gecko-dev/gfx/layers/Layers.h

2781 строка
98 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef GFX_LAYERS_H
#define GFX_LAYERS_H
#include <map>
#include <unordered_set>
#include <stdint.h> // for uint32_t, uint64_t, uint8_t
#include <stdio.h> // for FILE
#include <sys/types.h> // for int32_t
#include "FrameMetrics.h" // for FrameMetrics
#include "Units.h" // for LayerMargin, LayerPoint, ParentLayerIntRect
#include "gfxContext.h"
#include "gfxTypes.h"
#include "gfxPoint.h" // for gfxPoint
#include "gfxRect.h" // for gfxRect
#include "gfx2DGlue.h"
#include "mozilla/Assertions.h" // for MOZ_ASSERT_HELPER2, etc
#include "mozilla/Array.h"
#include "mozilla/DebugOnly.h" // for DebugOnly
#include "mozilla/EventForwards.h" // for nsPaintEvent
#include "mozilla/Maybe.h" // for Maybe
#include "mozilla/Poison.h"
#include "mozilla/RefPtr.h" // for already_AddRefed
#include "mozilla/TimeStamp.h" // for TimeStamp, TimeDuration
#include "mozilla/UniquePtr.h" // for UniquePtr
#include "mozilla/dom/Animation.h" // for dom::Animation
#include "mozilla/gfx/BaseMargin.h" // for BaseMargin
#include "mozilla/gfx/BasePoint.h" // for BasePoint
#include "mozilla/gfx/Point.h" // for IntSize
#include "mozilla/gfx/TiledRegion.h" // for TiledIntRegion
#include "mozilla/gfx/Types.h" // for SurfaceFormat
#include "mozilla/gfx/UserData.h" // for UserData, etc
#include "mozilla/layers/AnimationInfo.h" // for AnimationInfo
#include "mozilla/layers/BSPTree.h" // for LayerPolygon
#include "mozilla/layers/CanvasRenderer.h"
#include "mozilla/layers/LayerAttributes.h"
#include "mozilla/layers/LayersTypes.h"
#include "mozilla/webrender/WebRenderTypes.h"
#include "mozilla/mozalloc.h" // for operator delete, etc
#include "nsCOMPtr.h" // for already_AddRefed
#include "nsCSSPropertyID.h" // for nsCSSPropertyID
#include "nsDebug.h" // for NS_ASSERTION
#include "nsISupportsImpl.h" // for Layer::Release, etc
#include "nsRect.h" // for mozilla::gfx::IntRect
#include "nsRefPtrHashtable.h" // for nsRefPtrHashtable
#include "nsRegion.h" // for nsIntRegion
#include "nsString.h" // for nsCString
#include "nsTArray.h" // for nsTArray
#include "nsTArrayForwardDeclare.h" // for nsTArray
#include "nscore.h" // for nsACString, nsAString
#include "mozilla/Logging.h" // for PRLogModuleInfo
#include "nsIWidget.h" // For plugin window configuration information structs
#include "ImageContainer.h"
class gfxContext;
class nsDisplayListBuilder;
class nsDisplayItem;
extern uint8_t gLayerManagerLayerBuilder;
namespace mozilla {
class ComputedTimingFunction;
class FrameLayerBuilder;
namespace gl {
class GLContext;
} // namespace gl
namespace gfx {
class DrawTarget;
} // namespace gfx
namespace layers {
class Animation;
class AsyncPanZoomController;
class BasicLayerManager;
class ClientLayerManager;
class HostLayerManager;
class Layer;
class LayerMetricsWrapper;
class PaintedLayer;
class ContainerLayer;
class ImageLayer;
class ColorLayer;
class CompositorAnimations;
class CompositorBridgeChild;
class CanvasLayer;
class ReadbackLayer;
class ReadbackProcessor;
class RefLayer;
class HostLayer;
class FocusTarget;
class KnowsCompositor;
class ShadowableLayer;
class ShadowLayerForwarder;
class LayerManagerComposite;
class SpecificLayerAttributes;
class TransactionIdAllocator;
class Compositor;
class FrameUniformityData;
class PersistentBufferProvider;
class GlyphArray;
class WebRenderLayerManager;
struct AnimData;
namespace layerscope {
class LayersPacket;
} // namespace layerscope
#define MOZ_LAYER_DECL_NAME(n, e) \
const char* Name() const override { return n; } \
LayerType GetType() const override { return e; } \
static LayerType Type() { return e; }
// Defined in LayerUserData.h; please include that file instead.
class LayerUserData;
class DidCompositeObserver {
public:
virtual void DidComposite() = 0;
};
class FrameRecorder {
public:
/**
* Record (and return) frame-intervals and paint-times for frames which were
* presented between calling StartFrameTimeRecording and
* StopFrameTimeRecording.
*
* - Uses a cyclic buffer and serves concurrent consumers, so if Stop is
* called too late
* (elements were overwritten since Start), result is considered invalid
* and hence empty.)
* - Buffer is capable of holding 10 seconds @ 60fps (or more if frames were
* less frequent).
* Can be changed (up to 1 hour) via pref:
* toolkit.framesRecording.bufferSize.
* - Note: the first frame-interval may be longer than expected because last
* frame
* might have been presented some time before calling
* StartFrameTimeRecording.
*/
/**
* Returns a handle which represents current recording start position.
*/
virtual uint32_t StartFrameTimeRecording(int32_t aBufferSize);
/**
* Clears, then populates aFrameIntervals with the recorded frame timing
* data. The array will be empty if data was overwritten since
* aStartIndex was obtained.
*/
virtual void StopFrameTimeRecording(uint32_t aStartIndex,
nsTArray<float>& aFrameIntervals);
void RecordFrame();
private:
struct FramesTimingRecording {
// Stores state and data for frame intervals and paint times recording.
// see LayerManager::StartFrameTimeRecording() at Layers.cpp for more
// details.
FramesTimingRecording()
: mNextIndex(0),
mLatestStartIndex(0),
mCurrentRunStartIndex(0),
mIsPaused(true) {}
nsTArray<float> mIntervals;
TimeStamp mLastFrameTime;
uint32_t mNextIndex;
uint32_t mLatestStartIndex;
uint32_t mCurrentRunStartIndex;
bool mIsPaused;
};
FramesTimingRecording mRecording;
};
/*
* Motivation: For truly smooth animation and video playback, we need to
* be able to compose frames and render them on a dedicated thread (i.e.
* off the main thread where DOM manipulation, script execution and layout
* induce difficult-to-bound latency). This requires Gecko to construct
* some kind of persistent scene structure (graph or tree) that can be
* safely transmitted across threads. We have other scenarios (e.g. mobile
* browsing) where retaining some rendered data between paints is desired
* for performance, so again we need a retained scene structure.
*
* Our retained scene structure is a layer tree. Each layer represents
* content which can be composited onto a destination surface; the root
* layer is usually composited into a window, and non-root layers are
* composited into their parent layers. Layers have attributes (e.g.
* opacity and clipping) that influence their compositing.
*
* We want to support a variety of layer implementations, including
* a simple "immediate mode" implementation that doesn't retain any
* rendered data between paints (i.e. uses cairo in just the way that
* Gecko used it before layers were introduced). But we also don't want
* to have bifurcated "layers"/"non-layers" rendering paths in Gecko.
* Therefore the layers API is carefully designed to permit maximally
* efficient implementation in an "immediate mode" style. See the
* BasicLayerManager for such an implementation.
*/
/**
* A LayerManager controls a tree of layers. All layers in the tree
* must use the same LayerManager.
*
* All modifications to a layer tree must happen inside a transaction.
* Only the state of the layer tree at the end of a transaction is
* rendered. Transactions cannot be nested
*
* Each transaction has two phases:
* 1) Construction: layers are created, inserted, removed and have
* properties set on them in this phase.
* BeginTransaction and BeginTransactionWithTarget start a transaction in
* the Construction phase.
* 2) Drawing: PaintedLayers are rendered into in this phase, in tree
* order. When the client has finished drawing into the PaintedLayers, it should
* call EndTransaction to complete the transaction.
*
* All layer API calls happen on the main thread.
*
* Layers are refcounted. The layer manager holds a reference to the
* root layer, and each container layer holds a reference to its children.
*/
class LayerManager : public FrameRecorder {
NS_INLINE_DECL_REFCOUNTING(LayerManager)
protected:
typedef mozilla::gfx::DrawTarget DrawTarget;
typedef mozilla::gfx::IntSize IntSize;
typedef mozilla::gfx::SurfaceFormat SurfaceFormat;
public:
LayerManager()
: mDestroyed(false),
mSnapEffectiveTransforms(true),
mId(0),
mInTransaction(false),
mContainsSVG(false),
mPaintedPixelCount(0) {}
/**
* Release layers and resources held by this layer manager, and mark
* it as destroyed. Should do any cleanup necessary in preparation
* for its widget going away. After this call, only user data calls
* are valid on the layer manager.
*/
virtual void Destroy() {
mDestroyed = true;
mUserData.Destroy();
mRoot = nullptr;
mPartialPrerenderedAnimations.Clear();
}
bool IsDestroyed() { return mDestroyed; }
virtual ShadowLayerForwarder* AsShadowForwarder() { return nullptr; }
virtual KnowsCompositor* AsKnowsCompositor() { return nullptr; }
virtual LayerManagerComposite* AsLayerManagerComposite() { return nullptr; }
virtual ClientLayerManager* AsClientLayerManager() { return nullptr; }
virtual BasicLayerManager* AsBasicLayerManager() { return nullptr; }
virtual HostLayerManager* AsHostLayerManager() { return nullptr; }
virtual WebRenderLayerManager* AsWebRenderLayerManager() { return nullptr; }
/**
* Returns true if this LayerManager is owned by an nsIWidget,
* and is used for drawing into the widget.
*/
virtual bool IsWidgetLayerManager() { return true; }
virtual bool IsInactiveLayerManager() { return false; }
/**
* Start a new transaction. Nested transactions are not allowed so
* there must be no transaction currently in progress.
* This transaction will update the state of the window from which
* this LayerManager was obtained.
*/
virtual bool BeginTransaction(const nsCString& aURL = nsCString()) = 0;
/**
* Start a new transaction. Nested transactions are not allowed so
* there must be no transaction currently in progress.
* This transaction will render the contents of the layer tree to
* the given target context. The rendering will be complete when
* EndTransaction returns.
*/
virtual bool BeginTransactionWithTarget(
gfxContext* aTarget, const nsCString& aURL = nsCString()) = 0;
enum EndTransactionFlags {
END_DEFAULT = 0,
END_NO_IMMEDIATE_REDRAW = 1 << 0, // Do not perform the drawing phase
END_NO_COMPOSITE =
1 << 1, // Do not composite after drawing painted layer contents.
END_NO_REMOTE_COMPOSITE = 1 << 2 // Do not schedule a composition with a
// remote Compositor, if one exists.
};
FrameLayerBuilder* GetLayerBuilder() {
return reinterpret_cast<FrameLayerBuilder*>(
GetUserData(&gLayerManagerLayerBuilder));
}
/**
* Attempts to end an "empty transaction". There must have been no
* changes to the layer tree since the BeginTransaction().
* It's possible for this to fail; PaintedLayers may need to be updated
* due to VRAM data being lost, for example. In such cases this method
* returns false, and the caller must proceed with a normal layer tree
* update and EndTransaction.
*/
virtual bool EndEmptyTransaction(
EndTransactionFlags aFlags = END_DEFAULT) = 0;
/**
* Function called to draw the contents of each PaintedLayer.
* aRegionToDraw contains the region that needs to be drawn.
* This would normally be a subregion of the visible region.
* The callee must draw all of aRegionToDraw. Drawing outside
* aRegionToDraw will be clipped out or ignored.
* The callee must draw all of aRegionToDraw.
* This region is relative to 0,0 in the PaintedLayer.
*
* aDirtyRegion should contain the total region that is be due to be painted
* during the transaction, even though only aRegionToDraw should be drawn
* during this call. aRegionToDraw must be entirely contained within
* aDirtyRegion. If the total dirty region is unknown it is okay to pass a
* subregion of the total dirty region, e.g. just aRegionToDraw, though it
* may not be as efficient.
*
* aRegionToInvalidate contains a region whose contents have been
* changed by the layer manager and which must therefore be invalidated.
* For example, this could be non-empty if a retained layer internally
* switches from RGBA to RGB or back ... we might want to repaint it to
* consistently use subpixel-AA or not.
* This region is relative to 0,0 in the PaintedLayer.
* aRegionToInvalidate may contain areas that are outside
* aRegionToDraw; the callee must ensure that these areas are repainted
* in the current layer manager transaction or in a later layer
* manager transaction.
*
* aContext must not be used after the call has returned.
* We guarantee that buffered contents in the visible
* region are valid once drawing is complete.
*
* The origin of aContext is 0,0 in the PaintedLayer.
*/
typedef void (*DrawPaintedLayerCallback)(
PaintedLayer* aLayer, gfxContext* aContext,
const nsIntRegion& aRegionToDraw, const nsIntRegion& aDirtyRegion,
DrawRegionClip aClip, const nsIntRegion& aRegionToInvalidate,
void* aCallbackData);
/**
* Finish the construction phase of the transaction, perform the
* drawing phase, and end the transaction.
* During the drawing phase, all PaintedLayers in the tree are
* drawn in tree order, exactly once each, except for those layers
* where it is known that the visible region is empty.
*/
virtual void EndTransaction(DrawPaintedLayerCallback aCallback,
void* aCallbackData,
EndTransactionFlags aFlags = END_DEFAULT) = 0;
/**
* Schedule a composition with the remote Compositor, if one exists
* for this LayerManager. Useful in conjunction with the
* END_NO_REMOTE_COMPOSITE flag to EndTransaction.
*/
virtual void ScheduleComposite() {}
virtual void SetNeedsComposite(bool aNeedsComposite) {}
virtual bool NeedsComposite() const { return false; }
virtual bool HasShadowManagerInternal() const { return false; }
bool HasShadowManager() const { return HasShadowManagerInternal(); }
virtual void StorePluginWidgetConfigurations(
const nsTArray<nsIWidget::Configuration>& aConfigurations) {}
bool IsSnappingEffectiveTransforms() { return mSnapEffectiveTransforms; }
/**
* Returns true if the underlying platform can properly support layers with
* SurfaceMode::SURFACE_COMPONENT_ALPHA.
*/
static bool LayersComponentAlphaEnabled();
/**
* Returns true if this LayerManager can properly support layers with
* SurfaceMode::SURFACE_COMPONENT_ALPHA. LayerManagers that can't will use
* transparent surfaces (and lose subpixel-AA for text).
*/
virtual bool AreComponentAlphaLayersEnabled();
/**
* Returns true if this LayerManager always requires an intermediate surface
* to render blend operations.
*/
virtual bool BlendingRequiresIntermediateSurface() { return false; }
/**
* CONSTRUCTION PHASE ONLY
* Set the root layer. The root layer is initially null. If there is
* no root layer, EndTransaction won't draw anything.
*/
virtual void SetRoot(Layer* aLayer) = 0;
/**
* Can be called anytime
*/
Layer* GetRoot() { return mRoot; }
/**
* Does a breadth-first search from the root layer to find the first
* scrollable layer, and returns its ViewID. Note that there may be
* other layers in the tree which share the same ViewID.
* Can be called any time.
*/
ScrollableLayerGuid::ViewID GetRootScrollableLayerId();
/**
* Returns a LayerMetricsWrapper containing the Root
* Content Documents layer.
*/
LayerMetricsWrapper GetRootContentLayer();
/**
* CONSTRUCTION PHASE ONLY
* Called when a managee has mutated.
* Subclasses overriding this method must first call their
* superclass's impl
*/
virtual void Mutated(Layer* aLayer) {}
virtual void MutatedSimple(Layer* aLayer) {}
/**
* Hints that can be used during PaintedLayer creation to influence the type
* or properties of the layer created.
*
* NONE: No hint.
* SCROLLABLE: This layer may represent scrollable content.
*/
enum PaintedLayerCreationHint { NONE, SCROLLABLE };
/**
* CONSTRUCTION PHASE ONLY
* Create a PaintedLayer for this manager's layer tree.
*/
virtual already_AddRefed<PaintedLayer> CreatePaintedLayer() = 0;
/**
* CONSTRUCTION PHASE ONLY
* Create a PaintedLayer for this manager's layer tree, with a creation hint
* parameter to help optimise the type of layer created.
*/
virtual already_AddRefed<PaintedLayer> CreatePaintedLayerWithHint(
PaintedLayerCreationHint) {
return CreatePaintedLayer();
}
/**
* CONSTRUCTION PHASE ONLY
* Create a ContainerLayer for this manager's layer tree.
*/
virtual already_AddRefed<ContainerLayer> CreateContainerLayer() = 0;
/**
* CONSTRUCTION PHASE ONLY
* Create an ImageLayer for this manager's layer tree.
*/
virtual already_AddRefed<ImageLayer> CreateImageLayer() = 0;
/**
* CONSTRUCTION PHASE ONLY
* Create a ColorLayer for this manager's layer tree.
*/
virtual already_AddRefed<ColorLayer> CreateColorLayer() = 0;
/**
* CONSTRUCTION PHASE ONLY
* Create a CanvasLayer for this manager's layer tree.
*/
virtual already_AddRefed<CanvasLayer> CreateCanvasLayer() = 0;
/**
* CONSTRUCTION PHASE ONLY
* Create a ReadbackLayer for this manager's layer tree.
*/
virtual already_AddRefed<ReadbackLayer> CreateReadbackLayer() {
return nullptr;
}
/**
* CONSTRUCTION PHASE ONLY
* Create a RefLayer for this manager's layer tree.
*/
virtual already_AddRefed<RefLayer> CreateRefLayer() { return nullptr; }
/**
* Can be called anytime, from any thread.
*
* Creates an Image container which forwards its images to the compositor
* within layer transactions on the main thread or asynchronously using the
* ImageBridge IPDL protocol. In the case of asynchronous, If the protocol is
* not available, the returned ImageContainer will forward images within layer
* transactions.
*/
static already_AddRefed<ImageContainer> CreateImageContainer(
ImageContainer::Mode flag = ImageContainer::SYNCHRONOUS);
/**
* Type of layer manager his is. This is to be used sparsely in order to
* avoid a lot of Layers backend specific code. It should be used only when
* Layers backend specific functionality is necessary.
*/
virtual LayersBackend GetBackendType() = 0;
/**
* Type of layers backend that will be used to composite this layer tree.
* When compositing is done remotely, then this returns the layers type
* of the compositor.
*/
virtual LayersBackend GetCompositorBackendType() { return GetBackendType(); }
/**
* Creates a DrawTarget which is optimized for inter-operating with this
* layer manager.
*/
virtual already_AddRefed<DrawTarget> CreateOptimalDrawTarget(
const IntSize& aSize, SurfaceFormat imageFormat);
/**
* Creates a DrawTarget for alpha masks which is optimized for inter-
* operating with this layer manager. In contrast to CreateOptimalDrawTarget,
* this surface is optimised for drawing alpha only and we assume that
* drawing the mask is fairly simple.
*/
virtual already_AddRefed<DrawTarget> CreateOptimalMaskDrawTarget(
const IntSize& aSize);
/**
* Creates a DrawTarget for use with canvas which is optimized for
* inter-operating with this layermanager.
*/
virtual already_AddRefed<mozilla::gfx::DrawTarget> CreateDrawTarget(
const mozilla::gfx::IntSize& aSize, mozilla::gfx::SurfaceFormat aFormat);
/**
* Creates a PersistentBufferProvider for use with canvas which is optimized
* for inter-operating with this layermanager.
*/
virtual already_AddRefed<PersistentBufferProvider>
CreatePersistentBufferProvider(const mozilla::gfx::IntSize& aSize,
mozilla::gfx::SurfaceFormat aFormat);
virtual bool CanUseCanvasLayerForSize(const gfx::IntSize& aSize) {
return true;
}
/**
* returns the maximum texture size on this layer backend, or INT32_MAX
* if there is no maximum
*/
virtual int32_t GetMaxTextureSize() const = 0;
/**
* Return the name of the layer manager's backend.
*/
virtual void GetBackendName(nsAString& aName) = 0;
/**
* This setter can be used anytime. The user data for all keys is
* initially null. Ownership pases to the layer manager.
*/
void SetUserData(void* aKey, LayerUserData* aData) {
mUserData.Add(static_cast<gfx::UserDataKey*>(aKey), aData,
LayerUserDataDestroy);
}
/**
* This can be used anytime. Ownership passes to the caller!
*/
UniquePtr<LayerUserData> RemoveUserData(void* aKey);
/**
* This getter can be used anytime.
*/
bool HasUserData(void* aKey) {
return mUserData.Has(static_cast<gfx::UserDataKey*>(aKey));
}
/**
* This getter can be used anytime. Ownership is retained by the layer
* manager.
*/
LayerUserData* GetUserData(void* aKey) const {
return static_cast<LayerUserData*>(
mUserData.Get(static_cast<gfx::UserDataKey*>(aKey)));
}
/**
* Must be called outside of a layers transaction.
*
* For the subtree rooted at |aSubtree|, this attempts to free up
* any free-able resources like retained buffers, but may do nothing
* at all. After this call, the layer tree is left in an undefined
* state; the layers in |aSubtree|'s subtree may no longer have
* buffers with valid content and may no longer be able to draw
* their visible and valid regions.
*
* In general, a painting or forwarding transaction on |this| must
* complete on the tree before it returns to a valid state.
*
* Resource freeing begins from |aSubtree| or |mRoot| if |aSubtree|
* is null. |aSubtree|'s manager must be this.
*/
virtual void ClearCachedResources(Layer* aSubtree = nullptr) {}
/**
* Flag the next paint as the first for a document.
*/
virtual void SetIsFirstPaint() {}
virtual bool GetIsFirstPaint() const { return false; }
/**
* Set the current focus target to be sent with the next paint.
*/
virtual void SetFocusTarget(const FocusTarget& aFocusTarget) {}
/**
* Make sure that the previous transaction has been entirely
* completed.
*
* Note: This may sychronously wait on a remote compositor
* to complete rendering.
*/
virtual void FlushRendering() {}
/**
* Make sure that the previous transaction has been
* received. This will synchronsly wait on a remote compositor. */
virtual void WaitOnTransactionProcessed() {}
virtual void SendInvalidRegion(const nsIntRegion& aRegion) {}
/**
* Checks if we need to invalidate the OS widget to trigger
* painting when updating this layer manager.
*/
virtual bool NeedsWidgetInvalidation() { return true; }
virtual const char* Name() const { return "???"; }
/**
* Dump information about this layer manager and its managed tree to
* aStream.
*/
void Dump(std::stringstream& aStream, const char* aPrefix = "",
bool aDumpHtml = false, bool aSorted = false);
/**
* Dump information about just this layer manager itself to aStream
*/
void DumpSelf(std::stringstream& aStream, const char* aPrefix = "",
bool aSorted = false);
void Dump(bool aSorted = false);
/**
* Dump information about this layer manager and its managed tree to
* layerscope packet.
*/
void Dump(layerscope::LayersPacket* aPacket);
/**
* Log information about this layer manager and its managed tree to
* the NSPR log (if enabled for "Layers").
*/
void Log(const char* aPrefix = "");
/**
* Log information about just this layer manager itself to the NSPR
* log (if enabled for "Layers").
*/
void LogSelf(const char* aPrefix = "");
static bool IsLogEnabled();
static mozilla::LogModule* GetLog();
bool IsCompositingCheap(LayersBackend aBackend) {
// LayersBackend::LAYERS_NONE is an error state, but in that case we should
// try to avoid loading the compositor!
return LayersBackend::LAYERS_BASIC != aBackend &&
LayersBackend::LAYERS_NONE != aBackend;
}
virtual bool IsCompositingCheap() { return true; }
bool IsInTransaction() const { return mInTransaction; }
virtual void GetFrameUniformity(FrameUniformityData* aOutData) {}
virtual void SetRegionToClear(const nsIntRegion& aRegion) {
mRegionToClear = aRegion;
}
virtual float RequestProperty(const nsAString& property) { return -1; }
const TimeStamp& GetAnimationReadyTime() const { return mAnimationReadyTime; }
virtual bool AsyncPanZoomEnabled() const { return false; }
static void LayerUserDataDestroy(void* data);
void AddPaintedPixelCount(int32_t aCount) { mPaintedPixelCount += aCount; }
uint32_t GetAndClearPaintedPixelCount() {
uint32_t count = mPaintedPixelCount;
mPaintedPixelCount = 0;
return count;
}
virtual void SetLayersObserverEpoch(LayersObserverEpoch aEpoch) {}
virtual void DidComposite(TransactionId aTransactionId,
const mozilla::TimeStamp& aCompositeStart,
const mozilla::TimeStamp& aCompositeEnd) {}
virtual void AddDidCompositeObserver(DidCompositeObserver* aObserver) {
MOZ_CRASH("GFX: LayerManager");
}
virtual void RemoveDidCompositeObserver(DidCompositeObserver* aObserver) {
MOZ_CRASH("GFX: LayerManager");
}
virtual void UpdateTextureFactoryIdentifier(
const TextureFactoryIdentifier& aNewIdentifier) {}
virtual TextureFactoryIdentifier GetTextureFactoryIdentifier() {
return TextureFactoryIdentifier();
}
virtual void SetTransactionIdAllocator(TransactionIdAllocator* aAllocator) {}
virtual TransactionId GetLastTransactionId() { return TransactionId{0}; }
virtual CompositorBridgeChild* GetCompositorBridgeChild() { return nullptr; }
void RegisterPayload(const CompositionPayload& aPayload) {
mPayload.AppendElement(aPayload);
MOZ_ASSERT(mPayload.Length() < 10000);
}
void RegisterPayloads(const nsTArray<CompositionPayload>& aPayload) {
mPayload.AppendElements(aPayload);
MOZ_ASSERT(mPayload.Length() < 10000);
}
virtual void PayloadPresented();
void SetContainsSVG(bool aContainsSVG) { mContainsSVG = aContainsSVG; }
void AddPartialPrerenderedAnimation(uint64_t aCompositorAnimationId,
dom::Animation* aAnimation);
void RemovePartialPrerenderedAnimation(uint64_t aCompositorAnimationId,
dom::Animation* aAnimation);
void UpdatePartialPrerenderedAnimations(
const nsTArray<uint64_t>& aJankedAnimations);
protected:
RefPtr<Layer> mRoot;
gfx::UserData mUserData;
bool mDestroyed;
bool mSnapEffectiveTransforms;
nsIntRegion mRegionToClear;
// Protected destructor, to discourage deletion outside of Release():
virtual ~LayerManager() = default;
// Print interesting information about this into aStreamo. Internally
// used to implement Dump*() and Log*().
virtual void PrintInfo(std::stringstream& aStream, const char* aPrefix);
// Print interesting information about this into layerscope packet.
// Internally used to implement Dump().
virtual void DumpPacket(layerscope::LayersPacket* aPacket);
uint64_t mId;
bool mInTransaction;
// Used for tracking CONTENT_FRAME_TIME_WITH_SVG
bool mContainsSVG;
// The time when painting most recently finished. This is recorded so that
// we can time any play-pending animations from this point.
TimeStamp mAnimationReadyTime;
// The count of pixels that were painted in the current transaction.
uint32_t mPaintedPixelCount;
// The payload associated with currently pending painting work, for
// client layer managers that typically means payload that is part of the
// 'upcoming transaction', for HostLayerManagers this typically means
// what has been included in received transactions to be presented on the
// next composite.
// IMPORTANT: Clients should take care to clear this or risk it slowly
// growing out of control.
nsTArray<CompositionPayload> mPayload;
// Transform animations which are not fully pre-rendered because it's on a
// large frame. We need to update the pre-rendered area once after we tried
// to composite area which is outside of the pre-rendered area on the
// compositor.
nsRefPtrHashtable<nsUint64HashKey, dom::Animation>
mPartialPrerenderedAnimations;
public:
/*
* Methods to store/get/clear a "pending scroll info update" object on a
* per-scrollid basis. This is used for empty transactions that push over
* scroll position updates to the APZ code.
*/
virtual bool SetPendingScrollUpdateForNextTransaction(
ScrollableLayerGuid::ViewID aScrollId,
const ScrollPositionUpdate& aUpdateInfo);
Maybe<ScrollPositionUpdate> GetPendingScrollInfoUpdate(
ScrollableLayerGuid::ViewID aScrollId);
std::unordered_set<ScrollableLayerGuid::ViewID>
ClearPendingScrollInfoUpdate();
protected:
ScrollUpdatesMap mPendingScrollUpdates;
};
/**
* A Layer represents anything that can be rendered onto a destination
* surface.
*/
class Layer {
NS_INLINE_DECL_REFCOUNTING(Layer)
using AnimationArray = nsTArray<layers::Animation>;
public:
// Keep these in alphabetical order
enum LayerType {
TYPE_CANVAS,
TYPE_COLOR,
TYPE_CONTAINER,
TYPE_DISPLAYITEM,
TYPE_IMAGE,
TYPE_READBACK,
TYPE_REF,
TYPE_SHADOW,
TYPE_PAINTED
};
/**
* Returns the LayerManager this Layer belongs to. Note that the layer
* manager might be in a destroyed state, at which point it's only
* valid to set/get user data from it.
*/
LayerManager* Manager() { return mManager; }
/**
* This should only be called when changing layer managers from HostLayers.
*/
void SetManager(LayerManager* aManager, HostLayer* aSelf);
enum {
/**
* If this is set, the caller is promising that by the end of this
* transaction the entire visible region (as specified by
* SetVisibleRegion) will be filled with opaque content.
*/
CONTENT_OPAQUE = 0x01,
/**
* If this is set, the caller is notifying that the contents of this layer
* require per-component alpha for optimal fidelity. However, there is no
* guarantee that component alpha will be supported for this layer at
* paint time.
* This should never be set at the same time as CONTENT_OPAQUE.
*/
CONTENT_COMPONENT_ALPHA = 0x02,
/**
* If this is set then one of the descendant layers of this one has
* CONTENT_COMPONENT_ALPHA set.
*/
CONTENT_COMPONENT_ALPHA_DESCENDANT = 0x04,
/**
* If this is set then this layer is part of a preserve-3d group, and should
* be sorted with sibling layers that are also part of the same group.
*/
CONTENT_EXTEND_3D_CONTEXT = 0x08,
/**
* This indicates that the transform may be changed on during an empty
* transaction where there is no possibility of redrawing the content, so
* the implementation should be ready for that.
*/
CONTENT_MAY_CHANGE_TRANSFORM = 0x10,
/**
* Disable subpixel AA for this layer. This is used if the display isn't
* suited for subpixel AA like hidpi or rotated content.
*/
CONTENT_DISABLE_SUBPIXEL_AA = 0x20,
/**
* If this is set then the layer contains content that may look
* objectionable if not handled as an active layer (such as text with an
* animated transform). This is for internal layout/FrameLayerBuilder usage
* only until flattening code is obsoleted. See bug 633097
*/
CONTENT_DISABLE_FLATTENING = 0x40,
/**
* This layer is hidden if the backface of the layer is visible
* to user.
*/
CONTENT_BACKFACE_HIDDEN = 0x80,
/**
* This layer should be snapped to the pixel grid.
*/
CONTENT_SNAP_TO_GRID = 0x100
};
/**
* CONSTRUCTION PHASE ONLY
* This lets layout make some promises about what will be drawn into the
* visible region of the PaintedLayer. This enables internal quality
* and performance optimizations.
*/
void SetContentFlags(uint32_t aFlags) {
NS_ASSERTION((aFlags & (CONTENT_OPAQUE | CONTENT_COMPONENT_ALPHA)) !=
(CONTENT_OPAQUE | CONTENT_COMPONENT_ALPHA),
"Can't be opaque and require component alpha");
if (mSimpleAttrs.SetContentFlags(aFlags)) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this,
("Layer::Mutated(%p) ContentFlags", this));
MutatedSimple();
}
}
/**
* CONSTRUCTION PHASE ONLY
* Tell this layer which region will be visible. The visible region
* is a region which contains all the contents of the layer that can
* actually affect the rendering of the window. It can exclude areas
* that are covered by opaque contents of other layers, and it can
* exclude areas where this layer simply contains no content at all.
* (This can be an overapproximation to the "true" visible region.)
*
* There is no general guarantee that drawing outside the bounds of the
* visible region will be ignored. So if a layer draws outside the bounds
* of its visible region, it needs to ensure that what it draws is valid.
*/
virtual void SetVisibleRegion(const LayerIntRegion& aRegion) {
// IsEmpty is required otherwise we get invalidation glitches.
// See bug 1288464 for investigating why.
if (!mVisibleRegion.IsEqual(aRegion) || aRegion.IsEmpty()) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(
this, ("Layer::Mutated(%p) VisibleRegion was %s is %s", this,
mVisibleRegion.ToString().get(), aRegion.ToString().get()));
mVisibleRegion = aRegion;
Mutated();
}
}
/**
* CONSTRUCTION PHASE ONLY
* Set the (sub)document metrics used to render the Layer subtree
* rooted at this. Note that a layer may have multiple FrameMetrics
* objects; calling this function will remove all of them and replace
* them with the provided FrameMetrics. See the documentation for
* SetFrameMetrics(const nsTArray<FrameMetrics>&) for more details.
*/
void SetScrollMetadata(const ScrollMetadata& aScrollMetadata) {
Manager()->ClearPendingScrollInfoUpdate();
if (mScrollMetadata.Length() != 1 ||
mScrollMetadata[0] != aScrollMetadata) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this,
("Layer::Mutated(%p) ScrollMetadata", this));
mScrollMetadata.ReplaceElementsAt(0, mScrollMetadata.Length(),
aScrollMetadata);
ScrollMetadataChanged();
Mutated();
}
}
/**
* CONSTRUCTION PHASE ONLY
* Set the (sub)document metrics used to render the Layer subtree
* rooted at this. There might be multiple metrics on this layer
* because the layer may, for example, be contained inside multiple
* nested scrolling subdocuments. In general a Layer having multiple
* ScrollMetadata objects is conceptually equivalent to having a stack
* of ContainerLayers that have been flattened into this Layer.
* See the documentation in LayerMetricsWrapper.h for a more detailed
* explanation of this conceptual equivalence.
*
* Note also that there is actually a many-to-many relationship between
* Layers and ScrollMetadata, because multiple Layers may have identical
* ScrollMetadata objects. This happens when those layers belong to the
* same scrolling subdocument and therefore end up with the same async
* transform when they are scrolled by the APZ code.
*/
void SetScrollMetadata(const nsTArray<ScrollMetadata>& aMetadataArray) {
Manager()->ClearPendingScrollInfoUpdate();
if (mScrollMetadata != aMetadataArray) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this,
("Layer::Mutated(%p) ScrollMetadata", this));
mScrollMetadata = aMetadataArray.Clone();
ScrollMetadataChanged();
Mutated();
}
}
/*
* Compositor event handling
* =========================
* When a touch-start event (or similar) is sent to the
* AsyncPanZoomController, it needs to decide whether the event should be sent
* to the main thread. Each layer has a list of event handling regions. When
* the compositor needs to determine how to handle a touch event, it scans the
* layer tree from top to bottom in z-order (traversing children before their
* parents). Points outside the clip region for a layer cause that layer (and
* its subtree) to be ignored. If a layer has a mask layer, and that mask
* layer's alpha value is zero at the event point, then the layer and its
* subtree should be ignored. For each layer, if the point is outside its hit
* region, we ignore the layer and move onto the next. If the point is inside
* its hit region but outside the dispatch-to-content region, we can initiate
* a gesture without consulting the content thread. Otherwise we must dispatch
* the event to content. Note that if a layer or any ancestor layer has a
* ForceEmptyHitRegion override in GetEventRegionsOverride() then the
* hit-region must be treated as empty. Similarly, if there is a
* ForceDispatchToContent override then the dispatch-to-content region must be
* treated as encompassing the entire hit region, and therefore we must
* consult the content thread before initiating a gesture. (If both flags are
* set, ForceEmptyHitRegion takes priority.)
*/
/**
* CONSTRUCTION PHASE ONLY
* Set the event handling region.
*/
void SetEventRegions(const EventRegions& aRegions) {
if (mEventRegions != aRegions) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(
this, ("Layer::Mutated(%p) eventregions were %s, now %s", this,
mEventRegions.ToString().get(), aRegions.ToString().get()));
mEventRegions = aRegions;
Mutated();
}
}
/**
* CONSTRUCTION PHASE ONLY
* Set the opacity which will be applied to this layer as it
* is composited to the destination.
*/
void SetOpacity(float aOpacity) {
if (mSimpleAttrs.SetOpacity(aOpacity)) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) Opacity", this));
MutatedSimple();
}
}
void SetMixBlendMode(gfx::CompositionOp aMixBlendMode) {
if (mSimpleAttrs.SetMixBlendMode(aMixBlendMode)) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this,
("Layer::Mutated(%p) MixBlendMode", this));
MutatedSimple();
}
}
void SetForceIsolatedGroup(bool aForceIsolatedGroup) {
if (mSimpleAttrs.SetForceIsolatedGroup(aForceIsolatedGroup)) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(
this, ("Layer::Mutated(%p) ForceIsolatedGroup", this));
MutatedSimple();
}
}
bool GetForceIsolatedGroup() const {
return mSimpleAttrs.GetForceIsolatedGroup();
}
/**
* CONSTRUCTION PHASE ONLY
* Set a clip rect which will be applied to this layer as it is
* composited to the destination. The coordinates are relative to
* the parent layer (i.e. the contents of this layer
* are transformed before this clip rect is applied).
* For the root layer, the coordinates are relative to the widget,
* in device pixels.
* If aRect is null no clipping will be performed.
*/
void SetClipRect(const Maybe<ParentLayerIntRect>& aRect) {
if (mClipRect) {
if (!aRect) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(
this, ("Layer::Mutated(%p) ClipRect was %d,%d,%d,%d is <none>",
this, mClipRect->X(), mClipRect->Y(), mClipRect->Width(),
mClipRect->Height()));
mClipRect.reset();
Mutated();
} else {
if (!aRect->IsEqualEdges(*mClipRect)) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(
this,
("Layer::Mutated(%p) ClipRect was %d,%d,%d,%d is %d,%d,%d,%d",
this, mClipRect->X(), mClipRect->Y(), mClipRect->Width(),
mClipRect->Height(), aRect->X(), aRect->Y(), aRect->Width(),
aRect->Height()));
mClipRect = aRect;
Mutated();
}
}
} else {
if (aRect) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(
this,
("Layer::Mutated(%p) ClipRect was <none> is %d,%d,%d,%d", this,
aRect->X(), aRect->Y(), aRect->Width(), aRect->Height()));
mClipRect = aRect;
Mutated();
}
}
}
/**
* CONSTRUCTION PHASE ONLY
* Set an optional scrolled clip on the layer.
* The scrolled clip, if present, consists of a clip rect and an optional
* mask. This scrolled clip is always scrolled by all scroll frames associated
* with this layer. (By contrast, the scroll clips stored in ScrollMetadata
* are only scrolled by scroll frames above that ScrollMetadata, and the
* layer's mClipRect is always fixed to the layer contents (which may or may
* not be scrolled by some of the scroll frames associated with the layer,
* depending on whether the layer is fixed).)
*/
void SetScrolledClip(const Maybe<LayerClip>& aScrolledClip) {
if (mSimpleAttrs.SetScrolledClip(aScrolledClip)) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this,
("Layer::Mutated(%p) ScrolledClip", this));
MutatedSimple();
}
}
/**
* CONSTRUCTION PHASE ONLY
* Set a layer to mask this layer.
*
* The mask layer should be applied using its effective transform (after it
* is calculated by ComputeEffectiveTransformForMaskLayer), this should use
* this layer's parent's transform and the mask layer's transform, but not
* this layer's. That is, the mask layer is specified relative to this layer's
* position in it's parent layer's coord space.
* Currently, only 2D translations are supported for the mask layer transform.
*
* Ownership of aMaskLayer passes to this.
* Typical use would be an ImageLayer with an alpha image used for masking.
* See also ContainerState::BuildMaskLayer in FrameLayerBuilder.cpp.
*/
void SetMaskLayer(Layer* aMaskLayer) {
#ifdef DEBUG
if (aMaskLayer) {
bool maskIs2D = aMaskLayer->GetTransform().CanDraw2D();
NS_ASSERTION(maskIs2D, "Mask layer has invalid transform.");
}
#endif
if (mMaskLayer != aMaskLayer) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this,
("Layer::Mutated(%p) MaskLayer", this));
mMaskLayer = aMaskLayer;
Mutated();
}
}
/**
* CONSTRUCTION PHASE ONLY
* Add mask layers associated with LayerClips.
*/
void SetAncestorMaskLayers(const nsTArray<RefPtr<Layer>>& aLayers) {
if (aLayers != mAncestorMaskLayers) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(
this, ("Layer::Mutated(%p) AncestorMaskLayers", this));
mAncestorMaskLayers = aLayers.Clone();
Mutated();
}
}
/**
* CONSTRUCTION PHASE ONLY
* Add a mask layer associated with a LayerClip.
*/
void AddAncestorMaskLayer(const RefPtr<Layer>& aLayer) {
mAncestorMaskLayers.AppendElement(aLayer);
Mutated();
}
/**
* CONSTRUCTION PHASE ONLY
* Tell this layer what its transform should be. The transformation
* is applied when compositing the layer into its parent container.
*/
void SetBaseTransform(const gfx::Matrix4x4& aMatrix) {
NS_ASSERTION(!aMatrix.IsSingular(),
"Shouldn't be trying to draw with a singular matrix!");
mPendingTransform = nullptr;
if (!mSimpleAttrs.SetTransform(aMatrix)) {
return;
}
MOZ_LAYERS_LOG_IF_SHADOWABLE(this,
("Layer::Mutated(%p) BaseTransform", this));
MutatedSimple();
}
/**
* Can be called at any time.
*
* Like SetBaseTransform(), but can be called before the next
* transform (i.e. outside an open transaction). Semantically, this
* method enqueues a new transform value to be set immediately after
* the next transaction is opened.
*/
void SetBaseTransformForNextTransaction(const gfx::Matrix4x4& aMatrix) {
mPendingTransform = mozilla::MakeUnique<gfx::Matrix4x4>(aMatrix);
}
void SetPostScale(float aXScale, float aYScale) {
if (!mSimpleAttrs.SetPostScale(aXScale, aYScale)) {
return;
}
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) PostScale", this));
MutatedSimple();
}
/**
* CONSTRUCTION PHASE ONLY
* A layer is "fixed position" when it draws content from a content
* (not chrome) document, the topmost content document has a root scrollframe
* with a displayport, but the layer does not move when that displayport
* scrolls.
*/
void SetIsFixedPosition(bool aFixedPosition) {
if (mSimpleAttrs.SetIsFixedPosition(aFixedPosition)) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(
this, ("Layer::Mutated(%p) IsFixedPosition", this));
MutatedSimple();
}
}
void SetIsAsyncZoomContainer(const Maybe<FrameMetrics::ViewID>& aViewId) {
if (mSimpleAttrs.SetIsAsyncZoomContainer(aViewId)) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(
this, ("Layer::Mutated(%p) IsAsyncZoomContainer", this));
MutatedSimple();
}
}
/**
* CONSTRUCTION PHASE ONLY
* This flag is true when the transform on the layer is a perspective
* transform. The compositor treats perspective transforms specially
* for async scrolling purposes.
*/
void SetTransformIsPerspective(bool aTransformIsPerspective) {
if (mSimpleAttrs.SetTransformIsPerspective(aTransformIsPerspective)) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(
this, ("Layer::Mutated(%p) TransformIsPerspective", this));
MutatedSimple();
}
}
// This is only called when the layer tree is updated. Do not call this from
// layout code. To add an animation to this layer, use AddAnimation.
void SetCompositorAnimations(
const LayersId& aLayersId,
const CompositorAnimations& aCompositorAnimations);
// Go through all animations in this layer and its children and, for
// any animations with a null start time, update their start time such
// that at |aReadyTime| the animation's current time corresponds to its
// 'initial current time' value.
void StartPendingAnimations(const TimeStamp& aReadyTime);
void ClearCompositorAnimations();
/**
* CONSTRUCTION PHASE ONLY
* If a layer represents a fixed position element, this data is stored on the
* layer for use by the compositor.
*
* - |aScrollId| identifies the scroll frame that this element is fixed
* with respect to.
*
* - |aAnchor| is the point on the layer that is considered the "anchor"
* point, that is, the point which remains in the same position when
* compositing the layer tree with a transformation (such as when
* asynchronously scrolling and zooming).
*
* - |aSides| is the set of sides to which the element is fixed relative to.
* This is used if the viewport size is changed in the compositor and
* fixed position items need to shift accordingly. This value is made up
* combining appropriate values from mozilla::SideBits.
*/
void SetFixedPositionData(ScrollableLayerGuid::ViewID aScrollId,
const LayerPoint& aAnchor, SideBits aSides) {
if (mSimpleAttrs.SetFixedPositionData(aScrollId, aAnchor, aSides)) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(
this, ("Layer::Mutated(%p) FixedPositionData", this));
MutatedSimple();
}
}
/**
* CONSTRUCTION PHASE ONLY
* If a layer is "sticky position", |aScrollId| holds the scroll identifier
* of the scrollable content that contains it. The difference between the two
* rectangles |aOuter| and |aInner| is treated as two intervals in each
* dimension, with the current scroll position at the origin. For each
* dimension, while that component of the scroll position lies within either
* interval, the layer should not move relative to its scrolling container.
*/
void SetStickyPositionData(ScrollableLayerGuid::ViewID aScrollId,
LayerRectAbsolute aOuter,
LayerRectAbsolute aInner) {
if (mSimpleAttrs.SetStickyPositionData(aScrollId, aOuter, aInner)) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(
this, ("Layer::Mutated(%p) StickyPositionData", this));
MutatedSimple();
}
}
/**
* CONSTRUCTION PHASE ONLY
* If a layer is a scroll thumb container layer or a scrollbar container
* layer, set the scroll identifier of the scroll frame scrolled by
* the scrollbar, and other data related to the scrollbar.
*/
void SetScrollbarData(const ScrollbarData& aThumbData) {
if (mSimpleAttrs.SetScrollbarData(aThumbData)) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this,
("Layer::Mutated(%p) ScrollbarData", this));
MutatedSimple();
}
}
// Used when forwarding transactions. Do not use at any other time.
void SetSimpleAttributes(const SimpleLayerAttributes& aAttrs) {
mSimpleAttrs = aAttrs;
}
const SimpleLayerAttributes& GetSimpleAttributes() const {
return mSimpleAttrs;
}
// These getters can be used anytime.
float GetOpacity() { return mSimpleAttrs.GetOpacity(); }
gfx::CompositionOp GetMixBlendMode() const {
return mSimpleAttrs.GetMixBlendMode();
}
const Maybe<ParentLayerIntRect>& GetClipRect() const { return mClipRect; }
const Maybe<LayerClip>& GetScrolledClip() const {
return mSimpleAttrs.GetScrolledClip();
}
Maybe<ParentLayerIntRect> GetScrolledClipRect() const;
uint32_t GetContentFlags() { return mSimpleAttrs.GetContentFlags(); }
const LayerIntRegion& GetVisibleRegion() const { return mVisibleRegion; }
const ScrollMetadata& GetScrollMetadata(uint32_t aIndex) const;
const FrameMetrics& GetFrameMetrics(uint32_t aIndex) const;
uint32_t GetScrollMetadataCount() const { return mScrollMetadata.Length(); }
const nsTArray<ScrollMetadata>& GetAllScrollMetadata() {
return mScrollMetadata;
}
bool HasScrollableFrameMetrics() const;
bool IsScrollableWithoutContent() const;
const EventRegions& GetEventRegions() const { return mEventRegions; }
ContainerLayer* GetParent() const { return mParent; }
Layer* GetNextSibling() {
if (mNextSibling) {
mNextSibling->CheckCanary();
}
return mNextSibling;
}
const Layer* GetNextSibling() const {
if (mNextSibling) {
mNextSibling->CheckCanary();
}
return mNextSibling;
}
Layer* GetPrevSibling() { return mPrevSibling; }
const Layer* GetPrevSibling() const { return mPrevSibling; }
virtual Layer* GetFirstChild() const { return nullptr; }
virtual Layer* GetLastChild() const { return nullptr; }
gfx::Matrix4x4 GetTransform() const;
// Same as GetTransform(), but returns the transform as a strongly-typed
// matrix. Eventually this will replace GetTransform().
const CSSTransformMatrix GetTransformTyped() const;
const gfx::Matrix4x4& GetBaseTransform() const {
return mSimpleAttrs.GetTransform();
}
// Note: these are virtual because ContainerLayerComposite overrides them.
virtual float GetPostXScale() const { return mSimpleAttrs.GetPostXScale(); }
virtual float GetPostYScale() const { return mSimpleAttrs.GetPostYScale(); }
bool GetIsFixedPosition() { return mSimpleAttrs.IsFixedPosition(); }
Maybe<FrameMetrics::ViewID> IsAsyncZoomContainer() {
return mSimpleAttrs.IsAsyncZoomContainer();
}
bool GetTransformIsPerspective() const {
return mSimpleAttrs.GetTransformIsPerspective();
}
bool GetIsStickyPosition() { return mSimpleAttrs.IsStickyPosition(); }
ScrollableLayerGuid::ViewID GetFixedPositionScrollContainerId() {
return mSimpleAttrs.GetFixedPositionScrollContainerId();
}
LayerPoint GetFixedPositionAnchor() {
return mSimpleAttrs.GetFixedPositionAnchor();
}
SideBits GetFixedPositionSides() {
return mSimpleAttrs.GetFixedPositionSides();
}
ScrollableLayerGuid::ViewID GetStickyScrollContainerId() {
return mSimpleAttrs.GetStickyScrollContainerId();
}
const LayerRectAbsolute& GetStickyScrollRangeOuter() {
return mSimpleAttrs.GetStickyScrollRangeOuter();
}
const LayerRectAbsolute& GetStickyScrollRangeInner() {
return mSimpleAttrs.GetStickyScrollRangeInner();
}
const ScrollbarData& GetScrollbarData() const {
return mSimpleAttrs.GetScrollbarData();
}
bool IsScrollbarContainer() const;
Layer* GetMaskLayer() const { return mMaskLayer; }
bool HasPendingTransform() const { return !!mPendingTransform; }
void CheckCanary() const { mCanary.Check(); }
// Ancestor mask layers are associated with FrameMetrics, but for simplicity
// in maintaining the layer tree structure we attach them to the layer.
size_t GetAncestorMaskLayerCount() const {
return mAncestorMaskLayers.Length();
}
Layer* GetAncestorMaskLayerAt(size_t aIndex) const {
return mAncestorMaskLayers.ElementAt(aIndex);
}
const nsTArray<RefPtr<Layer>>& GetAllAncestorMaskLayers() const {
return mAncestorMaskLayers;
}
bool HasMaskLayers() const {
return GetMaskLayer() || mAncestorMaskLayers.Length() > 0;
}
/*
* Get the combined clip rect of the Layer clip and all clips on FrameMetrics.
* This is intended for use in Layout. The compositor needs to apply async
* transforms to find the combined clip.
*/
Maybe<ParentLayerIntRect> GetCombinedClipRect() const;
/**
* Retrieve the root level visible region for |this| taking into account
* clipping applied to parent layers of |this| as well as subtracting
* visible regions of higher siblings of this layer and each ancestor.
*
* Note translation values for offsets of visible regions and accumulated
* aLayerOffset are integer rounded using IntPoint::Round.
*
* @param aResult - the resulting visible region of this layer.
* @param aLayerOffset - this layer's total offset from the root layer.
* @return - false if during layer tree traversal a parent or sibling
* transform is found to be non-translational. This method returns early
* in this case, results will not be valid. Returns true on successful
* traversal.
*/
bool GetVisibleRegionRelativeToRootLayer(nsIntRegion& aResult,
nsIntPoint* aLayerOffset);
// Note that all lengths in animation data are either in CSS pixels or app
// units and must be converted to device pixels by the compositor.
// Besides, this should only be called on the compositor thread.
AnimationArray& GetAnimations() { return mAnimationInfo.GetAnimations(); }
uint64_t GetCompositorAnimationsId() {
return mAnimationInfo.GetCompositorAnimationsId();
}
nsTArray<PropertyAnimationGroup>& GetPropertyAnimationGroups() {
return mAnimationInfo.GetPropertyAnimationGroups();
}
const Maybe<TransformData>& GetTransformData() const {
return mAnimationInfo.GetTransformData();
}
const LayersId& GetAnimationLayersId() const {
return mAnimationInfo.GetLayersId();
}
Maybe<uint64_t> GetAnimationGeneration() const {
return mAnimationInfo.GetAnimationGeneration();
}
gfx::Path* CachedMotionPath() { return mAnimationInfo.CachedMotionPath(); }
bool HasTransformAnimation() const;
/**
* Returns the local transform for this layer: either mTransform or,
* for shadow layers, GetShadowBaseTransform(), in either case with the
* pre- and post-scales applied.
*/
gfx::Matrix4x4 GetLocalTransform();
/**
* Same as GetLocalTransform(), but returns a strongly-typed matrix.
* Eventually, this will replace GetLocalTransform().
*/
const LayerToParentLayerMatrix4x4 GetLocalTransformTyped();
/**
* Returns the local opacity for this layer: either mOpacity or,
* for shadow layers, GetShadowOpacity()
*/
float GetLocalOpacity();
/**
* DRAWING PHASE ONLY
*
* Apply pending changes to layers before drawing them, if those
* pending changes haven't been overridden by later changes.
*
* Returns a list of scroll ids which had pending updates.
*/
std::unordered_set<ScrollableLayerGuid::ViewID>
ApplyPendingUpdatesToSubtree();
/**
* DRAWING PHASE ONLY
*
* Write layer-subtype-specific attributes into aAttrs. Used to
* synchronize layer attributes to their shadows'.
*/
virtual void FillSpecificAttributes(SpecificLayerAttributes& aAttrs) {}
// Returns true if it's OK to save the contents of aLayer in an
// opaque surface (a surface without an alpha channel).
// If we can use a surface without an alpha channel, we should, because
// it will often make painting of antialiased text faster and higher
// quality.
bool CanUseOpaqueSurface();
SurfaceMode GetSurfaceMode() {
if (CanUseOpaqueSurface()) return SurfaceMode::SURFACE_OPAQUE;
if (GetContentFlags() & CONTENT_COMPONENT_ALPHA)
return SurfaceMode::SURFACE_COMPONENT_ALPHA;
return SurfaceMode::SURFACE_SINGLE_CHANNEL_ALPHA;
}
// Returns true if this layer can be treated as opaque for visibility
// computation. A layer may be non-opaque for visibility even if it
// is not transparent, for example, if it has a mix-blend-mode.
bool IsOpaqueForVisibility();
/**
* This setter can be used anytime. The user data for all keys is
* initially null. Ownership pases to the layer manager.
*/
void SetUserData(
void* aKey, LayerUserData* aData,
void (*aDestroy)(void*) = LayerManager::LayerUserDataDestroy) {
mUserData.Add(static_cast<gfx::UserDataKey*>(aKey), aData, aDestroy);
}
/**
* This can be used anytime. Ownership passes to the caller!
*/
UniquePtr<LayerUserData> RemoveUserData(void* aKey);
/**
* This getter can be used anytime.
*/
bool HasUserData(void* aKey) {
return mUserData.Has(static_cast<gfx::UserDataKey*>(aKey));
}
/**
* This getter can be used anytime. Ownership is retained by the layer
* manager.
*/
LayerUserData* GetUserData(void* aKey) const {
return static_cast<LayerUserData*>(
mUserData.Get(static_cast<gfx::UserDataKey*>(aKey)));
}
/**
* |Disconnect()| is used by layers hooked up over IPC. It may be
* called at any time, and may not be called at all. Using an
* IPC-enabled layer after Destroy() (drawing etc.) results in a
* safe no-op; no crashy or uaf etc.
*
* XXX: this interface is essentially LayerManager::Destroy, but at
* Layer granularity. It might be beneficial to unify them.
*/
virtual void Disconnect() {}
/**
* Dynamic downcast to a PaintedLayer. Returns null if this is not
* a PaintedLayer.
*/
virtual PaintedLayer* AsPaintedLayer() { return nullptr; }
/**
* Dynamic cast to a ContainerLayer. Returns null if this is not
* a ContainerLayer.
*/
virtual ContainerLayer* AsContainerLayer() { return nullptr; }
virtual const ContainerLayer* AsContainerLayer() const { return nullptr; }
/**
* Dynamic cast to a RefLayer. Returns null if this is not a
* RefLayer.
*/
virtual RefLayer* AsRefLayer() { return nullptr; }
/**
* Dynamic cast to a Color. Returns null if this is not a
* ColorLayer.
*/
virtual ColorLayer* AsColorLayer() { return nullptr; }
/**
* Dynamic cast to a Canvas. Returns null if this is not a
* ColorLayer.
*/
virtual CanvasLayer* AsCanvasLayer() { return nullptr; }
/**
* Dynamic cast to an Image. Returns null if this is not a
* ColorLayer.
*/
virtual ImageLayer* AsImageLayer() { return nullptr; }
/**
* Dynamic cast to a LayerComposite. Return null if this is not a
* LayerComposite. Can be used anytime.
*/
virtual HostLayer* AsHostLayer() { return nullptr; }
/**
* Dynamic cast to a ShadowableLayer. Return null if this is not a
* ShadowableLayer. Can be used anytime.
*/
virtual ShadowableLayer* AsShadowableLayer() { return nullptr; }
// These getters can be used anytime. They return the effective
// values that should be used when drawing this layer to screen,
// accounting for this layer possibly being a shadow.
const Maybe<ParentLayerIntRect>& GetLocalClipRect();
const LayerIntRegion& GetLocalVisibleRegion();
bool Extend3DContext() {
return GetContentFlags() & CONTENT_EXTEND_3D_CONTEXT;
}
bool Combines3DTransformWithAncestors() {
return GetParent() &&
reinterpret_cast<Layer*>(GetParent())->Extend3DContext();
}
bool Is3DContextLeaf() {
return !Extend3DContext() && Combines3DTransformWithAncestors();
}
/**
* It is true if the user can see the back of the layer and the
* backface is hidden. The compositor should skip the layer if the
* result is true.
*/
bool IsBackfaceHidden();
bool IsVisible() {
// For containers extending 3D context, visible region
// is meaningless, since they are just intermediate result of
// content.
return !GetLocalVisibleRegion().IsEmpty() || Extend3DContext();
}
/**
* Return true if current layer content is opaque.
* It does not guarantee that layer content is always opaque.
*/
virtual bool IsOpaque() { return GetContentFlags() & CONTENT_OPAQUE; }
/**
* Returns the product of the opacities of this layer and all ancestors up
* to and excluding the nearest ancestor that has UseIntermediateSurface()
* set.
*/
float GetEffectiveOpacity();
/**
* Returns the blendmode of this layer.
*/
gfx::CompositionOp GetEffectiveMixBlendMode();
/**
* This returns the effective transform computed by
* ComputeEffectiveTransforms. Typically this is a transform that transforms
* this layer all the way to some intermediate surface or destination
* surface. For non-BasicLayers this will be a transform to the nearest
* ancestor with UseIntermediateSurface() (or to the root, if there is no
* such ancestor), but for BasicLayers it's different.
*/
const gfx::Matrix4x4& GetEffectiveTransform() const {
return mEffectiveTransform;
}
/**
* This returns the effective transform for Layer's buffer computed by
* ComputeEffectiveTransforms. Typically this is a transform that transforms
* this layer's buffer all the way to some intermediate surface or destination
* surface. For non-BasicLayers this will be a transform to the nearest
* ancestor with UseIntermediateSurface() (or to the root, if there is no
* such ancestor), but for BasicLayers it's different.
*
* By default, its value is same to GetEffectiveTransform().
* When ImageLayer is rendered with ScaleMode::STRETCH,
* it becomes different from GetEffectiveTransform().
*/
virtual const gfx::Matrix4x4& GetEffectiveTransformForBuffer() const {
return mEffectiveTransform;
}
/**
* If the current layers participates in a preserve-3d
* context (returns true for Combines3DTransformWithAncestors),
* returns the combined transform up to the preserve-3d (nearest
* ancestor that doesn't Extend3DContext()). Otherwise returns
* the local transform.
*/
gfx::Matrix4x4 ComputeTransformToPreserve3DRoot();
/**
* @param aTransformToSurface the composition of the transforms
* from the parent layer (if any) to the destination pixel grid.
*
* Computes mEffectiveTransform for this layer and all its descendants.
* mEffectiveTransform transforms this layer up to the destination
* pixel grid (whatever aTransformToSurface is relative to).
*
* We promise that when this is called on a layer, all ancestor layers
* have already had ComputeEffectiveTransforms called.
*/
virtual void ComputeEffectiveTransforms(
const gfx::Matrix4x4& aTransformToSurface) = 0;
/**
* Computes the effective transform for mask layers, if this layer has any.
*/
void ComputeEffectiveTransformForMaskLayers(
const gfx::Matrix4x4& aTransformToSurface);
static void ComputeEffectiveTransformForMaskLayer(
Layer* aMaskLayer, const gfx::Matrix4x4& aTransformToSurface);
/**
* Calculate the scissor rect required when rendering this layer.
* Returns a rectangle relative to the intermediate surface belonging to the
* nearest ancestor that has an intermediate surface, or relative to the root
* viewport if no ancestor has an intermediate surface, corresponding to the
* clip rect for this layer intersected with aCurrentScissorRect.
*/
RenderTargetIntRect CalculateScissorRect(
const RenderTargetIntRect& aCurrentScissorRect);
virtual const char* Name() const = 0;
virtual LayerType GetType() const = 0;
/**
* Only the implementation should call this. This is per-implementation
* private data. Normally, all layers with a given layer manager
* use the same type of ImplData.
*/
void* ImplData() { return mImplData; }
/**
* Only the implementation should use these methods.
*/
void SetParent(ContainerLayer* aParent) { mParent = aParent; }
void SetNextSibling(Layer* aSibling) { mNextSibling = aSibling; }
void SetPrevSibling(Layer* aSibling) { mPrevSibling = aSibling; }
/**
* Dump information about this layer manager and its managed tree to
* aStream.
*/
void Dump(std::stringstream& aStream, const char* aPrefix = "",
bool aDumpHtml = false, bool aSorted = false,
const Maybe<gfx::Polygon>& aGeometry = Nothing());
/**
* Dump information about just this layer manager itself to aStream.
*/
void DumpSelf(std::stringstream& aStream, const char* aPrefix = "",
const Maybe<gfx::Polygon>& aGeometry = Nothing());
/**
* Dump information about this layer and its child & sibling layers to
* layerscope packet.
*/
void Dump(layerscope::LayersPacket* aPacket, const void* aParent);
/**
* Log information about this layer manager and its managed tree to
* the NSPR log (if enabled for "Layers").
*/
void Log(const char* aPrefix = "");
/**
* Log information about just this layer manager itself to the NSPR
* log (if enabled for "Layers").
*/
void LogSelf(const char* aPrefix = "");
// Print interesting information about this into aStream. Internally
// used to implement Dump*() and Log*(). If subclasses have
// additional interesting properties, they should override this with
// an implementation that first calls the base implementation then
// appends additional info to aTo.
virtual void PrintInfo(std::stringstream& aStream, const char* aPrefix);
// Just like PrintInfo, but this function dump information into layerscope
// packet, instead of a StringStream. It is also internally used to implement
// Dump();
virtual void DumpPacket(layerscope::LayersPacket* aPacket,
const void* aParent);
/**
* Store display list log.
*/
void SetDisplayListLog(const char* log);
/**
* Return display list log.
*/
void GetDisplayListLog(nsCString& log);
static bool IsLogEnabled() { return LayerManager::IsLogEnabled(); }
/**
* Returns the current area of the layer (in layer-space coordinates)
* marked as needed to be recomposited.
*/
const virtual gfx::TiledIntRegion& GetInvalidRegion() {
return mInvalidRegion;
}
void AddInvalidRegion(const nsIntRegion& aRegion) {
mInvalidRegion.Add(aRegion);
}
/**
* Mark the entirety of the layer's visible region as being invalid.
*/
void SetInvalidRectToVisibleRegion() {
mInvalidRegion.SetEmpty();
mInvalidRegion.Add(GetVisibleRegion().ToUnknownRegion());
}
/**
* Adds to the current invalid rect.
*/
void AddInvalidRect(const gfx::IntRect& aRect) { mInvalidRegion.Add(aRect); }
/**
* Clear the invalid rect, marking the layer as being identical to what is
* currently composited.
*/
virtual void ClearInvalidRegion() { mInvalidRegion.SetEmpty(); }
// These functions allow attaching an AsyncPanZoomController to this layer,
// and can be used anytime.
// A layer has an APZC at index aIndex only-if
// GetFrameMetrics(aIndex).IsScrollable(); attempting to get an APZC for a
// non-scrollable metrics will return null. The reverse is also generally true
// (that if GetFrameMetrics(aIndex).IsScrollable() is true, then the layer
// will have an APZC). However, it only holds on the the compositor-side layer
// tree, and only after the APZ code has had a chance to rebuild its internal
// hit-testing tree using the layer tree. Also, it may not hold in certain
// "exceptional" scenarios such as if the layer tree doesn't have a
// GeckoContentController registered for it, or if there is a malicious
// content process trying to trip up the compositor over IPC. The aIndex for
// these functions must be less than GetScrollMetadataCount().
void SetAsyncPanZoomController(uint32_t aIndex,
AsyncPanZoomController* controller);
AsyncPanZoomController* GetAsyncPanZoomController(uint32_t aIndex) const;
// The ScrollMetadataChanged function is used internally to ensure the APZC
// array length matches the frame metrics array length.
virtual void ClearCachedResources() {}
virtual bool SupportsAsyncUpdate() { return false; }
private:
void ScrollMetadataChanged();
public:
void ApplyPendingUpdatesForThisTransaction();
#ifdef DEBUG
void SetDebugColorIndex(uint32_t aIndex) { mDebugColorIndex = aIndex; }
uint32_t GetDebugColorIndex() { return mDebugColorIndex; }
#endif
void Mutated() { mManager->Mutated(this); }
void MutatedSimple() { mManager->MutatedSimple(this); }
virtual int32_t GetMaxLayerSize() { return Manager()->GetMaxTextureSize(); }
/**
* Returns true if this layer's effective transform is not just
* a translation by integers, or if this layer or some ancestor layer
* is marked as having a transform that may change without a full layer
* transaction.
*
* Note: This function ignores ancestor layers across layer tree boundaries
* so that it returns a consistent value when compositing and when painting.
*/
bool MayResample();
RenderTargetRect TransformRectToRenderTarget(const LayerIntRect& aRect);
/**
* Add debugging information to the layer dump.
*/
void AddExtraDumpInfo(const nsACString& aStr) {
#ifdef MOZ_DUMP_PAINTING
mExtraDumpInfo.AppendElement(aStr);
#endif
}
/**
* Clear debugging information. Useful for recycling.
*/
void ClearExtraDumpInfo() {
#ifdef MOZ_DUMP_PAINTING
mExtraDumpInfo.Clear();
#endif
}
AnimationInfo& GetAnimationInfo() { return mAnimationInfo; }
protected:
Layer(LayerManager* aManager, void* aImplData);
// Protected destructor, to discourage deletion outside of Release():
virtual ~Layer();
/**
* We can snap layer transforms for two reasons:
* 1) To avoid unnecessary resampling when a transform is a translation
* by a non-integer number of pixels.
* Snapping the translation to an integer number of pixels avoids
* blurring the layer and can be faster to composite.
* 2) When a layer is used to render a rectangular object, we need to
* emulate the rendering of rectangular inactive content and snap the
* edges of the rectangle to pixel boundaries. This is both to ensure
* layer rendering is consistent with inactive content rendering, and to
* avoid seams.
* This function implements type 1 snapping. If aTransform is a 2D
* translation, and this layer's layer manager has enabled snapping
* (which is the default), return aTransform with the translation snapped
* to nearest pixels. Otherwise just return aTransform. Call this when the
* layer does not correspond to a single rectangular content object.
* This function does not try to snap if aTransform has a scale, because in
* that case resampling is inevitable and there's no point in trying to
* avoid it. In fact snapping can cause problems because pixel edges in the
* layer's content can be rendered unpredictably (jiggling) as the scale
* interacts with the snapping of the translation, especially with animated
* transforms.
* @param aResidualTransform a transform to apply before the result transform
* in order to get the results to completely match aTransform.
*/
gfx::Matrix4x4 SnapTransformTranslation(const gfx::Matrix4x4& aTransform,
gfx::Matrix* aResidualTransform);
gfx::Matrix4x4 SnapTransformTranslation3D(const gfx::Matrix4x4& aTransform,
gfx::Matrix* aResidualTransform);
/**
* See comment for SnapTransformTranslation.
* This function implements type 2 snapping. If aTransform is a translation
* and/or scale, transform aSnapRect by aTransform, snap to pixel boundaries,
* and return the transform that maps aSnapRect to that rect. Otherwise
* just return aTransform.
* @param aSnapRect a rectangle whose edges should be snapped to pixel
* boundaries in the destination surface.
* @param aResidualTransform a transform to apply before the result transform
* in order to get the results to completely match aTransform.
*/
gfx::Matrix4x4 SnapTransform(const gfx::Matrix4x4& aTransform,
const gfxRect& aSnapRect,
gfx::Matrix* aResidualTransform);
LayerManager* mManager;
ContainerLayer* mParent;
Layer* mNextSibling;
Layer* mPrevSibling;
void* mImplData;
RefPtr<Layer> mMaskLayer;
nsTArray<RefPtr<Layer>> mAncestorMaskLayers;
// Look for out-of-bound in the middle of the structure
mozilla::CorruptionCanary mCanary;
gfx::UserData mUserData;
SimpleLayerAttributes mSimpleAttrs;
LayerIntRegion mVisibleRegion;
nsTArray<ScrollMetadata> mScrollMetadata;
EventRegions mEventRegions;
// A mutation of |mTransform| that we've queued to be applied at the
// end of the next transaction (if nothing else overrides it in the
// meantime).
UniquePtr<gfx::Matrix4x4> mPendingTransform;
gfx::Matrix4x4 mEffectiveTransform;
AnimationInfo mAnimationInfo;
Maybe<ParentLayerIntRect> mClipRect;
gfx::IntRect mTileSourceRect;
gfx::TiledIntRegion mInvalidRegion;
nsTArray<RefPtr<AsyncPanZoomController>> mApzcs;
bool mUseTileSourceRect;
#ifdef DEBUG
uint32_t mDebugColorIndex;
#endif
#ifdef MOZ_DUMP_PAINTING
nsTArray<nsCString> mExtraDumpInfo;
#endif
// Store display list log.
nsCString mDisplayListLog;
};
/**
* A Layer which we can paint into. It is a conceptually
* infinite surface, but each PaintedLayer has an associated "valid region"
* of contents that it is currently storing, which is finite. PaintedLayer
* implementations can store content between paints.
*
* PaintedLayers are rendered into during the drawing phase of a transaction.
*
* Currently the contents of a PaintedLayer are in the device output color
* space.
*/
class PaintedLayer : public Layer {
public:
/**
* CONSTRUCTION PHASE ONLY
* Tell this layer that the content in some region has changed and
* will need to be repainted. This area is removed from the valid
* region.
*/
virtual void InvalidateRegion(const nsIntRegion& aRegion) = 0;
/**
* CONSTRUCTION PHASE ONLY
* Set whether ComputeEffectiveTransforms should compute the
* "residual translation" --- the translation that should be applied *before*
* mEffectiveTransform to get the ideal transform for this PaintedLayer.
* When this is true, ComputeEffectiveTransforms will compute the residual
* and ensure that the layer is invalidated whenever the residual changes.
* When it's false, a change in the residual will not trigger invalidation
* and GetResidualTranslation will return 0,0.
* So when the residual is to be ignored, set this to false for better
* performance.
*/
void SetAllowResidualTranslation(bool aAllow) {
mAllowResidualTranslation = aAllow;
}
void SetValidRegion(const nsIntRegion& aRegion) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this,
("Layer::Mutated(%p) ValidRegion", this));
mValidRegion = aRegion;
mValidRegionIsCurrent = true;
Mutated();
}
/**
* Can be used anytime
*/
const nsIntRegion& GetValidRegion() const {
EnsureValidRegionIsCurrent();
return mValidRegion;
}
void InvalidateWholeLayer() {
mInvalidRegion.Add(GetValidRegion().GetBounds());
ClearValidRegion();
}
void ClearValidRegion() {
mValidRegion.SetEmpty();
mValidRegionIsCurrent = true;
}
void AddToValidRegion(const nsIntRegion& aRegion) {
EnsureValidRegionIsCurrent();
mValidRegion.OrWith(aRegion);
}
void SubtractFromValidRegion(const nsIntRegion& aRegion) {
EnsureValidRegionIsCurrent();
mValidRegion.SubOut(aRegion);
}
void UpdateValidRegionAfterInvalidRegionChanged() {
// Changes to mInvalidRegion will be applied to mValidRegion on the next
// call to EnsureValidRegionIsCurrent().
mValidRegionIsCurrent = false;
}
void ClearInvalidRegion() override {
// mInvalidRegion is about to be reset. This is the last chance to apply
// any pending changes from it to mValidRegion. Do that by calling
// EnsureValidRegionIsCurrent().
EnsureValidRegionIsCurrent();
mInvalidRegion.SetEmpty();
}
PaintedLayer* AsPaintedLayer() override { return this; }
MOZ_LAYER_DECL_NAME("PaintedLayer", TYPE_PAINTED)
void ComputeEffectiveTransforms(
const gfx::Matrix4x4& aTransformToSurface) override {
gfx::Matrix4x4 idealTransform = GetLocalTransform() * aTransformToSurface;
gfx::Matrix residual;
mEffectiveTransform = SnapTransformTranslation(
idealTransform, mAllowResidualTranslation ? &residual : nullptr);
// The residual can only be a translation because SnapTransformTranslation
// only changes the transform if it's a translation
NS_ASSERTION(residual.IsTranslation(),
"Residual transform can only be a translation");
if (!gfx::ThebesPoint(residual.GetTranslation())
.WithinEpsilonOf(mResidualTranslation, 1e-3f)) {
mResidualTranslation = gfx::ThebesPoint(residual.GetTranslation());
DebugOnly<mozilla::gfx::Point> transformedOrig =
idealTransform.TransformPoint(mozilla::gfx::Point());
#ifdef DEBUG
DebugOnly<mozilla::gfx::Point> transformed =
idealTransform.TransformPoint(mozilla::gfx::Point(
mResidualTranslation.x, mResidualTranslation.y)) -
*&transformedOrig;
#endif
NS_ASSERTION(-0.5 <= (&transformed)->x && (&transformed)->x < 0.5 &&
-0.5 <= (&transformed)->y && (&transformed)->y < 0.5,
"Residual translation out of range");
ClearValidRegion();
}
ComputeEffectiveTransformForMaskLayers(aTransformToSurface);
}
LayerManager::PaintedLayerCreationHint GetCreationHint() const {
return mCreationHint;
}
bool UsedForReadback() { return mUsedForReadback; }
void SetUsedForReadback(bool aUsed) { mUsedForReadback = aUsed; }
/**
* Returns true if aLayer is optimized for the given PaintedLayerCreationHint.
*/
virtual bool IsOptimizedFor(
LayerManager::PaintedLayerCreationHint aCreationHint) {
return true;
}
/**
* Returns the residual translation. Apply this translation when drawing
* into the PaintedLayer so that when mEffectiveTransform is applied
* afterwards by layer compositing, the results exactly match the "ideal
* transform" (the product of the transform of this layer and its ancestors).
* Returns 0,0 unless SetAllowResidualTranslation(true) has been called.
* The residual translation components are always in the range [-0.5, 0.5).
*/
gfxPoint GetResidualTranslation() const { return mResidualTranslation; }
protected:
PaintedLayer(
LayerManager* aManager, void* aImplData,
LayerManager::PaintedLayerCreationHint aCreationHint = LayerManager::NONE)
: Layer(aManager, aImplData),
mValidRegion(),
mValidRegionIsCurrent(true),
mCreationHint(aCreationHint),
mUsedForReadback(false),
mAllowResidualTranslation(false) {}
void PrintInfo(std::stringstream& aStream, const char* aPrefix) override;
void DumpPacket(layerscope::LayersPacket* aPacket,
const void* aParent) override;
/**
* ComputeEffectiveTransforms snaps the ideal transform to get
* mEffectiveTransform. mResidualTranslation is the translation that should be
* applied *before* mEffectiveTransform to get the ideal transform.
*/
gfxPoint mResidualTranslation;
private:
/**
* Needs to be called prior to accessing mValidRegion, unless mValidRegion is
* being completely overwritten.
*/
void EnsureValidRegionIsCurrent() const {
if (!mValidRegionIsCurrent) {
// Apply any pending mInvalidRegion changes to mValidRegion.
if (!mValidRegion.IsEmpty()) {
// Calling mInvalidRegion.GetRegion() is expensive.
// That's why we delay the adjustment of mValidRegion for as long as
// possible, so that multiple modifications to mInvalidRegion can be
// applied to mValidRegion in one go.
mValidRegion.SubOut(mInvalidRegion.GetRegion());
}
mValidRegionIsCurrent = true;
}
}
/**
* The layer's valid region. If mValidRegionIsCurrent is false, then
* mValidRegion has not yet been updated for recent changes to
* mInvalidRegion. Those pending changes can be applied by calling
* EnsureValidRegionIsCurrent().
*/
mutable nsIntRegion mValidRegion;
mutable bool mValidRegionIsCurrent;
protected:
/**
* The creation hint that was used when constructing this layer.
*/
const LayerManager::PaintedLayerCreationHint mCreationHint;
/**
* Set when this PaintedLayer is participating in readback, i.e. some
* ReadbackLayer (may) be getting its background from this layer.
*/
bool mUsedForReadback;
/**
* True when
*/
bool mAllowResidualTranslation;
};
/**
* A Layer which other layers render into. It holds references to its
* children.
*/
class ContainerLayer : public Layer {
public:
virtual ~ContainerLayer();
/**
* CONSTRUCTION PHASE ONLY
* Insert aChild into the child list of this container. aChild must
* not be currently in any child list or the root for the layer manager.
* If aAfter is non-null, it must be a child of this container and
* we insert after that layer. If it's null we insert at the start.
*/
virtual bool InsertAfter(Layer* aChild, Layer* aAfter);
/**
* CONSTRUCTION PHASE ONLY
* Remove aChild from the child list of this container. aChild must
* be a child of this container.
*/
virtual bool RemoveChild(Layer* aChild);
/**
* CONSTRUCTION PHASE ONLY
* Reposition aChild from the child list of this container. aChild must
* be a child of this container.
* If aAfter is non-null, it must be a child of this container and we
* reposition after that layer. If it's null, we reposition at the start.
*/
virtual bool RepositionChild(Layer* aChild, Layer* aAfter);
void SetPreScale(float aXScale, float aYScale) {
if (mPreXScale == aXScale && mPreYScale == aYScale) {
return;
}
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) PreScale", this));
mPreXScale = aXScale;
mPreYScale = aYScale;
Mutated();
}
void SetInheritedScale(float aXScale, float aYScale) {
if (mInheritedXScale == aXScale && mInheritedYScale == aYScale) {
return;
}
MOZ_LAYERS_LOG_IF_SHADOWABLE(this,
("Layer::Mutated(%p) InheritedScale", this));
mInheritedXScale = aXScale;
mInheritedYScale = aYScale;
Mutated();
}
void SetScaleToResolution(float aResolution) {
if (mPresShellResolution == aResolution) {
return;
}
MOZ_LAYERS_LOG_IF_SHADOWABLE(
this, ("Layer::Mutated(%p) ScaleToResolution", this));
mPresShellResolution = aResolution;
Mutated();
}
void FillSpecificAttributes(SpecificLayerAttributes& aAttrs) override;
enum class SortMode {
WITH_GEOMETRY,
WITHOUT_GEOMETRY,
};
nsTArray<LayerPolygon> SortChildrenBy3DZOrder(SortMode aSortMode);
ContainerLayer* AsContainerLayer() override { return this; }
const ContainerLayer* AsContainerLayer() const override { return this; }
// These getters can be used anytime.
Layer* GetFirstChild() const override { return mFirstChild; }
Layer* GetLastChild() const override { return mLastChild; }
float GetPreXScale() const { return mPreXScale; }
float GetPreYScale() const { return mPreYScale; }
float GetInheritedXScale() const { return mInheritedXScale; }
float GetInheritedYScale() const { return mInheritedYScale; }
float GetPresShellResolution() const { return mPresShellResolution; }
MOZ_LAYER_DECL_NAME("ContainerLayer", TYPE_CONTAINER)
/**
* ContainerLayer backends need to override ComputeEffectiveTransforms
* since the decision about whether to use a temporary surface for the
* container is backend-specific. ComputeEffectiveTransforms must also set
* mUseIntermediateSurface.
*/
void ComputeEffectiveTransforms(
const gfx::Matrix4x4& aTransformToSurface) override = 0;
/**
* Call this only after ComputeEffectiveTransforms has been invoked
* on this layer.
* Returns true if this will use an intermediate surface. This is largely
* backend-dependent, but it affects the operation of GetEffectiveOpacity().
*/
bool UseIntermediateSurface() { return mUseIntermediateSurface; }
/**
* Returns the rectangle covered by the intermediate surface,
* in this layer's coordinate system.
*
* NOTE: Since this layer has an intermediate surface it follows
* that LayerPixel == RenderTargetPixel
*/
RenderTargetIntRect GetIntermediateSurfaceRect();
/**
* Returns true if this container has more than one non-empty child
*/
bool HasMultipleChildren();
/**
* Returns true if this container supports children with component alpha.
* Should only be called while painting a child of this layer.
*/
bool SupportsComponentAlphaChildren() {
return mSupportsComponentAlphaChildren;
}
/**
* Returns true if aLayer or any layer in its parent chain has the opaque
* content flag set.
*/
static bool HasOpaqueAncestorLayer(Layer* aLayer);
void SetChildrenChanged(bool aVal) { mChildrenChanged = aVal; }
// If |aRect| is null, the entire layer should be considered invalid for
// compositing.
virtual void SetInvalidCompositeRect(const gfx::IntRect* aRect) {}
protected:
friend class ReadbackProcessor;
// Note that this is not virtual, and is based on the implementation of
// ContainerLayer::RemoveChild, so it should only be called where you would
// want to explicitly call the base class implementation of RemoveChild;
// e.g., while (mFirstChild) ContainerLayer::RemoveChild(mFirstChild);
void RemoveAllChildren();
void DidInsertChild(Layer* aLayer);
void DidRemoveChild(Layer* aLayer);
bool AnyAncestorOrThisIs3DContextLeaf();
void Collect3DContextLeaves(nsTArray<Layer*>& aToSort);
// Collects child layers that do not extend 3D context. For ContainerLayers
// that do extend 3D context, the 3D context leaves are collected.
nsTArray<Layer*> CollectChildren() {
nsTArray<Layer*> children;
for (Layer* layer = GetFirstChild(); layer;
layer = layer->GetNextSibling()) {
ContainerLayer* container = layer->AsContainerLayer();
if (container && container->Extend3DContext() &&
!container->UseIntermediateSurface()) {
container->Collect3DContextLeaves(children);
} else {
children.AppendElement(layer);
}
}
return children;
}
ContainerLayer(LayerManager* aManager, void* aImplData);
/**
* A default implementation of ComputeEffectiveTransforms for use by OpenGL
* and D3D.
*/
void DefaultComputeEffectiveTransforms(
const gfx::Matrix4x4& aTransformToSurface);
/**
* A default implementation to compute and set the value for
* SupportsComponentAlphaChildren().
*
* If aNeedsSurfaceCopy is provided, then it is set to true if the caller
* needs to copy the background up into the intermediate surface created,
* false otherwise.
*/
void DefaultComputeSupportsComponentAlphaChildren(
bool* aNeedsSurfaceCopy = nullptr);
/**
* Loops over the children calling ComputeEffectiveTransforms on them.
*/
void ComputeEffectiveTransformsForChildren(
const gfx::Matrix4x4& aTransformToSurface);
virtual void PrintInfo(std::stringstream& aStream,
const char* aPrefix) override;
virtual void DumpPacket(layerscope::LayersPacket* aPacket,
const void* aParent) override;
/**
* True for if the container start a new 3D context extended by one
* or more children.
*/
bool Creates3DContextWithExtendingChildren();
Layer* mFirstChild;
Layer* mLastChild;
float mPreXScale;
float mPreYScale;
// The resolution scale inherited from the parent layer. This will already
// be part of mTransform.
float mInheritedXScale;
float mInheritedYScale;
// For layers corresponding to an nsDisplayAsyncZoom, the resolution of the
// associated pres shell; for other layers, 1.0.
float mPresShellResolution;
bool mUseIntermediateSurface;
bool mSupportsComponentAlphaChildren;
bool mMayHaveReadbackChild;
// This is updated by ComputeDifferences. This will be true if we need to
// invalidate the intermediate surface.
bool mChildrenChanged;
};
/**
* A Layer which just renders a solid color in its visible region. It actually
* can fill any area that contains the visible region, so if you need to
* restrict the area filled, set a clip region on this layer.
*/
class ColorLayer : public Layer {
public:
ColorLayer* AsColorLayer() override { return this; }
/**
* CONSTRUCTION PHASE ONLY
* Set the color of the layer.
*/
virtual void SetColor(const gfx::DeviceColor& aColor) {
if (mColor != aColor) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) Color", this));
mColor = aColor;
Mutated();
}
}
void SetBounds(const gfx::IntRect& aBounds) {
if (!mBounds.IsEqualEdges(aBounds)) {
mBounds = aBounds;
Mutated();
}
}
const gfx::IntRect& GetBounds() { return mBounds; }
// This getter can be used anytime.
virtual const gfx::DeviceColor& GetColor() { return mColor; }
MOZ_LAYER_DECL_NAME("ColorLayer", TYPE_COLOR)
void ComputeEffectiveTransforms(
const gfx::Matrix4x4& aTransformToSurface) override {
gfx::Matrix4x4 idealTransform = GetLocalTransform() * aTransformToSurface;
mEffectiveTransform = SnapTransformTranslation(idealTransform, nullptr);
ComputeEffectiveTransformForMaskLayers(aTransformToSurface);
}
protected:
ColorLayer(LayerManager* aManager, void* aImplData)
: Layer(aManager, aImplData), mColor() {}
void PrintInfo(std::stringstream& aStream, const char* aPrefix) override;
void DumpPacket(layerscope::LayersPacket* aPacket,
const void* aParent) override;
gfx::IntRect mBounds;
gfx::DeviceColor mColor;
};
/**
* A Layer for HTML Canvas elements. It's backed by either a
* gfxASurface or a GLContext (for WebGL layers), and has some control
* for intelligent updating from the source if necessary (for example,
* if hardware compositing is not available, for reading from the GL
* buffer into an image surface that we can layer composite.)
*
* After Initialize is called, the underlying canvas Surface/GLContext
* must not be modified during a layer transaction.
*/
class CanvasLayer : public Layer {
public:
void SetBounds(gfx::IntRect aBounds) { mBounds = aBounds; }
CanvasLayer* AsCanvasLayer() override { return this; }
/**
* Notify this CanvasLayer that the canvas surface contents have
* changed (or will change) before the next transaction.
*/
void Updated() {
mCanvasRenderer->SetDirty();
SetInvalidRectToVisibleRegion();
}
/**
* Notify this CanvasLayer that the canvas surface contents have
* been painted since the last change.
*/
void Painted() { mCanvasRenderer->ResetDirty(); }
/**
* Returns true if the canvas surface contents have changed since the
* last paint.
*/
bool IsDirty() {
// We can only tell if we are dirty if we're part of the
// widget's retained layer tree.
if (!mManager || !mManager->IsWidgetLayerManager()) {
return true;
}
return mCanvasRenderer->IsDirty();
}
const nsIntRect& GetBounds() const { return mBounds; }
RefPtr<CanvasRenderer> CreateOrGetCanvasRenderer();
public:
/**
* CONSTRUCTION PHASE ONLY
* Set the filter used to resample this image (if necessary).
*/
void SetSamplingFilter(gfx::SamplingFilter aSamplingFilter) {
if (mSamplingFilter != aSamplingFilter) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) Filter", this));
mSamplingFilter = aSamplingFilter;
Mutated();
}
}
gfx::SamplingFilter GetSamplingFilter() const { return mSamplingFilter; }
MOZ_LAYER_DECL_NAME("CanvasLayer", TYPE_CANVAS)
void ComputeEffectiveTransforms(
const gfx::Matrix4x4& aTransformToSurface) override {
// Snap our local transform first, and snap the inherited transform as well.
// This makes our snapping equivalent to what would happen if our content
// was drawn into a PaintedLayer (gfxContext would snap using the local
// transform, then we'd snap again when compositing the PaintedLayer).
mEffectiveTransform =
SnapTransform(GetLocalTransform(),
gfxRect(0, 0, mBounds.Width(), mBounds.Height()),
nullptr) *
SnapTransformTranslation(aTransformToSurface, nullptr);
ComputeEffectiveTransformForMaskLayers(aTransformToSurface);
}
protected:
CanvasLayer(LayerManager* aManager, void* aImplData);
virtual ~CanvasLayer();
void PrintInfo(std::stringstream& aStream, const char* aPrefix) override;
void DumpPacket(layerscope::LayersPacket* aPacket,
const void* aParent) override;
virtual RefPtr<CanvasRenderer> CreateCanvasRendererInternal() = 0;
RefPtr<CanvasRenderer> mCanvasRenderer;
gfx::SamplingFilter mSamplingFilter;
/**
* 0, 0, canvaswidth, canvasheight
*/
gfx::IntRect mBounds;
};
/**
* ContainerLayer that refers to a "foreign" layer tree, through an
* ID. Usage of RefLayer looks like
*
* Construction phase:
* allocate ID for layer subtree
* create RefLayer, SetReferentId(ID)
*
* Composition:
* look up subtree for GetReferentId()
* ConnectReferentLayer(subtree)
* compose
* ClearReferentLayer()
*
* Clients will usually want to Connect/Clear() on each transaction to
* avoid difficulties managing memory across multiple layer subtrees.
*/
class RefLayer : public ContainerLayer {
friend class LayerManager;
private:
bool InsertAfter(Layer* aChild, Layer* aAfter) override {
MOZ_CRASH("GFX: RefLayer");
return false;
}
bool RemoveChild(Layer* aChild) override {
MOZ_CRASH("GFX: RefLayer");
return false;
}
bool RepositionChild(Layer* aChild, Layer* aAfter) override {
MOZ_CRASH("GFX: RefLayer");
return false;
}
public:
/**
* CONSTRUCTION PHASE ONLY
* Set the ID of the layer's referent.
*/
void SetReferentId(LayersId aId) {
MOZ_ASSERT(aId.IsValid());
if (mId != aId) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this,
("Layer::Mutated(%p) ReferentId", this));
mId = aId;
Mutated();
}
}
/**
* CONSTRUCTION PHASE ONLY
* Connect this ref layer to its referent, temporarily.
* ClearReferentLayer() must be called after composition.
*/
void ConnectReferentLayer(Layer* aLayer) {
MOZ_ASSERT(!mFirstChild && !mLastChild);
MOZ_ASSERT(!aLayer->GetParent());
if (aLayer->Manager() != Manager()) {
// This can happen when e.g. rendering while dragging tabs
// between windows - aLayer's manager may be the manager for the
// old window's tab. In that case, it will be changed before the
// next render (see SetLayerManager). It is simply easier to
// ignore the rendering here than it is to pause it.
NS_WARNING("ConnectReferentLayer failed - Incorrect LayerManager");
return;
}
mFirstChild = mLastChild = aLayer;
aLayer->SetParent(this);
}
/**
* CONSTRUCTION PHASE ONLY
* Set flags that indicate how event regions in the child layer tree need
* to be overridden because of properties of the parent layer tree.
*/
void SetEventRegionsOverride(EventRegionsOverride aVal) {
if (mEventRegionsOverride == aVal) {
return;
}
MOZ_LAYERS_LOG_IF_SHADOWABLE(
this, ("Layer::Mutated(%p) EventRegionsOverride", this));
mEventRegionsOverride = aVal;
Mutated();
}
EventRegionsOverride GetEventRegionsOverride() const {
return mEventRegionsOverride;
}
/**
* CONSTRUCTION PHASE ONLY
* Set remote subdocument iframe size.
*/
void SetRemoteDocumentSize(const LayerIntSize& aRemoteDocumentSize) {
if (mRemoteDocumentSize == aRemoteDocumentSize) {
return;
}
mRemoteDocumentSize = aRemoteDocumentSize;
Mutated();
}
const LayerIntSize& GetRemoteDocumentSize() const {
return mRemoteDocumentSize;
}
/**
* DRAWING PHASE ONLY
* |aLayer| is the same as the argument to ConnectReferentLayer().
*/
void DetachReferentLayer(Layer* aLayer) {
mFirstChild = mLastChild = nullptr;
aLayer->SetParent(nullptr);
}
// These getters can be used anytime.
RefLayer* AsRefLayer() override { return this; }
virtual LayersId GetReferentId() { return mId; }
/**
* DRAWING PHASE ONLY
*/
void FillSpecificAttributes(SpecificLayerAttributes& aAttrs) override;
MOZ_LAYER_DECL_NAME("RefLayer", TYPE_REF)
protected:
RefLayer(LayerManager* aManager, void* aImplData)
: ContainerLayer(aManager, aImplData),
mId{0},
mEventRegionsOverride(EventRegionsOverride::NoOverride) {}
void PrintInfo(std::stringstream& aStream, const char* aPrefix) override;
void DumpPacket(layerscope::LayersPacket* aPacket,
const void* aParent) override;
// 0 is a special value that means "no ID".
LayersId mId;
EventRegionsOverride mEventRegionsOverride;
// The remote documents only need their size because their origin is always
// (0, 0).
LayerIntSize mRemoteDocumentSize;
};
void SetAntialiasingFlags(Layer* aLayer, gfx::DrawTarget* aTarget);
#ifdef MOZ_DUMP_PAINTING
void WriteSnapshotToDumpFile(Layer* aLayer, gfx::DataSourceSurface* aSurf);
void WriteSnapshotToDumpFile(LayerManager* aManager,
gfx::DataSourceSurface* aSurf);
void WriteSnapshotToDumpFile(Compositor* aCompositor, gfx::DrawTarget* aTarget);
#endif
// A utility function used by different LayerManager implementations.
gfx::IntRect ToOutsideIntRect(const gfxRect& aRect);
void RecordCompositionPayloadsPresented(
const nsTArray<CompositionPayload>& aPayloads);
} // namespace layers
} // namespace mozilla
#endif /* GFX_LAYERS_H */