зеркало из https://github.com/mozilla/gecko-dev.git
1276 строки
51 KiB
C++
1276 строки
51 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
/* rendering object for css3 multi-column layout */
|
|
|
|
#include "nsColumnSetFrame.h"
|
|
|
|
#include "mozilla/Logging.h"
|
|
#include "mozilla/ToString.h"
|
|
#include "nsCSSRendering.h"
|
|
|
|
using namespace mozilla;
|
|
using namespace mozilla::layout;
|
|
|
|
// To see this log, use $ MOZ_LOG=ColumnSet:4 ./mach run
|
|
static LazyLogModule sColumnSetLog("ColumnSet");
|
|
#define COLUMN_SET_LOG(msg, ...) \
|
|
MOZ_LOG(sColumnSetLog, LogLevel::Debug, (msg, ##__VA_ARGS__))
|
|
|
|
class nsDisplayColumnRule : public nsDisplayItem {
|
|
public:
|
|
nsDisplayColumnRule(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame)
|
|
: nsDisplayItem(aBuilder, aFrame) {
|
|
MOZ_COUNT_CTOR(nsDisplayColumnRule);
|
|
}
|
|
#ifdef NS_BUILD_REFCNT_LOGGING
|
|
virtual ~nsDisplayColumnRule() {
|
|
MOZ_COUNT_DTOR(nsDisplayColumnRule);
|
|
mBorderRenderers.Clear();
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* Returns the frame's visual overflow rect instead of the frame's bounds.
|
|
*/
|
|
virtual nsRect GetBounds(nsDisplayListBuilder* aBuilder,
|
|
bool* aSnap) const override {
|
|
*aSnap = false;
|
|
return static_cast<nsColumnSetFrame*>(mFrame)->CalculateColumnRuleBounds(
|
|
ToReferenceFrame());
|
|
}
|
|
|
|
virtual bool CreateWebRenderCommands(
|
|
mozilla::wr::DisplayListBuilder& aBuilder,
|
|
mozilla::wr::IpcResourceUpdateQueue& aResources,
|
|
const StackingContextHelper& aSc,
|
|
mozilla::layers::RenderRootStateManager* aManager,
|
|
nsDisplayListBuilder* aDisplayListBuilder) override;
|
|
virtual void Paint(nsDisplayListBuilder* aBuilder, gfxContext* aCtx) override;
|
|
|
|
NS_DISPLAY_DECL_NAME("ColumnRule", TYPE_COLUMN_RULE);
|
|
|
|
private:
|
|
nsTArray<nsCSSBorderRenderer> mBorderRenderers;
|
|
};
|
|
|
|
void nsDisplayColumnRule::Paint(nsDisplayListBuilder* aBuilder,
|
|
gfxContext* aCtx) {
|
|
static_cast<nsColumnSetFrame*>(mFrame)->CreateBorderRenderers(
|
|
mBorderRenderers, aCtx, GetPaintRect(), ToReferenceFrame());
|
|
|
|
for (auto iter = mBorderRenderers.begin(); iter != mBorderRenderers.end();
|
|
iter++) {
|
|
iter->DrawBorders();
|
|
}
|
|
}
|
|
|
|
bool nsDisplayColumnRule::CreateWebRenderCommands(
|
|
mozilla::wr::DisplayListBuilder& aBuilder,
|
|
mozilla::wr::IpcResourceUpdateQueue& aResources,
|
|
const StackingContextHelper& aSc,
|
|
mozilla::layers::RenderRootStateManager* aManager,
|
|
nsDisplayListBuilder* aDisplayListBuilder) {
|
|
RefPtr<gfxContext> screenRefCtx = gfxContext::CreateOrNull(
|
|
gfxPlatform::GetPlatform()->ScreenReferenceDrawTarget().get());
|
|
|
|
static_cast<nsColumnSetFrame*>(mFrame)->CreateBorderRenderers(
|
|
mBorderRenderers, screenRefCtx, GetPaintRect(), ToReferenceFrame());
|
|
|
|
if (mBorderRenderers.IsEmpty()) {
|
|
return true;
|
|
}
|
|
|
|
for (auto& renderer : mBorderRenderers) {
|
|
renderer.CreateWebRenderCommands(this, aBuilder, aResources, aSc);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Tracking issues:
|
|
*
|
|
* XXX cursor movement around the top and bottom of colums seems to make the
|
|
* editor lose the caret.
|
|
*
|
|
* XXX should we support CSS columns applied to table elements?
|
|
*/
|
|
nsContainerFrame* NS_NewColumnSetFrame(nsIPresShell* aPresShell,
|
|
ComputedStyle* aStyle,
|
|
nsFrameState aStateFlags) {
|
|
nsColumnSetFrame* it =
|
|
new (aPresShell) nsColumnSetFrame(aStyle, aPresShell->GetPresContext());
|
|
it->AddStateBits(aStateFlags);
|
|
return it;
|
|
}
|
|
|
|
NS_IMPL_FRAMEARENA_HELPERS(nsColumnSetFrame)
|
|
|
|
nsColumnSetFrame::nsColumnSetFrame(ComputedStyle* aStyle,
|
|
nsPresContext* aPresContext)
|
|
: nsContainerFrame(aStyle, aPresContext, kClassID),
|
|
mLastBalanceBSize(NS_INTRINSICSIZE) {}
|
|
|
|
void nsColumnSetFrame::ForEachColumnRule(
|
|
const std::function<void(const nsRect& lineRect)>& aSetLineRect,
|
|
const nsPoint& aPt) {
|
|
nsIFrame* child = mFrames.FirstChild();
|
|
if (!child) return; // no columns
|
|
|
|
nsIFrame* nextSibling = child->GetNextSibling();
|
|
if (!nextSibling) return; // 1 column only - this means no gap to draw on
|
|
|
|
const nsStyleColumn* colStyle = StyleColumn();
|
|
nscoord ruleWidth = colStyle->GetComputedColumnRuleWidth();
|
|
if (!ruleWidth) return;
|
|
|
|
WritingMode wm = GetWritingMode();
|
|
bool isVertical = wm.IsVertical();
|
|
bool isRTL = !wm.IsBidiLTR();
|
|
|
|
nsRect contentRect = GetContentRectRelativeToSelf() + aPt;
|
|
nsSize ruleSize = isVertical ? nsSize(contentRect.width, ruleWidth)
|
|
: nsSize(ruleWidth, contentRect.height);
|
|
|
|
while (nextSibling) {
|
|
// The frame tree goes RTL in RTL.
|
|
// The |prevFrame| and |nextFrame| frames here are the visually preceding
|
|
// (left/above) and following (right/below) frames, not in logical writing-
|
|
// mode direction.
|
|
nsIFrame* prevFrame = isRTL ? nextSibling : child;
|
|
nsIFrame* nextFrame = isRTL ? child : nextSibling;
|
|
|
|
// Each child frame's position coordinates is actually relative to this
|
|
// nsColumnSetFrame.
|
|
// linePt will be at the top-left edge to paint the line.
|
|
nsPoint linePt;
|
|
if (isVertical) {
|
|
nscoord edgeOfPrev = prevFrame->GetRect().YMost() + aPt.y;
|
|
nscoord edgeOfNext = nextFrame->GetRect().Y() + aPt.y;
|
|
linePt = nsPoint(contentRect.x,
|
|
(edgeOfPrev + edgeOfNext - ruleSize.height) / 2);
|
|
} else {
|
|
nscoord edgeOfPrev = prevFrame->GetRect().XMost() + aPt.x;
|
|
nscoord edgeOfNext = nextFrame->GetRect().X() + aPt.x;
|
|
linePt = nsPoint((edgeOfPrev + edgeOfNext - ruleSize.width) / 2,
|
|
contentRect.y);
|
|
}
|
|
|
|
aSetLineRect(nsRect(linePt, ruleSize));
|
|
|
|
child = nextSibling;
|
|
nextSibling = nextSibling->GetNextSibling();
|
|
}
|
|
}
|
|
|
|
nsRect nsColumnSetFrame::CalculateColumnRuleBounds(const nsPoint& aOffset) {
|
|
nsRect combined;
|
|
ForEachColumnRule(
|
|
[&combined](const nsRect& aLineRect) {
|
|
combined = combined.Union(aLineRect);
|
|
},
|
|
aOffset);
|
|
return combined;
|
|
}
|
|
|
|
void nsColumnSetFrame::CreateBorderRenderers(
|
|
nsTArray<nsCSSBorderRenderer>& aBorderRenderers, gfxContext* aCtx,
|
|
const nsRect& aDirtyRect, const nsPoint& aPt) {
|
|
WritingMode wm = GetWritingMode();
|
|
bool isVertical = wm.IsVertical();
|
|
const nsStyleColumn* colStyle = StyleColumn();
|
|
StyleBorderStyle ruleStyle;
|
|
|
|
// Per spec, inset => ridge and outset => groove
|
|
if (colStyle->mColumnRuleStyle == StyleBorderStyle::Inset)
|
|
ruleStyle = StyleBorderStyle::Ridge;
|
|
else if (colStyle->mColumnRuleStyle == StyleBorderStyle::Outset)
|
|
ruleStyle = StyleBorderStyle::Groove;
|
|
else
|
|
ruleStyle = colStyle->mColumnRuleStyle;
|
|
|
|
nscoord ruleWidth = colStyle->GetComputedColumnRuleWidth();
|
|
if (!ruleWidth) return;
|
|
|
|
aBorderRenderers.Clear();
|
|
nscolor ruleColor =
|
|
GetVisitedDependentColor(&nsStyleColumn::mColumnRuleColor);
|
|
|
|
nsPresContext* presContext = PresContext();
|
|
// In order to re-use a large amount of code, we treat the column rule as a
|
|
// border. We create a new border style object and fill in all the details of
|
|
// the column rule as the left border. PaintBorder() does all the rendering
|
|
// for us, so we not only save an enormous amount of code but we'll support
|
|
// all the line styles that we support on borders!
|
|
nsStyleBorder border(*presContext->Document());
|
|
Sides skipSides;
|
|
if (isVertical) {
|
|
border.SetBorderWidth(eSideTop, ruleWidth);
|
|
border.SetBorderStyle(eSideTop, ruleStyle);
|
|
border.mBorderTopColor = StyleColor::FromColor(ruleColor);
|
|
skipSides |= mozilla::eSideBitsLeftRight;
|
|
skipSides |= mozilla::eSideBitsBottom;
|
|
} else {
|
|
border.SetBorderWidth(eSideLeft, ruleWidth);
|
|
border.SetBorderStyle(eSideLeft, ruleStyle);
|
|
border.mBorderLeftColor = StyleColor::FromColor(ruleColor);
|
|
skipSides |= mozilla::eSideBitsTopBottom;
|
|
skipSides |= mozilla::eSideBitsRight;
|
|
}
|
|
// If we use box-decoration-break: slice (the default), the border
|
|
// renderers will require clipping if we have continuations (see the
|
|
// aNeedsClip parameter to ConstructBorderRenderer in nsCSSRendering).
|
|
//
|
|
// Since it doesn't matter which box-decoration-break we use since
|
|
// we're only drawing borders (and not border-images), use 'clone'.
|
|
border.mBoxDecorationBreak = StyleBoxDecorationBreak::Clone;
|
|
|
|
ForEachColumnRule(
|
|
[&](const nsRect& aLineRect) {
|
|
// Assert that we're not drawing a border-image here; if we were, we
|
|
// couldn't ignore the ImgDrawResult that PaintBorderWithStyleBorder
|
|
// returns.
|
|
MOZ_ASSERT(border.mBorderImageSource.GetType() == eStyleImageType_Null);
|
|
|
|
gfx::DrawTarget* dt = aCtx ? aCtx->GetDrawTarget() : nullptr;
|
|
bool borderIsEmpty = false;
|
|
Maybe<nsCSSBorderRenderer> br =
|
|
nsCSSRendering::CreateBorderRendererWithStyleBorder(
|
|
presContext, dt, this, aDirtyRect, aLineRect, border, Style(),
|
|
&borderIsEmpty, skipSides);
|
|
if (br.isSome()) {
|
|
MOZ_ASSERT(!borderIsEmpty);
|
|
aBorderRenderers.AppendElement(br.value());
|
|
}
|
|
},
|
|
aPt);
|
|
}
|
|
|
|
static nscoord GetAvailableContentISize(const ReflowInput& aReflowInput) {
|
|
if (aReflowInput.AvailableISize() == NS_INTRINSICSIZE) {
|
|
return NS_INTRINSICSIZE;
|
|
}
|
|
|
|
WritingMode wm = aReflowInput.GetWritingMode();
|
|
nscoord borderPaddingISize =
|
|
aReflowInput.ComputedLogicalBorderPadding().IStartEnd(wm);
|
|
return std::max(0, aReflowInput.AvailableISize() - borderPaddingISize);
|
|
}
|
|
|
|
nscoord nsColumnSetFrame::GetAvailableContentBSize(
|
|
const ReflowInput& aReflowInput) {
|
|
if (aReflowInput.AvailableBSize() == NS_INTRINSICSIZE) {
|
|
return NS_INTRINSICSIZE;
|
|
}
|
|
|
|
WritingMode wm = aReflowInput.GetWritingMode();
|
|
LogicalMargin bp = aReflowInput.ComputedLogicalBorderPadding();
|
|
bp.ApplySkipSides(GetLogicalSkipSides(&aReflowInput));
|
|
bp.BEnd(wm) = aReflowInput.ComputedLogicalBorderPadding().BEnd(wm);
|
|
return std::max(0, aReflowInput.AvailableBSize() - bp.BStartEnd(wm));
|
|
}
|
|
|
|
static nscoord GetColumnGap(nsColumnSetFrame* aFrame,
|
|
nscoord aPercentageBasis) {
|
|
const auto& columnGap = aFrame->StylePosition()->mColumnGap;
|
|
if (columnGap.GetUnit() == eStyleUnit_Normal) {
|
|
return aFrame->StyleFont()->mFont.size;
|
|
}
|
|
return nsLayoutUtils::ResolveGapToLength(columnGap, aPercentageBasis);
|
|
}
|
|
|
|
/* static */
|
|
nscoord nsColumnSetFrame::ClampUsedColumnWidth(const Length& aColumnWidth) {
|
|
// Per spec, used values will be clamped to a minimum of 1px.
|
|
return std::max(CSSPixel::ToAppUnits(1), aColumnWidth.ToAppUnits());
|
|
}
|
|
|
|
nsColumnSetFrame::ReflowConfig nsColumnSetFrame::ChooseColumnStrategy(
|
|
const ReflowInput& aReflowInput, bool aForceAuto = false) {
|
|
WritingMode wm = aReflowInput.GetWritingMode();
|
|
|
|
const nsStyleColumn* colStyle = StyleColumn();
|
|
nscoord availContentISize = GetAvailableContentISize(aReflowInput);
|
|
if (aReflowInput.ComputedISize() != NS_INTRINSICSIZE) {
|
|
availContentISize = aReflowInput.ComputedISize();
|
|
}
|
|
|
|
nscoord consumedBSize = ConsumedBSize(wm);
|
|
|
|
// The effective computed height is the height of the current continuation
|
|
// of the column set frame. This should be the same as the computed height
|
|
// if we have an unconstrained available height.
|
|
nscoord computedBSize =
|
|
GetEffectiveComputedBSize(aReflowInput, consumedBSize);
|
|
nscoord colBSize = GetAvailableContentBSize(aReflowInput);
|
|
|
|
if (aReflowInput.ComputedBSize() != NS_INTRINSICSIZE) {
|
|
colBSize = aReflowInput.ComputedBSize();
|
|
} else if (aReflowInput.ComputedMaxBSize() != NS_INTRINSICSIZE) {
|
|
colBSize = std::min(colBSize, aReflowInput.ComputedMaxBSize());
|
|
}
|
|
|
|
nscoord colGap = GetColumnGap(this, aReflowInput.ComputedISize());
|
|
int32_t numColumns = colStyle->mColumnCount;
|
|
|
|
// If column-fill is set to 'balance', then we want to balance the columns.
|
|
const bool isBalancing =
|
|
colStyle->mColumnFill == StyleColumnFill::Balance && !aForceAuto;
|
|
if (isBalancing) {
|
|
const uint32_t MAX_NESTED_COLUMN_BALANCING = 2;
|
|
uint32_t cnt = 0;
|
|
for (const ReflowInput* rs = aReflowInput.mParentReflowInput;
|
|
rs && cnt < MAX_NESTED_COLUMN_BALANCING; rs = rs->mParentReflowInput) {
|
|
if (rs->mFlags.mIsColumnBalancing) {
|
|
++cnt;
|
|
}
|
|
}
|
|
if (cnt == MAX_NESTED_COLUMN_BALANCING) {
|
|
numColumns = 1;
|
|
}
|
|
}
|
|
|
|
nscoord colISize;
|
|
// In vertical writing-mode, "column-width" (inline size) will actually be
|
|
// physical height, but its CSS name is still column-width.
|
|
if (colStyle->mColumnWidth.IsLength()) {
|
|
colISize = ClampUsedColumnWidth(colStyle->mColumnWidth.AsLength());
|
|
NS_ASSERTION(colISize >= 0, "negative column width");
|
|
// Reduce column count if necessary to make columns fit in the
|
|
// available width. Compute max number of columns that fit in
|
|
// availContentISize, satisfying colGap*(maxColumns - 1) +
|
|
// colISize*maxColumns <= availContentISize
|
|
if (availContentISize != NS_INTRINSICSIZE && colGap + colISize > 0 &&
|
|
numColumns > 0) {
|
|
// This expression uses truncated rounding, which is what we
|
|
// want
|
|
int32_t maxColumns =
|
|
std::min(nscoord(nsStyleColumn::kMaxColumnCount),
|
|
(availContentISize + colGap) / (colGap + colISize));
|
|
numColumns = std::max(1, std::min(numColumns, maxColumns));
|
|
}
|
|
} else if (numColumns > 0 && availContentISize != NS_INTRINSICSIZE) {
|
|
nscoord iSizeMinusGaps = availContentISize - colGap * (numColumns - 1);
|
|
colISize = iSizeMinusGaps / numColumns;
|
|
} else {
|
|
colISize = NS_INTRINSICSIZE;
|
|
}
|
|
// Take care of the situation where there's only one column but it's
|
|
// still too wide
|
|
colISize = std::max(1, std::min(colISize, availContentISize));
|
|
|
|
nscoord expectedISizeLeftOver = 0;
|
|
|
|
if (colISize != NS_INTRINSICSIZE && availContentISize != NS_INTRINSICSIZE) {
|
|
// distribute leftover space
|
|
|
|
// First, determine how many columns will be showing if the column
|
|
// count is auto
|
|
if (numColumns <= 0) {
|
|
// choose so that colGap*(nominalColumnCount - 1) +
|
|
// colISize*nominalColumnCount is nearly availContentISize
|
|
// make sure to round down
|
|
if (colGap + colISize > 0) {
|
|
numColumns = (availContentISize + colGap) / (colGap + colISize);
|
|
// The number of columns should never exceed kMaxColumnCount.
|
|
numColumns =
|
|
std::min(nscoord(nsStyleColumn::kMaxColumnCount), numColumns);
|
|
}
|
|
if (numColumns <= 0) {
|
|
numColumns = 1;
|
|
}
|
|
}
|
|
|
|
// Compute extra space and divide it among the columns
|
|
nscoord extraSpace =
|
|
std::max(0, availContentISize -
|
|
(colISize * numColumns + colGap * (numColumns - 1)));
|
|
nscoord extraToColumns = extraSpace / numColumns;
|
|
colISize += extraToColumns;
|
|
expectedISizeLeftOver = extraSpace - (extraToColumns * numColumns);
|
|
}
|
|
|
|
if (isBalancing) {
|
|
if (numColumns <= 0) {
|
|
// Hmm, auto column count, column width or available width is unknown,
|
|
// and balancing is required. Let's just use one column then.
|
|
numColumns = 1;
|
|
}
|
|
colBSize = std::min(mLastBalanceBSize, colBSize);
|
|
} else {
|
|
// This is the case when the column-fill property is set to 'auto'.
|
|
// No balancing, so don't limit the column count
|
|
numColumns = INT32_MAX;
|
|
|
|
// XXX_jwir3: If a page's height is set to 0, we could continually
|
|
// create continuations, resulting in an infinite loop, since
|
|
// no progress is ever made. This is an issue with the spec
|
|
// (css3-multicol, css3-page, and css3-break) that is
|
|
// unresolved as of 27 Feb 2013. For the time being, we set this
|
|
// to have a minimum of 1 css px. Once a resolution is made
|
|
// on what minimum to have for a page height, we may need to
|
|
// change this value to match the appropriate spec(s).
|
|
colBSize = std::max(colBSize, nsPresContext::CSSPixelsToAppUnits(1));
|
|
}
|
|
|
|
COLUMN_SET_LOG(
|
|
"%s: numColumns=%d, colISize=%d, expectedISizeLeftOver=%d,"
|
|
" colBSize=%d, colGap=%d",
|
|
__func__, numColumns, colISize, expectedISizeLeftOver, colBSize, colGap);
|
|
|
|
ReflowConfig config;
|
|
config.mBalanceColCount = numColumns;
|
|
config.mColISize = colISize;
|
|
config.mExpectedISizeLeftOver = expectedISizeLeftOver;
|
|
config.mColGap = colGap;
|
|
config.mColMaxBSize = colBSize;
|
|
config.mIsBalancing = isBalancing;
|
|
config.mKnownFeasibleBSize = NS_INTRINSICSIZE;
|
|
config.mKnownInfeasibleBSize = 0;
|
|
config.mComputedBSize = computedBSize;
|
|
config.mConsumedBSize = consumedBSize;
|
|
|
|
return config;
|
|
}
|
|
|
|
static void MarkPrincipalChildrenDirty(nsIFrame* aFrame) {
|
|
for (nsIFrame* childFrame : aFrame->PrincipalChildList()) {
|
|
childFrame->AddStateBits(NS_FRAME_IS_DIRTY);
|
|
}
|
|
}
|
|
|
|
bool nsColumnSetFrame::ReflowColumns(ReflowOutput& aDesiredSize,
|
|
const ReflowInput& aReflowInput,
|
|
nsReflowStatus& aReflowStatus,
|
|
ReflowConfig& aConfig,
|
|
bool aLastColumnUnbounded,
|
|
ColumnBalanceData& aColData) {
|
|
bool feasible = ReflowChildren(aDesiredSize, aReflowInput, aReflowStatus,
|
|
aConfig, aLastColumnUnbounded, aColData);
|
|
|
|
if (aColData.mHasExcessBSize) {
|
|
aConfig = ChooseColumnStrategy(aReflowInput, true);
|
|
|
|
// We need to reflow our children again one last time, otherwise we might
|
|
// end up with a stale column height for some of our columns, since we
|
|
// bailed out of balancing.
|
|
feasible = ReflowChildren(aDesiredSize, aReflowInput, aReflowStatus,
|
|
aConfig, aLastColumnUnbounded, aColData);
|
|
}
|
|
|
|
return feasible;
|
|
}
|
|
|
|
static void MoveChildTo(nsIFrame* aChild, LogicalPoint aOrigin, WritingMode aWM,
|
|
const nsSize& aContainerSize) {
|
|
if (aChild->GetLogicalPosition(aWM, aContainerSize) == aOrigin) {
|
|
return;
|
|
}
|
|
|
|
aChild->SetPosition(aWM, aOrigin, aContainerSize);
|
|
nsContainerFrame::PlaceFrameView(aChild);
|
|
}
|
|
|
|
nscoord nsColumnSetFrame::GetMinISize(gfxContext* aRenderingContext) {
|
|
nscoord iSize = 0;
|
|
DISPLAY_MIN_INLINE_SIZE(this, iSize);
|
|
|
|
if (mFrames.FirstChild() && !StyleDisplay()->IsContainSize()) {
|
|
// We want to ignore this in the case that we're size contained
|
|
// because our children should not contribute to our
|
|
// intrinsic size.
|
|
iSize = mFrames.FirstChild()->GetMinISize(aRenderingContext);
|
|
}
|
|
const nsStyleColumn* colStyle = StyleColumn();
|
|
nscoord colISize;
|
|
if (colStyle->mColumnWidth.IsLength()) {
|
|
colISize = ClampUsedColumnWidth(colStyle->mColumnWidth.AsLength());
|
|
// As available width reduces to zero, we reduce our number of columns
|
|
// to one, and don't enforce the column width, so just return the min
|
|
// of the child's min-width with any specified column width.
|
|
iSize = std::min(iSize, colISize);
|
|
} else {
|
|
NS_ASSERTION(colStyle->mColumnCount > 0,
|
|
"column-count and column-width can't both be auto");
|
|
// As available width reduces to zero, we still have mColumnCount columns,
|
|
// so multiply the child's min-width by the number of columns (n) and
|
|
// include n-1 column gaps.
|
|
colISize = iSize;
|
|
iSize *= colStyle->mColumnCount;
|
|
nscoord colGap = GetColumnGap(this, NS_UNCONSTRAINEDSIZE);
|
|
iSize += colGap * (colStyle->mColumnCount - 1);
|
|
// The multiplication above can make 'width' negative (integer overflow),
|
|
// so use std::max to protect against that.
|
|
iSize = std::max(iSize, colISize);
|
|
}
|
|
// XXX count forced column breaks here? Maybe we should return the child's
|
|
// min-width times the minimum number of columns.
|
|
return iSize;
|
|
}
|
|
|
|
nscoord nsColumnSetFrame::GetPrefISize(gfxContext* aRenderingContext) {
|
|
// Our preferred width is our desired column width, if specified, otherwise
|
|
// the child's preferred width, times the number of columns, plus the width
|
|
// of any required column gaps
|
|
// XXX what about forced column breaks here?
|
|
nscoord result = 0;
|
|
DISPLAY_PREF_INLINE_SIZE(this, result);
|
|
const nsStyleColumn* colStyle = StyleColumn();
|
|
nscoord colGap = GetColumnGap(this, NS_UNCONSTRAINEDSIZE);
|
|
|
|
nscoord colISize;
|
|
if (colStyle->mColumnWidth.IsLength()) {
|
|
colISize = ClampUsedColumnWidth(colStyle->mColumnWidth.AsLength());
|
|
} else if (mFrames.FirstChild() && !StyleDisplay()->IsContainSize()) {
|
|
// We want to ignore this in the case that we're size contained
|
|
// because our children should not contribute to our
|
|
// intrinsic size.
|
|
colISize = mFrames.FirstChild()->GetPrefISize(aRenderingContext);
|
|
} else {
|
|
colISize = 0;
|
|
}
|
|
|
|
int32_t numColumns = colStyle->mColumnCount;
|
|
if (numColumns <= 0) {
|
|
// if column-count is auto, assume one column
|
|
numColumns = 1;
|
|
}
|
|
|
|
nscoord iSize = colISize * numColumns + colGap * (numColumns - 1);
|
|
// The multiplication above can make 'iSize' negative (integer overflow),
|
|
// so use std::max to protect against that.
|
|
result = std::max(iSize, colISize);
|
|
return result;
|
|
}
|
|
|
|
bool nsColumnSetFrame::ReflowChildren(ReflowOutput& aDesiredSize,
|
|
const ReflowInput& aReflowInput,
|
|
nsReflowStatus& aStatus,
|
|
const ReflowConfig& aConfig,
|
|
bool aUnboundedLastColumn,
|
|
ColumnBalanceData& aColData) {
|
|
aColData.Reset();
|
|
bool allFit = true;
|
|
WritingMode wm = GetWritingMode();
|
|
bool isRTL = !wm.IsBidiLTR();
|
|
bool shrinkingBSize = mLastBalanceBSize > aConfig.mColMaxBSize;
|
|
bool changingBSize = mLastBalanceBSize != aConfig.mColMaxBSize;
|
|
|
|
COLUMN_SET_LOG(
|
|
"%s: Doing column reflow pass: mLastBalanceBSize=%d,"
|
|
" mColMaxBSize=%d, RTL=%d, mBalanceColCount=%d,"
|
|
" mColISize=%d, mColGap=%d",
|
|
__func__, mLastBalanceBSize, aConfig.mColMaxBSize, isRTL,
|
|
aConfig.mBalanceColCount, aConfig.mColISize, aConfig.mColGap);
|
|
|
|
DrainOverflowColumns();
|
|
|
|
const bool colBSizeChanged = mLastBalanceBSize != aConfig.mColMaxBSize;
|
|
|
|
if (colBSizeChanged) {
|
|
mLastBalanceBSize = aConfig.mColMaxBSize;
|
|
// XXX Seems like this could fire if incremental reflow pushed the column
|
|
// set down so we reflow incrementally with a different available height.
|
|
// We need a way to do an incremental reflow and be sure availableHeight
|
|
// changes are taken account of! Right now I think block frames with
|
|
// absolute children might exit early.
|
|
/*
|
|
NS_ASSERTION(
|
|
aKidReason != eReflowReason_Incremental,
|
|
"incremental reflow should not have changed the balance height");
|
|
*/
|
|
}
|
|
|
|
// get our border and padding
|
|
LogicalMargin borderPadding = aReflowInput.ComputedLogicalBorderPadding();
|
|
borderPadding.ApplySkipSides(GetLogicalSkipSides(&aReflowInput));
|
|
|
|
nsRect contentRect(0, 0, 0, 0);
|
|
nsOverflowAreas overflowRects;
|
|
|
|
nsIFrame* child = mFrames.FirstChild();
|
|
LogicalPoint childOrigin(wm, borderPadding.IStart(wm),
|
|
borderPadding.BStart(wm));
|
|
// In vertical-rl mode, columns will not be correctly placed if the
|
|
// reflowInput's ComputedWidth() is UNCONSTRAINED (in which case we'll get
|
|
// a containerSize.width of zero here). In that case, the column positions
|
|
// will be adjusted later, after our correct contentSize is known.
|
|
nsSize containerSize = aReflowInput.ComputedSizeAsContainerIfConstrained();
|
|
|
|
// For RTL, since the columns might not fill the frame exactly, we
|
|
// need to account for the slop. Otherwise we'll waste time moving the
|
|
// columns by some tiny amount
|
|
|
|
// XXX when all of layout is converted to logical coordinates, we
|
|
// probably won't need to do this hack any more. For now, we
|
|
// confine it to the legacy horizontal-rl case
|
|
if (!wm.IsVertical() && isRTL) {
|
|
nscoord availISize = aReflowInput.AvailableISize();
|
|
if (aReflowInput.ComputedISize() != NS_INTRINSICSIZE) {
|
|
availISize = aReflowInput.ComputedISize();
|
|
}
|
|
if (availISize != NS_INTRINSICSIZE) {
|
|
childOrigin.I(wm) =
|
|
containerSize.width - borderPadding.Left(wm) - availISize;
|
|
|
|
COLUMN_SET_LOG("%s: childOrigin.iCoord=%d", __func__, childOrigin.I(wm));
|
|
}
|
|
}
|
|
|
|
int columnCount = 0;
|
|
int contentBEnd = 0;
|
|
bool reflowNext = false;
|
|
|
|
while (child) {
|
|
// Try to skip reflowing the child. We can't skip if the child is dirty. We
|
|
// also can't skip if the next column is dirty, because the next column's
|
|
// first line(s) might be pullable back to this column. We can't skip if
|
|
// it's the last child because we need to obtain the bottom margin. We can't
|
|
// skip if this is the last column and we're supposed to assign unbounded
|
|
// height to it, because that could change the available height from
|
|
// the last time we reflowed it and we should try to pull all the
|
|
// content from its next sibling. (Note that it might be the last
|
|
// column, but not be the last child because the desired number of columns
|
|
// has changed.)
|
|
bool skipIncremental = !aReflowInput.ShouldReflowAllKids() &&
|
|
!NS_SUBTREE_DIRTY(child) &&
|
|
child->GetNextSibling() &&
|
|
!(aUnboundedLastColumn &&
|
|
columnCount == aConfig.mBalanceColCount - 1) &&
|
|
!NS_SUBTREE_DIRTY(child->GetNextSibling());
|
|
// If column-fill is auto (not the default), then we might need to
|
|
// move content between columns for any change in column block-size.
|
|
if (skipIncremental && changingBSize &&
|
|
StyleColumn()->mColumnFill == StyleColumnFill::Auto) {
|
|
skipIncremental = false;
|
|
}
|
|
// If we need to pull up content from the prev-in-flow then this is not just
|
|
// a height shrink. The prev in flow will have set the dirty bit.
|
|
// Check the overflow rect YMost instead of just the child's content height.
|
|
// The child may have overflowing content that cares about the available
|
|
// height boundary. (It may also have overflowing content that doesn't care
|
|
// about the available height boundary, but if so, too bad, this
|
|
// optimization is defeated.) We want scrollable overflow here since this is
|
|
// a calculation that affects layout.
|
|
if (skipIncremental && shrinkingBSize) {
|
|
switch (wm.GetBlockDir()) {
|
|
case WritingMode::eBlockTB:
|
|
if (child->GetScrollableOverflowRect().YMost() >
|
|
aConfig.mColMaxBSize) {
|
|
skipIncremental = false;
|
|
}
|
|
break;
|
|
case WritingMode::eBlockLR:
|
|
if (child->GetScrollableOverflowRect().XMost() >
|
|
aConfig.mColMaxBSize) {
|
|
skipIncremental = false;
|
|
}
|
|
break;
|
|
case WritingMode::eBlockRL:
|
|
// XXX not sure how to handle this, so for now just don't attempt
|
|
// the optimization
|
|
skipIncremental = false;
|
|
break;
|
|
default:
|
|
MOZ_ASSERT_UNREACHABLE("unknown block direction");
|
|
break;
|
|
}
|
|
}
|
|
|
|
nscoord childContentBEnd = 0;
|
|
if (!reflowNext && skipIncremental) {
|
|
// This child does not need to be reflowed, but we may need to move it
|
|
MoveChildTo(child, childOrigin, wm, containerSize);
|
|
|
|
// If this is the last frame then make sure we get the right status
|
|
nsIFrame* kidNext = child->GetNextSibling();
|
|
if (kidNext) {
|
|
aStatus.Reset();
|
|
if (kidNext->GetStateBits() & NS_FRAME_IS_OVERFLOW_CONTAINER) {
|
|
aStatus.SetOverflowIncomplete();
|
|
} else {
|
|
aStatus.SetIncomplete();
|
|
}
|
|
} else {
|
|
aStatus = mLastFrameStatus;
|
|
}
|
|
childContentBEnd = nsLayoutUtils::CalculateContentBEnd(wm, child);
|
|
|
|
COLUMN_SET_LOG("%s: Skipping child #%d %p (incremental %d): status=%s",
|
|
__func__, columnCount, child, skipIncremental,
|
|
ToString(aStatus).c_str());
|
|
} else {
|
|
LogicalSize availSize(wm, aConfig.mColISize, aConfig.mColMaxBSize);
|
|
if (aUnboundedLastColumn && columnCount == aConfig.mBalanceColCount - 1) {
|
|
availSize.BSize(wm) = GetAvailableContentBSize(aReflowInput);
|
|
}
|
|
|
|
LogicalSize computedSize = aReflowInput.ComputedSize(wm);
|
|
|
|
if (reflowNext) child->AddStateBits(NS_FRAME_IS_DIRTY);
|
|
|
|
LogicalSize kidCBSize(wm, availSize.ISize(wm), computedSize.BSize(wm));
|
|
ReflowInput kidReflowInput(PresContext(), aReflowInput, child, availSize,
|
|
&kidCBSize);
|
|
kidReflowInput.mFlags.mIsTopOfPage = true;
|
|
kidReflowInput.mFlags.mTableIsSplittable = false;
|
|
kidReflowInput.mFlags.mIsColumnBalancing = aConfig.mIsBalancing;
|
|
|
|
// We need to reflow any float placeholders, even if our column height
|
|
// hasn't changed.
|
|
kidReflowInput.mFlags.mMustReflowPlaceholders = !colBSizeChanged;
|
|
|
|
COLUMN_SET_LOG("%s: Reflowing child #%d %p: availBSize=%d", __func__,
|
|
columnCount, child, availSize.BSize(wm));
|
|
|
|
// Note if the column's next in flow is not being changed by this
|
|
// incremental reflow. This may allow the current column to avoid trying
|
|
// to pull lines from the next column.
|
|
if (child->GetNextSibling() && !(GetStateBits() & NS_FRAME_IS_DIRTY) &&
|
|
!(child->GetNextSibling()->GetStateBits() & NS_FRAME_IS_DIRTY)) {
|
|
kidReflowInput.mFlags.mNextInFlowUntouched = true;
|
|
}
|
|
|
|
ReflowOutput kidDesiredSize(wm);
|
|
|
|
// XXX it would be cool to consult the float manager for the
|
|
// previous block to figure out the region of floats from the
|
|
// previous column that extend into this column, and subtract
|
|
// that region from the new float manager. So you could stick a
|
|
// really big float in the first column and text in following
|
|
// columns would flow around it.
|
|
|
|
// Reflow the frame
|
|
LogicalPoint origin(
|
|
wm,
|
|
childOrigin.I(wm) + kidReflowInput.ComputedLogicalMargin().IStart(wm),
|
|
childOrigin.B(wm) +
|
|
kidReflowInput.ComputedLogicalMargin().BStart(wm));
|
|
aStatus.Reset();
|
|
ReflowChild(child, PresContext(), kidDesiredSize, kidReflowInput, wm,
|
|
origin, containerSize, 0, aStatus);
|
|
|
|
reflowNext = aStatus.NextInFlowNeedsReflow();
|
|
|
|
COLUMN_SET_LOG(
|
|
"%s: Reflowed child #%d %p: status=%s,"
|
|
" desiredSize=(%d,%d), CarriedOutBEndMargin=%d (ignored)",
|
|
__func__, columnCount, child, ToString(aStatus).c_str(),
|
|
kidDesiredSize.ISize(wm), kidDesiredSize.BSize(wm),
|
|
kidDesiredSize.mCarriedOutBEndMargin.get());
|
|
|
|
// The carried-out block-end margin of column content might be non-zero
|
|
// when we try to find the best column balancing block size, but it should
|
|
// never affect the size column set nor be further carried out. Set it to
|
|
// zero.
|
|
//
|
|
// FIXME: For some types of fragmentation, we should carry the margin into
|
|
// the next column. Also see
|
|
// https://drafts.csswg.org/css-break-4/#break-margins
|
|
//
|
|
// FIXME: This should never happen for the last column, since it should be
|
|
// a margin root; see nsBlockFrame::IsMarginRoot(). However, sometimes the
|
|
// last column has an empty continuation while searching for the best
|
|
// column balancing bsize, which prevents the last column from being a
|
|
// margin root.
|
|
kidDesiredSize.mCarriedOutBEndMargin.Zero();
|
|
|
|
NS_FRAME_TRACE_REFLOW_OUT("Column::Reflow", aStatus);
|
|
|
|
FinishReflowChild(child, PresContext(), kidDesiredSize, &kidReflowInput,
|
|
wm, childOrigin, containerSize, 0);
|
|
|
|
childContentBEnd = nsLayoutUtils::CalculateContentBEnd(wm, child);
|
|
if (childContentBEnd > aConfig.mColMaxBSize) {
|
|
allFit = false;
|
|
}
|
|
if (childContentBEnd > availSize.BSize(wm)) {
|
|
aColData.mMaxOverflowingBSize =
|
|
std::max(childContentBEnd, aColData.mMaxOverflowingBSize);
|
|
}
|
|
}
|
|
|
|
contentRect.UnionRect(contentRect, child->GetRect());
|
|
|
|
ConsiderChildOverflow(overflowRects, child);
|
|
contentBEnd = std::max(contentBEnd, childContentBEnd);
|
|
aColData.mLastBSize = childContentBEnd;
|
|
aColData.mSumBSize += childContentBEnd;
|
|
|
|
// Build a continuation column if necessary
|
|
nsIFrame* kidNextInFlow = child->GetNextInFlow();
|
|
|
|
if (aStatus.IsFullyComplete() && !aStatus.IsTruncated()) {
|
|
NS_ASSERTION(!kidNextInFlow, "next in flow should have been deleted");
|
|
child = nullptr;
|
|
break;
|
|
} else {
|
|
++columnCount;
|
|
// Make sure that the column has a next-in-flow. If not, we must
|
|
// create one to hold the overflowing stuff, even if we're just
|
|
// going to put it on our overflow list and let *our*
|
|
// next in flow handle it.
|
|
if (!kidNextInFlow) {
|
|
NS_ASSERTION(aStatus.NextInFlowNeedsReflow(),
|
|
"We have to create a continuation, but the block doesn't "
|
|
"want us to reflow it?");
|
|
|
|
// We need to create a continuing column
|
|
kidNextInFlow = CreateNextInFlow(child);
|
|
}
|
|
|
|
// Make sure we reflow a next-in-flow when it switches between being
|
|
// normal or overflow container
|
|
if (aStatus.IsOverflowIncomplete()) {
|
|
if (!(kidNextInFlow->GetStateBits() & NS_FRAME_IS_OVERFLOW_CONTAINER)) {
|
|
aStatus.SetNextInFlowNeedsReflow();
|
|
reflowNext = true;
|
|
kidNextInFlow->AddStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER);
|
|
}
|
|
} else if (kidNextInFlow->GetStateBits() &
|
|
NS_FRAME_IS_OVERFLOW_CONTAINER) {
|
|
aStatus.SetNextInFlowNeedsReflow();
|
|
reflowNext = true;
|
|
kidNextInFlow->RemoveStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER);
|
|
}
|
|
|
|
if ((contentBEnd > aReflowInput.ComputedMaxBSize() ||
|
|
contentBEnd > aReflowInput.ComputedBSize()) &&
|
|
aConfig.mIsBalancing) {
|
|
// We overflowed vertically, but have not exceeded the number of
|
|
// columns. We're going to go into overflow columns now, so balancing
|
|
// no longer applies.
|
|
aColData.mHasExcessBSize = true;
|
|
}
|
|
|
|
if (columnCount >= aConfig.mBalanceColCount) {
|
|
// No more columns allowed here. Stop.
|
|
aStatus.SetNextInFlowNeedsReflow();
|
|
kidNextInFlow->AddStateBits(NS_FRAME_IS_DIRTY);
|
|
// Move any of our leftover columns to our overflow list. Our
|
|
// next-in-flow will eventually pick them up.
|
|
const nsFrameList& continuationColumns =
|
|
mFrames.RemoveFramesAfter(child);
|
|
if (continuationColumns.NotEmpty()) {
|
|
SetOverflowFrames(continuationColumns);
|
|
}
|
|
child = nullptr;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (PresContext()->HasPendingInterrupt()) {
|
|
// Stop the loop now while |child| still points to the frame that bailed
|
|
// out. We could keep going here and condition a bunch of the code in
|
|
// this loop on whether there's an interrupt, or even just keep going and
|
|
// trying to reflow the blocks (even though we know they'll interrupt
|
|
// right after their first line), but stopping now is conceptually the
|
|
// simplest (and probably fastest) thing.
|
|
break;
|
|
}
|
|
|
|
// Advance to the next column
|
|
child = child->GetNextSibling();
|
|
|
|
if (child) {
|
|
childOrigin.I(wm) += aConfig.mColISize + aConfig.mColGap;
|
|
|
|
COLUMN_SET_LOG("%s: Next childOrigin.iCoord=%d", __func__,
|
|
childOrigin.I(wm));
|
|
}
|
|
}
|
|
|
|
if (PresContext()->CheckForInterrupt(this) &&
|
|
(GetStateBits() & NS_FRAME_IS_DIRTY)) {
|
|
// Mark all our kids starting with |child| dirty
|
|
|
|
// Note that this is a CheckForInterrupt call, not a HasPendingInterrupt,
|
|
// because we might have interrupted while reflowing |child|, and since
|
|
// we're about to add a dirty bit to |child| we need to make sure that
|
|
// |this| is scheduled to have dirty bits marked on it and its ancestors.
|
|
// Otherwise, when we go to mark dirty bits on |child|'s ancestors we'll
|
|
// bail out immediately, since it'll already have a dirty bit.
|
|
for (; child; child = child->GetNextSibling()) {
|
|
child->AddStateBits(NS_FRAME_IS_DIRTY);
|
|
}
|
|
}
|
|
|
|
aColData.mMaxBSize = contentBEnd;
|
|
LogicalSize contentSize = LogicalSize(wm, contentRect.Size());
|
|
contentSize.BSize(wm) = std::max(contentSize.BSize(wm), contentBEnd);
|
|
mLastFrameStatus = aStatus;
|
|
|
|
// Apply computed and min/max values
|
|
if (aConfig.mComputedBSize != NS_INTRINSICSIZE) {
|
|
if (aReflowInput.AvailableBSize() != NS_INTRINSICSIZE) {
|
|
contentSize.BSize(wm) =
|
|
std::min(contentSize.BSize(wm), aConfig.mComputedBSize);
|
|
} else {
|
|
contentSize.BSize(wm) = aConfig.mComputedBSize;
|
|
}
|
|
} else if (aReflowInput.mStyleDisplay->IsContainSize()) {
|
|
// If we are intrinsically sized, but are size contained,
|
|
// we need to behave as if we have no contents. Our BSize
|
|
// should be zero or minBSize if specified.
|
|
contentSize.BSize(wm) = aReflowInput.ApplyMinMaxBSize(0);
|
|
} else {
|
|
// We add the "consumed" block-size back in so that we're applying
|
|
// constraints to the correct bSize value, then subtract it again
|
|
// after we've finished with the min/max calculation. This prevents us from
|
|
// having a last continuation that is smaller than the min bSize. but which
|
|
// has prev-in-flows, trigger a larger bSize than actually required.
|
|
contentSize.BSize(wm) = aReflowInput.ApplyMinMaxBSize(
|
|
contentSize.BSize(wm), aConfig.mConsumedBSize);
|
|
}
|
|
if (aReflowInput.ComputedISize() != NS_INTRINSICSIZE) {
|
|
contentSize.ISize(wm) = aReflowInput.ComputedISize();
|
|
} else {
|
|
contentSize.ISize(wm) =
|
|
aReflowInput.ApplyMinMaxISize(contentSize.ISize(wm));
|
|
}
|
|
|
|
contentSize.ISize(wm) += borderPadding.IStartEnd(wm);
|
|
contentSize.BSize(wm) += borderPadding.BStartEnd(wm);
|
|
aDesiredSize.SetSize(wm, contentSize);
|
|
aDesiredSize.mOverflowAreas = overflowRects;
|
|
aDesiredSize.UnionOverflowAreasWithDesiredBounds();
|
|
|
|
// In vertical-rl mode, make a second pass if necessary to reposition the
|
|
// columns with the correct container width. (In other writing modes,
|
|
// correct containerSize was not required for column positioning so we don't
|
|
// need this fixup.)
|
|
if (wm.IsVerticalRL() && containerSize.width != contentSize.Width(wm)) {
|
|
const nsSize finalContainerSize = aDesiredSize.PhysicalSize();
|
|
for (nsIFrame* child : mFrames) {
|
|
// Get the logical position as set previously using a provisional or
|
|
// dummy containerSize, and reset with the correct container size.
|
|
child->SetPosition(wm, child->GetLogicalPosition(wm, containerSize),
|
|
finalContainerSize);
|
|
}
|
|
}
|
|
|
|
bool feasible = allFit && aStatus.IsFullyComplete() && !aStatus.IsTruncated();
|
|
COLUMN_SET_LOG("%s: Done column reflow pass: %s", __func__,
|
|
feasible ? "Feasible :)" : "Infeasible :(");
|
|
|
|
return feasible;
|
|
}
|
|
|
|
void nsColumnSetFrame::DrainOverflowColumns() {
|
|
// First grab the prev-in-flows overflows and reparent them to this
|
|
// frame.
|
|
nsPresContext* presContext = PresContext();
|
|
nsColumnSetFrame* prev = static_cast<nsColumnSetFrame*>(GetPrevInFlow());
|
|
if (prev) {
|
|
AutoFrameListPtr overflows(presContext, prev->StealOverflowFrames());
|
|
if (overflows) {
|
|
nsContainerFrame::ReparentFrameViewList(*overflows, prev, this);
|
|
|
|
mFrames.InsertFrames(this, nullptr, *overflows);
|
|
}
|
|
}
|
|
|
|
// Now pull back our own overflows and append them to our children.
|
|
// We don't need to reparent them since we're already their parent.
|
|
AutoFrameListPtr overflows(presContext, StealOverflowFrames());
|
|
if (overflows) {
|
|
// We're already the parent for these frames, so no need to set
|
|
// their parent again.
|
|
mFrames.AppendFrames(nullptr, *overflows);
|
|
}
|
|
}
|
|
|
|
void nsColumnSetFrame::FindBestBalanceBSize(
|
|
const ReflowInput& aReflowInput, nsPresContext* aPresContext,
|
|
ReflowConfig& aConfig, ColumnBalanceData& aColData,
|
|
ReflowOutput& aDesiredSize, bool& aUnboundedLastColumn,
|
|
bool& aRunWasFeasible, nsReflowStatus& aStatus) {
|
|
bool feasible = aRunWasFeasible;
|
|
|
|
nsMargin bp = aReflowInput.ComputedPhysicalBorderPadding();
|
|
bp.ApplySkipSides(GetSkipSides());
|
|
bp.bottom = aReflowInput.ComputedPhysicalBorderPadding().bottom;
|
|
|
|
nscoord availableContentBSize = GetAvailableContentBSize(aReflowInput);
|
|
|
|
// Termination of the algorithm below is guaranteed because
|
|
// aConfig.knownFeasibleBSize - aConfig.knownInfeasibleBSize decreases in
|
|
// every iteration.
|
|
|
|
// We set this flag when we detect that we may contain a frame
|
|
// that can break anywhere (thus foiling the linear decrease-by-one
|
|
// search)
|
|
bool maybeContinuousBreakingDetected = false;
|
|
|
|
while (!aPresContext->HasPendingInterrupt()) {
|
|
nscoord lastKnownFeasibleBSize = aConfig.mKnownFeasibleBSize;
|
|
|
|
// Record what we learned from the last reflow
|
|
if (feasible) {
|
|
// maxBSize is feasible. Also, mLastBalanceBSize is feasible.
|
|
aConfig.mKnownFeasibleBSize =
|
|
std::min(aConfig.mKnownFeasibleBSize, aColData.mMaxBSize);
|
|
aConfig.mKnownFeasibleBSize =
|
|
std::min(aConfig.mKnownFeasibleBSize, mLastBalanceBSize);
|
|
|
|
// Furthermore, no height less than the height of the last
|
|
// column can ever be feasible. (We might be able to reduce the
|
|
// height of a non-last column by moving content to a later column,
|
|
// but we can't do that with the last column.)
|
|
if (mFrames.GetLength() == aConfig.mBalanceColCount) {
|
|
aConfig.mKnownInfeasibleBSize =
|
|
std::max(aConfig.mKnownInfeasibleBSize, aColData.mLastBSize - 1);
|
|
}
|
|
} else {
|
|
aConfig.mKnownInfeasibleBSize =
|
|
std::max(aConfig.mKnownInfeasibleBSize, mLastBalanceBSize);
|
|
// If a column didn't fit in its available height, then its current
|
|
// height must be the minimum height for unbreakable content in
|
|
// the column, and therefore no smaller height can be feasible.
|
|
aConfig.mKnownInfeasibleBSize = std::max(
|
|
aConfig.mKnownInfeasibleBSize, aColData.mMaxOverflowingBSize - 1);
|
|
|
|
if (aUnboundedLastColumn) {
|
|
// The last column is unbounded, so all content got reflowed, so the
|
|
// mColMaxBSize is feasible.
|
|
aConfig.mKnownFeasibleBSize =
|
|
std::min(aConfig.mKnownFeasibleBSize, aColData.mMaxBSize);
|
|
}
|
|
}
|
|
|
|
COLUMN_SET_LOG("%s: KnownInfeasibleBSize=%d, KnownFeasibleBSize=%d",
|
|
__func__, aConfig.mKnownInfeasibleBSize,
|
|
aConfig.mKnownFeasibleBSize);
|
|
|
|
if (aConfig.mKnownInfeasibleBSize >= aConfig.mKnownFeasibleBSize - 1) {
|
|
// aConfig.mKnownFeasibleBSize is where we want to be
|
|
break;
|
|
}
|
|
|
|
if (aConfig.mKnownInfeasibleBSize >= availableContentBSize) {
|
|
break;
|
|
}
|
|
|
|
if (lastKnownFeasibleBSize - aConfig.mKnownFeasibleBSize == 1) {
|
|
// We decreased the feasible height by one twip only. This could
|
|
// indicate that there is a continuously breakable child frame
|
|
// that we are crawling through.
|
|
maybeContinuousBreakingDetected = true;
|
|
}
|
|
|
|
nscoord nextGuess =
|
|
(aConfig.mKnownFeasibleBSize + aConfig.mKnownInfeasibleBSize) / 2;
|
|
// The constant of 600 twips is arbitrary. It's about two line-heights.
|
|
if (aConfig.mKnownFeasibleBSize - nextGuess < 600 &&
|
|
!maybeContinuousBreakingDetected) {
|
|
// We're close to our target, so just try shrinking just the
|
|
// minimum amount that will cause one of our columns to break
|
|
// differently.
|
|
nextGuess = aConfig.mKnownFeasibleBSize - 1;
|
|
} else if (aUnboundedLastColumn) {
|
|
// Make a guess by dividing that into N columns. Add some slop
|
|
// to try to make it on the feasible side. The constant of
|
|
// 600 twips is arbitrary. It's about two line-heights.
|
|
nextGuess = aColData.mSumBSize / aConfig.mBalanceColCount + 600;
|
|
// Sanitize it
|
|
nextGuess = clamped(nextGuess, aConfig.mKnownInfeasibleBSize + 1,
|
|
aConfig.mKnownFeasibleBSize - 1);
|
|
} else if (aConfig.mKnownFeasibleBSize == NS_INTRINSICSIZE) {
|
|
// This can happen when we had a next-in-flow so we didn't
|
|
// want to do an unbounded height measuring step. Let's just increase
|
|
// from the infeasible height by some reasonable amount.
|
|
nextGuess = aConfig.mKnownInfeasibleBSize * 2 + 600;
|
|
}
|
|
// Don't bother guessing more than our height constraint.
|
|
nextGuess = std::min(availableContentBSize, nextGuess);
|
|
|
|
COLUMN_SET_LOG("%s: Choosing next guess=%d", __func__, nextGuess);
|
|
|
|
aConfig.mColMaxBSize = nextGuess;
|
|
|
|
aUnboundedLastColumn = false;
|
|
MarkPrincipalChildrenDirty(this);
|
|
feasible = ReflowColumns(aDesiredSize, aReflowInput, aStatus, aConfig,
|
|
false, aColData);
|
|
|
|
if (!aConfig.mIsBalancing) {
|
|
// Looks like we had excess height when balancing, so we gave up on
|
|
// trying to balance.
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (aConfig.mIsBalancing && !feasible &&
|
|
!aPresContext->HasPendingInterrupt()) {
|
|
// We may need to reflow one more time at the feasible height to
|
|
// get a valid layout.
|
|
bool skip = false;
|
|
if (aConfig.mKnownInfeasibleBSize >= availableContentBSize) {
|
|
aConfig.mColMaxBSize = availableContentBSize;
|
|
if (mLastBalanceBSize == availableContentBSize) {
|
|
skip = true;
|
|
}
|
|
} else {
|
|
aConfig.mColMaxBSize = aConfig.mKnownFeasibleBSize;
|
|
}
|
|
if (!skip) {
|
|
// If our height is unconstrained, make sure that the last column is
|
|
// allowed to have arbitrary height here, even though we were balancing.
|
|
// Otherwise we'd have to split, and it's not clear what we'd do with
|
|
// that.
|
|
MarkPrincipalChildrenDirty(this);
|
|
feasible = ReflowColumns(aDesiredSize, aReflowInput, aStatus, aConfig,
|
|
availableContentBSize == NS_UNCONSTRAINEDSIZE,
|
|
aColData);
|
|
}
|
|
}
|
|
|
|
aRunWasFeasible = feasible;
|
|
}
|
|
|
|
void nsColumnSetFrame::Reflow(nsPresContext* aPresContext,
|
|
ReflowOutput& aDesiredSize,
|
|
const ReflowInput& aReflowInput,
|
|
nsReflowStatus& aStatus) {
|
|
MarkInReflow();
|
|
// Don't support interruption in columns
|
|
nsPresContext::InterruptPreventer noInterrupts(aPresContext);
|
|
|
|
DO_GLOBAL_REFLOW_COUNT("nsColumnSetFrame");
|
|
DISPLAY_REFLOW(aPresContext, this, aReflowInput, aDesiredSize, aStatus);
|
|
MOZ_ASSERT(aStatus.IsEmpty(), "Caller should pass a fresh reflow status!");
|
|
|
|
// Our children depend on our block-size if we have a fixed block-size.
|
|
if (aReflowInput.ComputedBSize() != NS_AUTOHEIGHT) {
|
|
AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
|
|
} else {
|
|
RemoveStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
nsFrameList::Enumerator oc(GetChildList(kOverflowContainersList));
|
|
for (; !oc.AtEnd(); oc.Next()) {
|
|
MOZ_ASSERT(!IS_TRUE_OVERFLOW_CONTAINER(oc.get()));
|
|
}
|
|
nsFrameList::Enumerator eoc(GetChildList(kExcessOverflowContainersList));
|
|
for (; !eoc.AtEnd(); eoc.Next()) {
|
|
MOZ_ASSERT(!IS_TRUE_OVERFLOW_CONTAINER(eoc.get()));
|
|
}
|
|
#endif
|
|
|
|
nsOverflowAreas ocBounds;
|
|
nsReflowStatus ocStatus;
|
|
if (GetPrevInFlow()) {
|
|
ReflowOverflowContainerChildren(aPresContext, aReflowInput, ocBounds, 0,
|
|
ocStatus);
|
|
}
|
|
|
|
//------------ Handle Incremental Reflow -----------------
|
|
|
|
// If inline size is unconstrained, set aForceAuto to true to allow
|
|
// the columns to expand in the inline direction. (This typically
|
|
// happens in orthogonal flows where the inline direction is the
|
|
// container's block direction).
|
|
ReflowConfig config = ChooseColumnStrategy(
|
|
aReflowInput, aReflowInput.ComputedISize() == NS_UNCONSTRAINEDSIZE);
|
|
|
|
// If balancing, then we allow the last column to grow to unbounded
|
|
// height during the first reflow. This gives us a way to estimate
|
|
// what the average column height should be, because we can measure
|
|
// the heights of all the columns and sum them up. But don't do this
|
|
// if we have a next in flow because we don't want to suck all its
|
|
// content back here and then have to push it out again!
|
|
nsIFrame* nextInFlow = GetNextInFlow();
|
|
bool unboundedLastColumn = config.mIsBalancing && !nextInFlow;
|
|
ColumnBalanceData colData;
|
|
|
|
bool feasible = ReflowColumns(aDesiredSize, aReflowInput, aStatus, config,
|
|
unboundedLastColumn, colData);
|
|
|
|
// If we're not balancing, then we're already done, since we should have
|
|
// reflown all of our children, and there is no need for a binary search to
|
|
// determine proper column height.
|
|
if (config.mIsBalancing && !aPresContext->HasPendingInterrupt()) {
|
|
FindBestBalanceBSize(aReflowInput, aPresContext, config, colData,
|
|
aDesiredSize, unboundedLastColumn, feasible, aStatus);
|
|
}
|
|
|
|
if (aPresContext->HasPendingInterrupt() &&
|
|
aReflowInput.AvailableBSize() == NS_UNCONSTRAINEDSIZE) {
|
|
// In this situation, we might be lying about our reflow status, because
|
|
// our last kid (the one that got interrupted) was incomplete. Fix that.
|
|
aStatus.Reset();
|
|
}
|
|
|
|
NS_ASSERTION(aStatus.IsFullyComplete() ||
|
|
aReflowInput.AvailableBSize() != NS_UNCONSTRAINEDSIZE,
|
|
"Column set should be complete if the available block-size is "
|
|
"unconstrained");
|
|
|
|
// Merge overflow container bounds and status.
|
|
aDesiredSize.mOverflowAreas.UnionWith(ocBounds);
|
|
aStatus.MergeCompletionStatusFrom(ocStatus);
|
|
|
|
FinishReflowWithAbsoluteFrames(aPresContext, aDesiredSize, aReflowInput,
|
|
aStatus, false);
|
|
|
|
NS_FRAME_SET_TRUNCATION(aStatus, aReflowInput, aDesiredSize);
|
|
}
|
|
|
|
void nsColumnSetFrame::BuildDisplayList(nsDisplayListBuilder* aBuilder,
|
|
const nsDisplayListSet& aLists) {
|
|
DisplayBorderBackgroundOutline(aBuilder, aLists);
|
|
|
|
if (IsVisibleForPainting()) {
|
|
aLists.BorderBackground()->AppendNewToTop<nsDisplayColumnRule>(aBuilder,
|
|
this);
|
|
}
|
|
|
|
// Our children won't have backgrounds so it doesn't matter where we put them.
|
|
for (nsFrameList::Enumerator e(mFrames); !e.AtEnd(); e.Next()) {
|
|
BuildDisplayListForChild(aBuilder, e.get(), aLists);
|
|
}
|
|
}
|
|
|
|
void nsColumnSetFrame::AppendDirectlyOwnedAnonBoxes(
|
|
nsTArray<OwnedAnonBox>& aResult) {
|
|
// Everything in mFrames is continuations of the first thing in mFrames.
|
|
nsIFrame* column = mFrames.FirstChild();
|
|
|
|
// We might not have any columns, apparently?
|
|
if (!column) {
|
|
return;
|
|
}
|
|
|
|
MOZ_ASSERT(column->Style()->GetPseudoType() == PseudoStyleType::columnContent,
|
|
"What sort of child is this?");
|
|
aResult.AppendElement(OwnedAnonBox(column));
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
void nsColumnSetFrame::SetInitialChildList(ChildListID aListID,
|
|
nsFrameList& aChildList) {
|
|
MOZ_ASSERT(aListID != kPrincipalList || aChildList.OnlyChild(),
|
|
"initial principal child list must have exactly one child");
|
|
nsContainerFrame::SetInitialChildList(aListID, aChildList);
|
|
}
|
|
|
|
void nsColumnSetFrame::AppendFrames(ChildListID aListID,
|
|
nsFrameList& aFrameList) {
|
|
MOZ_CRASH("unsupported operation");
|
|
}
|
|
|
|
void nsColumnSetFrame::InsertFrames(ChildListID aListID, nsIFrame* aPrevFrame,
|
|
nsFrameList& aFrameList) {
|
|
MOZ_CRASH("unsupported operation");
|
|
}
|
|
|
|
void nsColumnSetFrame::RemoveFrame(ChildListID aListID, nsIFrame* aOldFrame) {
|
|
MOZ_CRASH("unsupported operation");
|
|
}
|
|
#endif
|