we should
|
|
// be able to monitor the slot occupied by this event and use
|
|
// that to tell us when the event has been processed.
|
|
|
|
RefPtr<nsThreadSyncDispatch> wrapper =
|
|
new nsThreadSyncDispatch(thread, event.take());
|
|
nsresult rv = PutEvent(wrapper, aTarget); // hold a ref
|
|
// Don't wait for the event to finish if we didn't dispatch it...
|
|
if (NS_FAILED(rv)) {
|
|
// PutEvent leaked the wrapper runnable object on failure, so we
|
|
// explicitly release this object once for that. Note that this
|
|
// object will be released again soon because it exits the scope.
|
|
wrapper.get()->Release();
|
|
return rv;
|
|
}
|
|
|
|
// Allows waiting; ensure no locks are held that would deadlock us!
|
|
SpinEventLoopUntil([&, wrapper]() -> bool {
|
|
return !wrapper->IsPending();
|
|
}, thread);
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_ASSERTION(aFlags == NS_DISPATCH_NORMAL ||
|
|
aFlags == NS_DISPATCH_AT_END, "unexpected dispatch flags");
|
|
return PutEvent(event.take(), aTarget);
|
|
}
|
|
|
|
NS_IMPL_ISUPPORTS(nsThread::nsChainedEventQueue::EnablePrioritizationRunnable,
|
|
nsIRunnable)
|
|
|
|
void
|
|
nsThread::nsChainedEventQueue::EnablePrioritization(MutexAutoLock& aProofOfLock)
|
|
{
|
|
MOZ_ASSERT(!mIsInputPrioritizationEnabled);
|
|
// When enabling event prioritization, there may be some pending events with
|
|
// different priorities in the normal queue. Create an event in the normal
|
|
// queue to consume all pending events in the time order to make sure we won't
|
|
// preempt a pending event (e.g. input) in the normal queue by another newly
|
|
// created event with the same priority.
|
|
mNormalQueue->PutEvent(new EnablePrioritizationRunnable(this), aProofOfLock);
|
|
mInputHandlingStartTime = TimeStamp();
|
|
mIsInputPrioritizationEnabled = true;
|
|
}
|
|
|
|
bool
|
|
nsThread::nsChainedEventQueue::
|
|
GetNormalOrInputOrHighPriorityEvent(bool aMayWait, nsIRunnable** aEvent,
|
|
unsigned short* aPriority,
|
|
MutexAutoLock& aProofOfLock)
|
|
{
|
|
bool retVal = false;
|
|
do {
|
|
// Use mProcessHighPriorityQueueRunnable to prevent the high priority events
|
|
// from consuming all cpu time and causing starvation.
|
|
if (mProcessHighPriorityQueueRunnable) {
|
|
MOZ_ASSERT(mHighQueue->HasPendingEvent(aProofOfLock));
|
|
retVal = mHighQueue->GetEvent(false, aEvent, aProofOfLock);
|
|
MOZ_ASSERT(*aEvent);
|
|
SetPriorityIfNotNull(aPriority, nsIRunnablePriority::PRIORITY_HIGH);
|
|
mInputHandlingStartTime = TimeStamp();
|
|
mProcessHighPriorityQueueRunnable = false;
|
|
return retVal;
|
|
}
|
|
mProcessHighPriorityQueueRunnable =
|
|
mHighQueue->HasPendingEvent(aProofOfLock);
|
|
|
|
uint32_t pendingInputCount = mInputQueue->Count(aProofOfLock);
|
|
if (pendingInputCount > 0) {
|
|
if (mInputHandlingStartTime.IsNull()) {
|
|
mInputHandlingStartTime =
|
|
InputEventStatistics::Get()
|
|
.GetInputHandlingStartTime(mInputQueue->Count(aProofOfLock));
|
|
}
|
|
if (TimeStamp::Now() > mInputHandlingStartTime) {
|
|
retVal = mInputQueue->GetEvent(false, aEvent, aProofOfLock);
|
|
MOZ_ASSERT(*aEvent);
|
|
SetPriorityIfNotNull(aPriority, nsIRunnablePriority::PRIORITY_INPUT);
|
|
return retVal;
|
|
}
|
|
}
|
|
|
|
// We don't want to wait if there are some high priority events or input
|
|
// events in the queues.
|
|
bool reallyMayWait = aMayWait && !mProcessHighPriorityQueueRunnable &&
|
|
pendingInputCount == 0;
|
|
|
|
retVal = mNormalQueue->GetEvent(reallyMayWait, aEvent, aProofOfLock);
|
|
if (*aEvent) {
|
|
// We got an event, return early.
|
|
SetPriorityIfNotNull(aPriority, nsIRunnablePriority::PRIORITY_NORMAL);
|
|
return retVal;
|
|
}
|
|
if (pendingInputCount > 0 && !mProcessHighPriorityQueueRunnable) {
|
|
// Handle input events if we have time for them.
|
|
MOZ_ASSERT(mInputQueue->HasPendingEvent(aProofOfLock));
|
|
retVal = mInputQueue->GetEvent(false, aEvent, aProofOfLock);
|
|
MOZ_ASSERT(*aEvent);
|
|
SetPriorityIfNotNull(aPriority, nsIRunnablePriority::PRIORITY_INPUT);
|
|
return retVal;
|
|
}
|
|
} while (aMayWait || mProcessHighPriorityQueueRunnable);
|
|
return retVal;
|
|
}
|
|
|
|
bool
|
|
nsThread::nsChainedEventQueue::
|
|
GetNormalOrHighPriorityEvent(bool aMayWait, nsIRunnable** aEvent,
|
|
unsigned short* aPriority,
|
|
MutexAutoLock& aProofOfLock)
|
|
{
|
|
bool retVal = false;
|
|
do {
|
|
// Use mProcessHighPriorityQueueRunnable to prevent the high priority events
|
|
// from consuming all cpu time and causing starvation.
|
|
if (mProcessHighPriorityQueueRunnable) {
|
|
MOZ_ASSERT(mHighQueue->HasPendingEvent(aProofOfLock));
|
|
retVal = mHighQueue->GetEvent(false, aEvent, aProofOfLock);
|
|
MOZ_ASSERT(*aEvent);
|
|
SetPriorityIfNotNull(aPriority, nsIRunnablePriority::PRIORITY_HIGH);
|
|
mProcessHighPriorityQueueRunnable = false;
|
|
return retVal;
|
|
}
|
|
mProcessHighPriorityQueueRunnable =
|
|
mHighQueue->HasPendingEvent(aProofOfLock);
|
|
|
|
// We don't want to wait if there are some events in the high priority
|
|
// queue.
|
|
bool reallyMayWait = aMayWait && !mProcessHighPriorityQueueRunnable;
|
|
|
|
retVal = mNormalQueue->GetEvent(reallyMayWait, aEvent, aProofOfLock);
|
|
if (*aEvent) {
|
|
// We got an event, return early.
|
|
SetPriorityIfNotNull(aPriority, nsIRunnablePriority::PRIORITY_NORMAL);
|
|
return retVal;
|
|
}
|
|
} while (aMayWait || mProcessHighPriorityQueueRunnable);
|
|
return retVal;
|
|
}
|
|
|
|
void
|
|
nsThread::nsChainedEventQueue::PutEvent(already_AddRefed<nsIRunnable> aEvent,
|
|
MutexAutoLock& aProofOfLock)
|
|
{
|
|
RefPtr<nsIRunnable> event(aEvent);
|
|
nsCOMPtr<nsIRunnablePriority> runnablePrio(do_QueryInterface(event));
|
|
uint32_t prio = nsIRunnablePriority::PRIORITY_NORMAL;
|
|
if (runnablePrio) {
|
|
runnablePrio->GetPriority(&prio);
|
|
}
|
|
switch (prio) {
|
|
case nsIRunnablePriority::PRIORITY_NORMAL:
|
|
mNormalQueue->PutEvent(event.forget(), aProofOfLock);
|
|
break;
|
|
case nsIRunnablePriority::PRIORITY_INPUT:
|
|
if (mIsInputPrioritizationEnabled) {
|
|
mInputQueue->PutEvent(event.forget(), aProofOfLock);
|
|
} else {
|
|
mNormalQueue->PutEvent(event.forget(), aProofOfLock);
|
|
}
|
|
break;
|
|
case nsIRunnablePriority::PRIORITY_HIGH:
|
|
mHighQueue->PutEvent(event.forget(), aProofOfLock);
|
|
break;
|
|
default:
|
|
MOZ_ASSERT(false);
|
|
break;
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// nsIEventTarget
|
|
|
|
NS_IMETHODIMP
|
|
nsThread::DispatchFromScript(nsIRunnable* aEvent, uint32_t aFlags)
|
|
{
|
|
nsCOMPtr<nsIRunnable> event(aEvent);
|
|
return Dispatch(event.forget(), aFlags);
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThread::Dispatch(already_AddRefed<nsIRunnable> aEvent, uint32_t aFlags)
|
|
{
|
|
LOG(("THRD(%p) Dispatch [%p %x]\n", this, /* XXX aEvent */nullptr, aFlags));
|
|
|
|
return DispatchInternal(Move(aEvent), aFlags, nullptr);
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThread::DelayedDispatch(already_AddRefed<nsIRunnable> aEvent, uint32_t aDelayMs)
|
|
{
|
|
NS_ENSURE_TRUE(!!aDelayMs, NS_ERROR_UNEXPECTED);
|
|
|
|
RefPtr<DelayedRunnable> r = new DelayedRunnable(Move(do_AddRef(this)),
|
|
Move(aEvent),
|
|
aDelayMs);
|
|
nsresult rv = r->Init();
|
|
NS_ENSURE_SUCCESS(rv, rv);
|
|
|
|
return DispatchInternal(r.forget(), 0, nullptr);
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThread::IsOnCurrentThread(bool* aResult)
|
|
{
|
|
*aResult = (PR_GetCurrentThread() == mThread);
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP_(bool)
|
|
nsThread::IsOnCurrentThreadInfallible()
|
|
{
|
|
// Rely on mVirtualThread being correct.
|
|
MOZ_CRASH("IsOnCurrentThreadInfallible should never be called on nsIThread");
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// nsIThread
|
|
|
|
NS_IMETHODIMP
|
|
nsThread::GetPRThread(PRThread** aResult)
|
|
{
|
|
*aResult = mThread;
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThread::GetCanInvokeJS(bool* aResult)
|
|
{
|
|
*aResult = mCanInvokeJS;
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThread::SetCanInvokeJS(bool aCanInvokeJS)
|
|
{
|
|
mCanInvokeJS = aCanInvokeJS;
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThread::AsyncShutdown()
|
|
{
|
|
LOG(("THRD(%p) async shutdown\n", this));
|
|
|
|
// XXX If we make this warn, then we hit that warning at xpcom shutdown while
|
|
// shutting down a thread in a thread pool. That happens b/c the thread
|
|
// in the thread pool is already shutdown by the thread manager.
|
|
if (!mThread) {
|
|
return NS_OK;
|
|
}
|
|
|
|
return !!ShutdownInternal(/* aSync = */ false) ? NS_OK : NS_ERROR_UNEXPECTED;
|
|
}
|
|
|
|
nsThreadShutdownContext*
|
|
nsThread::ShutdownInternal(bool aSync)
|
|
{
|
|
MOZ_ASSERT(mThread);
|
|
MOZ_ASSERT(mThread != PR_GetCurrentThread());
|
|
if (NS_WARN_IF(mThread == PR_GetCurrentThread())) {
|
|
return nullptr;
|
|
}
|
|
|
|
// Prevent multiple calls to this method
|
|
{
|
|
MutexAutoLock lock(mLock);
|
|
if (!mShutdownRequired) {
|
|
return nullptr;
|
|
}
|
|
mShutdownRequired = false;
|
|
}
|
|
|
|
NotNull<nsThread*> currentThread =
|
|
WrapNotNull(nsThreadManager::get().GetCurrentThread());
|
|
|
|
nsAutoPtr<nsThreadShutdownContext>& context =
|
|
*currentThread->mRequestedShutdownContexts.AppendElement();
|
|
context = new nsThreadShutdownContext(WrapNotNull(this), currentThread, aSync);
|
|
|
|
// Set mShutdownContext and wake up the thread in case it is waiting for
|
|
// events to process.
|
|
nsCOMPtr<nsIRunnable> event =
|
|
new nsThreadShutdownEvent(WrapNotNull(this), WrapNotNull(context.get()));
|
|
// XXXroc What if posting the event fails due to OOM?
|
|
PutEvent(event.forget(), nullptr);
|
|
|
|
// We could still end up with other events being added after the shutdown
|
|
// task, but that's okay because we process pending events in ThreadFunc
|
|
// after setting mShutdownContext just before exiting.
|
|
return context;
|
|
}
|
|
|
|
void
|
|
nsThread::ShutdownComplete(NotNull<nsThreadShutdownContext*> aContext)
|
|
{
|
|
MOZ_ASSERT(mThread);
|
|
MOZ_ASSERT(aContext->mTerminatingThread == this);
|
|
|
|
if (aContext->mAwaitingShutdownAck) {
|
|
// We're in a synchronous shutdown, so tell whatever is up the stack that
|
|
// we're done and unwind the stack so it can call us again.
|
|
aContext->mAwaitingShutdownAck = false;
|
|
return;
|
|
}
|
|
|
|
// Now, it should be safe to join without fear of dead-locking.
|
|
|
|
PR_JoinThread(mThread);
|
|
mThread = nullptr;
|
|
|
|
// We hold strong references to our event observers, and once the thread is
|
|
// shut down the observers can't easily unregister themselves. Do it here
|
|
// to avoid leaking.
|
|
ClearObservers();
|
|
|
|
#ifdef DEBUG
|
|
{
|
|
MutexAutoLock lock(mLock);
|
|
MOZ_ASSERT(!mObserver, "Should have been cleared at shutdown!");
|
|
}
|
|
#endif
|
|
|
|
// Delete aContext.
|
|
MOZ_ALWAYS_TRUE(
|
|
aContext->mJoiningThread->mRequestedShutdownContexts.RemoveElement(aContext));
|
|
}
|
|
|
|
void
|
|
nsThread::WaitForAllAsynchronousShutdowns()
|
|
{
|
|
// This is the motivating example for why SpinEventLoop has the template
|
|
// parameter we are providing here.
|
|
SpinEventLoopUntil<ProcessFailureBehavior::IgnoreAndContinue>([&]() {
|
|
return mRequestedShutdownContexts.IsEmpty();
|
|
}, this);
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThread::Shutdown()
|
|
{
|
|
LOG(("THRD(%p) sync shutdown\n", this));
|
|
|
|
// XXX If we make this warn, then we hit that warning at xpcom shutdown while
|
|
// shutting down a thread in a thread pool. That happens b/c the thread
|
|
// in the thread pool is already shutdown by the thread manager.
|
|
if (!mThread) {
|
|
return NS_OK;
|
|
}
|
|
|
|
nsThreadShutdownContext* maybeContext = ShutdownInternal(/* aSync = */ true);
|
|
NS_ENSURE_TRUE(maybeContext, NS_ERROR_UNEXPECTED);
|
|
NotNull<nsThreadShutdownContext*> context = WrapNotNull(maybeContext);
|
|
|
|
// Process events on the current thread until we receive a shutdown ACK.
|
|
// Allows waiting; ensure no locks are held that would deadlock us!
|
|
SpinEventLoopUntil([&, context]() {
|
|
return !context->mAwaitingShutdownAck;
|
|
}, context->mJoiningThread);
|
|
|
|
ShutdownComplete(context);
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
TimeStamp
|
|
nsThread::GetIdleDeadline()
|
|
{
|
|
// If we are shutting down, we won't honor the idle period, and we will
|
|
// always process idle runnables. This will ensure that the idle queue
|
|
// gets exhausted at shutdown time to prevent intermittently leaking
|
|
// some runnables inside that queue and even worse potentially leaving
|
|
// some important cleanup work unfinished.
|
|
// Note that we need to check both of these conditions since ShuttingDown()
|
|
// will never return true on the main thread, where gXPCOMThreadsShutDown
|
|
// performs a similar function.
|
|
if (gXPCOMThreadsShutDown || ShuttingDown()) {
|
|
return TimeStamp::Now();
|
|
}
|
|
|
|
TimeStamp idleDeadline;
|
|
{
|
|
// Releasing the lock temporarily since getting the idle period
|
|
// might need to lock the timer thread. Unlocking here might make
|
|
// us receive an event on the main queue, but we've committed to
|
|
// run an idle event anyhow.
|
|
MutexAutoUnlock unlock(mLock);
|
|
mIdlePeriod->GetIdlePeriodHint(&idleDeadline);
|
|
}
|
|
|
|
// If HasPendingEvents() has been called and it has returned true because of
|
|
// pending idle events, there is a risk that we may decide here that we aren't
|
|
// idle and return null, in which case HasPendingEvents() has effectively
|
|
// lied. Since we can't go back and fix the past, we have to adjust what we
|
|
// do here and forcefully pick the idle queue task here. Note that this means
|
|
// that we are choosing to run a task from the idle queue when we would
|
|
// normally decide that we aren't in an idle period, but this can only happen
|
|
// if we fall out of the idle period in between the call to HasPendingEvents()
|
|
// and here, which should hopefully be quite rare. We are effectively
|
|
// choosing to prioritize the sanity of our API semantics over the optimal
|
|
// scheduling.
|
|
if (!mHasPendingEventsPromisedIdleEvent &&
|
|
(!idleDeadline || idleDeadline < TimeStamp::Now())) {
|
|
return TimeStamp();
|
|
}
|
|
if (mHasPendingEventsPromisedIdleEvent && !idleDeadline) {
|
|
// If HasPendingEvents() has been called and it has returned true, but we're no
|
|
// longer in the idle period, we must return a valid timestamp to pretend that
|
|
// we are still in the idle period.
|
|
return TimeStamp::Now();
|
|
}
|
|
return idleDeadline;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThread::HasPendingEvents(bool* aResult)
|
|
{
|
|
if (NS_WARN_IF(PR_GetCurrentThread() != mThread)) {
|
|
return NS_ERROR_NOT_SAME_THREAD;
|
|
}
|
|
|
|
{
|
|
MutexAutoLock lock(mLock);
|
|
mHasPendingEventsPromisedIdleEvent = false;
|
|
bool hasPendingEvent = mEvents->HasPendingEvent(lock);
|
|
bool hasPendingIdleEvent = false;
|
|
if (!hasPendingEvent) {
|
|
// Note that GetIdleDeadline() checks mHasPendingEventsPromisedIdleEvent,
|
|
// but that's OK since we set it to false in the beginning of this method!
|
|
TimeStamp idleDeadline = GetIdleDeadline();
|
|
|
|
// Only examine the idle queue if we are in an idle period.
|
|
if (idleDeadline) {
|
|
hasPendingIdleEvent = mIdleEvents.HasPendingEvent(lock);
|
|
mHasPendingEventsPromisedIdleEvent = hasPendingIdleEvent;
|
|
}
|
|
}
|
|
*aResult = hasPendingEvent || hasPendingIdleEvent;
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThread::RegisterIdlePeriod(already_AddRefed<nsIIdlePeriod> aIdlePeriod)
|
|
{
|
|
if (NS_WARN_IF(PR_GetCurrentThread() != mThread)) {
|
|
return NS_ERROR_NOT_SAME_THREAD;
|
|
}
|
|
|
|
MutexAutoLock lock(mLock);
|
|
mIdlePeriod = aIdlePeriod;
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThread::IdleDispatch(already_AddRefed<nsIRunnable> aEvent)
|
|
{
|
|
// Currently the only supported idle dispatch is from the same
|
|
// thread. To support idle dispatch from another thread we need to
|
|
// support waking threads that are waiting for an event queue that
|
|
// isn't mIdleEvents.
|
|
MOZ_ASSERT(PR_GetCurrentThread() == mThread);
|
|
|
|
MutexAutoLock lock(mLock);
|
|
LeakRefPtr<nsIRunnable> event(Move(aEvent));
|
|
|
|
if (NS_WARN_IF(!event)) {
|
|
return NS_ERROR_INVALID_ARG;
|
|
}
|
|
|
|
if (mEventsAreDoomed) {
|
|
NS_WARNING("An idle event was posted to a thread that will never run it (rejected)");
|
|
return NS_ERROR_UNEXPECTED;
|
|
}
|
|
|
|
mIdleEvents.PutEvent(event.take(), lock);
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThread::EnableEventPrioritization()
|
|
{
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
MutexAutoLock lock(mLock);
|
|
// Only support event prioritization for main event queue.
|
|
mEventsRoot.EnablePrioritization(lock);
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThread::IsEventPrioritizationEnabled(bool* aResult)
|
|
{
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
*aResult = mEventsRoot.IsPrioritizationEnabled();
|
|
return NS_OK;
|
|
}
|
|
|
|
#ifdef MOZ_CANARY
|
|
void canary_alarm_handler(int signum);
|
|
|
|
class Canary
|
|
{
|
|
//XXX ToDo: support nested loops
|
|
public:
|
|
Canary()
|
|
{
|
|
if (sCanaryOutputFD > 0 && EventLatencyIsImportant()) {
|
|
signal(SIGALRM, canary_alarm_handler);
|
|
ualarm(15000, 0);
|
|
}
|
|
}
|
|
|
|
~Canary()
|
|
{
|
|
if (sCanaryOutputFD != 0 && EventLatencyIsImportant()) {
|
|
ualarm(0, 0);
|
|
}
|
|
}
|
|
|
|
static bool EventLatencyIsImportant()
|
|
{
|
|
return NS_IsMainThread() && XRE_IsParentProcess();
|
|
}
|
|
};
|
|
|
|
void canary_alarm_handler(int signum)
|
|
{
|
|
void* array[30];
|
|
const char msg[29] = "event took too long to run:\n";
|
|
// use write to be safe in the signal handler
|
|
write(sCanaryOutputFD, msg, sizeof(msg));
|
|
backtrace_symbols_fd(array, backtrace(array, 30), sCanaryOutputFD);
|
|
}
|
|
|
|
#endif
|
|
|
|
#define NOTIFY_EVENT_OBSERVERS(func_, params_) \
|
|
do { \
|
|
if (!mEventObservers.IsEmpty()) { \
|
|
nsAutoTObserverArray<NotNull<nsCOMPtr<nsIThreadObserver>>, 2>::ForwardIterator \
|
|
iter_(mEventObservers); \
|
|
nsCOMPtr<nsIThreadObserver> obs_; \
|
|
while (iter_.HasMore()) { \
|
|
obs_ = iter_.GetNext(); \
|
|
obs_ -> func_ params_ ; \
|
|
} \
|
|
} \
|
|
} while(0)
|
|
|
|
void
|
|
nsThread::GetIdleEvent(nsIRunnable** aEvent, MutexAutoLock& aProofOfLock)
|
|
{
|
|
MOZ_ASSERT(PR_GetCurrentThread() == mThread);
|
|
MOZ_ASSERT(aEvent);
|
|
|
|
if (!mIdleEvents.HasPendingEvent(aProofOfLock)) {
|
|
MOZ_ASSERT(!mHasPendingEventsPromisedIdleEvent);
|
|
aEvent = nullptr;
|
|
return;
|
|
}
|
|
|
|
TimeStamp idleDeadline = GetIdleDeadline();
|
|
if (!idleDeadline) {
|
|
aEvent = nullptr;
|
|
return;
|
|
}
|
|
|
|
mIdleEvents.GetEvent(false, aEvent, aProofOfLock);
|
|
|
|
if (*aEvent) {
|
|
nsCOMPtr<nsIIdleRunnable> idleEvent(do_QueryInterface(*aEvent));
|
|
if (idleEvent) {
|
|
idleEvent->SetDeadline(idleDeadline);
|
|
}
|
|
|
|
#ifndef RELEASE_OR_BETA
|
|
// Store the next idle deadline to be able to determine budget use
|
|
// in ProcessNextEvent.
|
|
mNextIdleDeadline = idleDeadline;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void
|
|
nsThread::GetEvent(bool aWait, nsIRunnable** aEvent,
|
|
unsigned short* aPriority,
|
|
MutexAutoLock& aProofOfLock)
|
|
{
|
|
MOZ_ASSERT(PR_GetCurrentThread() == mThread);
|
|
MOZ_ASSERT(aEvent);
|
|
|
|
MakeScopeExit([&] {
|
|
mHasPendingEventsPromisedIdleEvent = false;
|
|
});
|
|
|
|
#ifndef RELEASE_OR_BETA
|
|
// Clear mNextIdleDeadline so that it is possible to determine that
|
|
// we're running an idle runnable in ProcessNextEvent.
|
|
mNextIdleDeadline = TimeStamp();
|
|
#endif
|
|
|
|
// We'll try to get an event to execute in three stages.
|
|
// [1] First we just try to get it from the regular queue without waiting.
|
|
mEvents->GetEvent(false, aEvent, aPriority, aProofOfLock);
|
|
|
|
// [2] If we didn't get an event from the regular queue, try to
|
|
// get one from the idle queue
|
|
if (!*aEvent) {
|
|
// Since events in mEvents have higher priority than idle
|
|
// events, we will only consider idle events when there are no
|
|
// pending events in mEvents. We will for the same reason never
|
|
// wait for an idle event, since a higher priority event might
|
|
// appear at any time.
|
|
GetIdleEvent(aEvent, aProofOfLock);
|
|
|
|
if (*aEvent && aPriority) {
|
|
// Idle events count as normal priority.
|
|
*aPriority = nsIRunnablePriority::PRIORITY_NORMAL;
|
|
}
|
|
}
|
|
|
|
// [3] If we neither got an event from the regular queue nor the
|
|
// idle queue, then if we should wait for events we block on the
|
|
// main queue until an event is available.
|
|
// If we are shutting down, then do not wait for new events.
|
|
if (!*aEvent && aWait) {
|
|
mEvents->GetEvent(aWait, aEvent, aPriority, aProofOfLock);
|
|
}
|
|
}
|
|
|
|
#ifndef RELEASE_OR_BETA
|
|
static bool
|
|
GetLabeledRunnableName(nsIRunnable* aEvent, nsACString& aName)
|
|
{
|
|
bool labeled = false;
|
|
if (RefPtr<SchedulerGroup::Runnable> groupRunnable = do_QueryObject(aEvent)) {
|
|
labeled = true;
|
|
MOZ_ALWAYS_TRUE(NS_SUCCEEDED(groupRunnable->GetName(aName)));
|
|
} else if (nsCOMPtr<nsINamed> named = do_QueryInterface(aEvent)) {
|
|
MOZ_ALWAYS_TRUE(NS_SUCCEEDED(named->GetName(aName)));
|
|
} else {
|
|
aName.AssignLiteral("non-nsINamed runnable");
|
|
}
|
|
if (aName.IsEmpty()) {
|
|
aName.AssignLiteral("anonymous runnable");
|
|
}
|
|
|
|
return labeled;
|
|
}
|
|
#endif
|
|
|
|
NS_IMETHODIMP
|
|
nsThread::ProcessNextEvent(bool aMayWait, bool* aResult)
|
|
{
|
|
LOG(("THRD(%p) ProcessNextEvent [%u %u]\n", this, aMayWait,
|
|
mNestedEventLoopDepth));
|
|
|
|
if (NS_WARN_IF(PR_GetCurrentThread() != mThread)) {
|
|
return NS_ERROR_NOT_SAME_THREAD;
|
|
}
|
|
|
|
// The toplevel event loop normally blocks waiting for the next event, but
|
|
// if we're trying to shut this thread down, we must exit the event loop when
|
|
// the event queue is empty.
|
|
// This only applys to the toplevel event loop! Nested event loops (e.g.
|
|
// during sync dispatch) are waiting for some state change and must be able
|
|
// to block even if something has requested shutdown of the thread. Otherwise
|
|
// we'll just busywait as we endlessly look for an event, fail to find one,
|
|
// and repeat the nested event loop since its state change hasn't happened yet.
|
|
bool reallyWait = aMayWait && (mNestedEventLoopDepth > 0 || !ShuttingDown());
|
|
|
|
Maybe<SchedulerGroup::AutoProcessEvent> ape;
|
|
if (mIsMainThread == MAIN_THREAD) {
|
|
DoMainThreadSpecificProcessing(reallyWait);
|
|
ape.emplace();
|
|
}
|
|
|
|
++mNestedEventLoopDepth;
|
|
|
|
// We only want to create an AutoNoJSAPI on threads that actually do DOM stuff
|
|
// (including workers). Those are exactly the threads that have an
|
|
// mScriptObserver.
|
|
Maybe<dom::AutoNoJSAPI> noJSAPI;
|
|
bool callScriptObserver = !!mScriptObserver;
|
|
if (callScriptObserver) {
|
|
noJSAPI.emplace();
|
|
mScriptObserver->BeforeProcessTask(reallyWait);
|
|
}
|
|
|
|
nsCOMPtr<nsIThreadObserver> obs = mObserver;
|
|
if (obs) {
|
|
obs->OnProcessNextEvent(this, reallyWait);
|
|
}
|
|
|
|
NOTIFY_EVENT_OBSERVERS(OnProcessNextEvent, (this, reallyWait));
|
|
|
|
#ifdef MOZ_CANARY
|
|
Canary canary;
|
|
#endif
|
|
nsresult rv = NS_OK;
|
|
|
|
{
|
|
// Scope for |event| to make sure that its destructor fires while
|
|
// mNestedEventLoopDepth has been incremented, since that destructor can
|
|
// also do work.
|
|
nsCOMPtr<nsIRunnable> event;
|
|
unsigned short priority;
|
|
{
|
|
MutexAutoLock lock(mLock);
|
|
GetEvent(reallyWait, getter_AddRefs(event), &priority, lock);
|
|
}
|
|
|
|
*aResult = (event.get() != nullptr);
|
|
|
|
if (event) {
|
|
LOG(("THRD(%p) running [%p]\n", this, event.get()));
|
|
|
|
if (MAIN_THREAD == mIsMainThread) {
|
|
HangMonitor::NotifyActivity();
|
|
}
|
|
|
|
#ifndef RELEASE_OR_BETA
|
|
Maybe<Telemetry::AutoTimer<Telemetry::MAIN_THREAD_RUNNABLE_MS>> timer;
|
|
Maybe<Telemetry::AutoTimer<Telemetry::IDLE_RUNNABLE_BUDGET_OVERUSE_MS>> idleTimer;
|
|
|
|
nsAutoCString name;
|
|
if ((MAIN_THREAD == mIsMainThread) || mNextIdleDeadline) {
|
|
bool labeled = GetLabeledRunnableName(event, name);
|
|
|
|
if (MAIN_THREAD == mIsMainThread) {
|
|
timer.emplace(name);
|
|
|
|
// High-priority runnables are ignored here since they'll run right away
|
|
// even with the cooperative scheduler.
|
|
if (!labeled && priority == nsIRunnablePriority::PRIORITY_NORMAL) {
|
|
TimeStamp now = TimeStamp::Now();
|
|
double diff = (now - mLastUnlabeledRunnable).ToMilliseconds();
|
|
Telemetry::Accumulate(Telemetry::TIME_BETWEEN_UNLABELED_RUNNABLES_MS, diff);
|
|
mLastUnlabeledRunnable = now;
|
|
}
|
|
}
|
|
|
|
if (mNextIdleDeadline) {
|
|
// If we construct the AutoTimer with the deadline, then we'll
|
|
// compute TimeStamp::Now() - mNextIdleDeadline when
|
|
// accumulating telemetry. If that is positive we've
|
|
// overdrawn our idle budget, if it's negative it will go in
|
|
// the 0 bucket of the histogram.
|
|
idleTimer.emplace(name, mNextIdleDeadline);
|
|
}
|
|
}
|
|
|
|
// If we're on the main thread, we want to record our current runnable's
|
|
// name in a static so that BHR can record it.
|
|
Array<char, kRunnableNameBufSize> restoreRunnableName;
|
|
restoreRunnableName[0] = '\0';
|
|
auto clear = MakeScopeExit([&] {
|
|
if (MAIN_THREAD == mIsMainThread) {
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
sMainThreadRunnableName = restoreRunnableName;
|
|
}
|
|
});
|
|
if (MAIN_THREAD == mIsMainThread) {
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
restoreRunnableName = sMainThreadRunnableName;
|
|
|
|
// Copy the name into sMainThreadRunnableName's buffer, and append a
|
|
// terminating null.
|
|
uint32_t length = std::min((uint32_t) kRunnableNameBufSize - 1,
|
|
(uint32_t) name.Length());
|
|
memcpy(sMainThreadRunnableName.begin(), name.BeginReading(), length);
|
|
sMainThreadRunnableName[length] = '\0';
|
|
}
|
|
#endif
|
|
Maybe<AutoTimeDurationHelper> timeDurationHelper;
|
|
if (priority == nsIRunnablePriority::PRIORITY_INPUT) {
|
|
timeDurationHelper.emplace();
|
|
}
|
|
event->Run();
|
|
} else if (aMayWait) {
|
|
MOZ_ASSERT(ShuttingDown(),
|
|
"This should only happen when shutting down");
|
|
rv = NS_ERROR_UNEXPECTED;
|
|
}
|
|
}
|
|
|
|
NOTIFY_EVENT_OBSERVERS(AfterProcessNextEvent, (this, *aResult));
|
|
|
|
if (obs) {
|
|
obs->AfterProcessNextEvent(this, *aResult);
|
|
}
|
|
|
|
if (callScriptObserver) {
|
|
if (mScriptObserver) {
|
|
mScriptObserver->AfterProcessTask(mNestedEventLoopDepth);
|
|
}
|
|
noJSAPI.reset();
|
|
}
|
|
|
|
--mNestedEventLoopDepth;
|
|
|
|
return rv;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// nsISupportsPriority
|
|
|
|
NS_IMETHODIMP
|
|
nsThread::GetPriority(int32_t* aPriority)
|
|
{
|
|
*aPriority = mPriority;
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThread::SetPriority(int32_t aPriority)
|
|
{
|
|
if (NS_WARN_IF(!mThread)) {
|
|
return NS_ERROR_NOT_INITIALIZED;
|
|
}
|
|
|
|
// NSPR defines the following four thread priorities:
|
|
// PR_PRIORITY_LOW
|
|
// PR_PRIORITY_NORMAL
|
|
// PR_PRIORITY_HIGH
|
|
// PR_PRIORITY_URGENT
|
|
// We map the priority values defined on nsISupportsPriority to these values.
|
|
|
|
mPriority = aPriority;
|
|
|
|
PRThreadPriority pri;
|
|
if (mPriority <= PRIORITY_HIGHEST) {
|
|
pri = PR_PRIORITY_URGENT;
|
|
} else if (mPriority < PRIORITY_NORMAL) {
|
|
pri = PR_PRIORITY_HIGH;
|
|
} else if (mPriority > PRIORITY_NORMAL) {
|
|
pri = PR_PRIORITY_LOW;
|
|
} else {
|
|
pri = PR_PRIORITY_NORMAL;
|
|
}
|
|
// If chaos mode is active, retain the randomly chosen priority
|
|
if (!ChaosMode::isActive(ChaosFeature::ThreadScheduling)) {
|
|
PR_SetThreadPriority(mThread, pri);
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThread::AdjustPriority(int32_t aDelta)
|
|
{
|
|
return SetPriority(mPriority + aDelta);
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// nsIThreadInternal
|
|
|
|
NS_IMETHODIMP
|
|
nsThread::GetObserver(nsIThreadObserver** aObs)
|
|
{
|
|
MutexAutoLock lock(mLock);
|
|
NS_IF_ADDREF(*aObs = mObserver);
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThread::SetObserver(nsIThreadObserver* aObs)
|
|
{
|
|
if (NS_WARN_IF(PR_GetCurrentThread() != mThread)) {
|
|
return NS_ERROR_NOT_SAME_THREAD;
|
|
}
|
|
|
|
MutexAutoLock lock(mLock);
|
|
mObserver = aObs;
|
|
return NS_OK;
|
|
}
|
|
|
|
uint32_t
|
|
nsThread::RecursionDepth() const
|
|
{
|
|
MOZ_ASSERT(PR_GetCurrentThread() == mThread);
|
|
return mNestedEventLoopDepth;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThread::AddObserver(nsIThreadObserver* aObserver)
|
|
{
|
|
if (NS_WARN_IF(!aObserver)) {
|
|
return NS_ERROR_INVALID_ARG;
|
|
}
|
|
if (NS_WARN_IF(PR_GetCurrentThread() != mThread)) {
|
|
return NS_ERROR_NOT_SAME_THREAD;
|
|
}
|
|
|
|
NS_WARNING_ASSERTION(!mEventObservers.Contains(aObserver),
|
|
"Adding an observer twice!");
|
|
|
|
if (!mEventObservers.AppendElement(WrapNotNull(aObserver))) {
|
|
NS_WARNING("Out of memory!");
|
|
return NS_ERROR_OUT_OF_MEMORY;
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThread::RemoveObserver(nsIThreadObserver* aObserver)
|
|
{
|
|
if (NS_WARN_IF(PR_GetCurrentThread() != mThread)) {
|
|
return NS_ERROR_NOT_SAME_THREAD;
|
|
}
|
|
|
|
if (aObserver && !mEventObservers.RemoveElement(aObserver)) {
|
|
NS_WARNING("Removing an observer that was never added!");
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThread::PushEventQueue(nsIEventTarget** aResult)
|
|
{
|
|
if (NS_WARN_IF(PR_GetCurrentThread() != mThread)) {
|
|
return NS_ERROR_NOT_SAME_THREAD;
|
|
}
|
|
|
|
NotNull<nsChainedEventQueue*> queue =
|
|
WrapNotNull(new nsChainedEventQueue(mLock));
|
|
queue->mEventTarget = new nsNestedEventTarget(WrapNotNull(this), queue);
|
|
|
|
{
|
|
MutexAutoLock lock(mLock);
|
|
queue->mNext = mEvents;
|
|
mEvents = queue;
|
|
}
|
|
|
|
NS_ADDREF(*aResult = queue->mEventTarget);
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThread::PopEventQueue(nsIEventTarget* aInnermostTarget)
|
|
{
|
|
if (NS_WARN_IF(PR_GetCurrentThread() != mThread)) {
|
|
return NS_ERROR_NOT_SAME_THREAD;
|
|
}
|
|
|
|
if (NS_WARN_IF(!aInnermostTarget)) {
|
|
return NS_ERROR_NULL_POINTER;
|
|
}
|
|
|
|
// Don't delete or release anything while holding the lock.
|
|
nsAutoPtr<nsChainedEventQueue> queue;
|
|
RefPtr<nsNestedEventTarget> target;
|
|
|
|
{
|
|
MutexAutoLock lock(mLock);
|
|
|
|
// Make sure we're popping the innermost event target.
|
|
if (NS_WARN_IF(mEvents->mEventTarget != aInnermostTarget)) {
|
|
return NS_ERROR_UNEXPECTED;
|
|
}
|
|
|
|
MOZ_ASSERT(mEvents != &mEventsRoot);
|
|
|
|
queue = mEvents;
|
|
mEvents = WrapNotNull(mEvents->mNext);
|
|
|
|
nsCOMPtr<nsIRunnable> event;
|
|
while (queue->GetEvent(false, getter_AddRefs(event), nullptr, lock)) {
|
|
mEvents->PutEvent(event.forget(), lock);
|
|
}
|
|
|
|
// Don't let the event target post any more events.
|
|
queue->mEventTarget.swap(target);
|
|
target->mQueue = nullptr;
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
void
|
|
nsThread::SetScriptObserver(mozilla::CycleCollectedJSContext* aScriptObserver)
|
|
{
|
|
if (!aScriptObserver) {
|
|
mScriptObserver = nullptr;
|
|
return;
|
|
}
|
|
|
|
MOZ_ASSERT(!mScriptObserver);
|
|
mScriptObserver = aScriptObserver;
|
|
}
|
|
|
|
void
|
|
nsThread::DoMainThreadSpecificProcessing(bool aReallyWait)
|
|
{
|
|
MOZ_ASSERT(mIsMainThread == MAIN_THREAD);
|
|
|
|
ipc::CancelCPOWs();
|
|
|
|
if (aReallyWait) {
|
|
HangMonitor::Suspend();
|
|
}
|
|
|
|
// Fire a memory pressure notification, if one is pending.
|
|
if (!ShuttingDown()) {
|
|
MemoryPressureState mpPending = NS_GetPendingMemoryPressure();
|
|
if (mpPending != MemPressure_None) {
|
|
nsCOMPtr<nsIObserverService> os = services::GetObserverService();
|
|
|
|
if (os) {
|
|
// Use no-forward to prevent the notifications from being transferred to
|
|
// the children of this process.
|
|
os->NotifyObservers(nullptr, "memory-pressure",
|
|
mpPending == MemPressure_New ? u"low-memory-no-forward" :
|
|
u"low-memory-ongoing-no-forward");
|
|
} else {
|
|
NS_WARNING("Can't get observer service!");
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef MOZ_CRASHREPORTER
|
|
if (!ShuttingDown()) {
|
|
SaveMemoryReportNearOOM(ShouldSaveMemoryReport::kMaybeReport);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThread::GetEventTarget(nsIEventTarget** aEventTarget)
|
|
{
|
|
nsCOMPtr<nsIEventTarget> target = this;
|
|
target.forget(aEventTarget);
|
|
return NS_OK;
|
|
}
|
|
|
|
nsIEventTarget*
|
|
nsThread::EventTarget()
|
|
{
|
|
return this;
|
|
}
|
|
|
|
nsISerialEventTarget*
|
|
nsThread::SerialEventTarget()
|
|
{
|
|
return this;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
NS_IMPL_ISUPPORTS(nsThread::nsNestedEventTarget, nsIEventTarget)
|
|
|
|
NS_IMETHODIMP
|
|
nsThread::nsNestedEventTarget::DispatchFromScript(nsIRunnable* aEvent, uint32_t aFlags)
|
|
{
|
|
nsCOMPtr<nsIRunnable> event(aEvent);
|
|
return Dispatch(event.forget(), aFlags);
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThread::nsNestedEventTarget::Dispatch(already_AddRefed<nsIRunnable> aEvent, uint32_t aFlags)
|
|
{
|
|
LOG(("THRD(%p) Dispatch [%p %x] to nested loop %p\n", mThread.get().get(),
|
|
/*XXX aEvent*/ nullptr, aFlags, this));
|
|
|
|
return mThread->DispatchInternal(Move(aEvent), aFlags, this);
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThread::nsNestedEventTarget::DelayedDispatch(already_AddRefed<nsIRunnable>, uint32_t)
|
|
{
|
|
return NS_ERROR_NOT_IMPLEMENTED;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThread::nsNestedEventTarget::IsOnCurrentThread(bool* aResult)
|
|
{
|
|
return mThread->IsOnCurrentThread(aResult);
|
|
}
|
|
|
|
NS_IMETHODIMP_(bool)
|
|
nsThread::nsNestedEventTarget::IsOnCurrentThreadInfallible()
|
|
{
|
|
return mThread->IsOnCurrentThread();
|
|
}
|