gecko-dev/gfx/layers/ImageContainer.cpp

882 строки
24 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "ImageContainer.h"
#include <string.h> // for memcpy, memset
#include "GLImages.h" // for SurfaceTextureImage
#include "gfx2DGlue.h"
#include "gfxPlatform.h" // for gfxPlatform
#include "gfxUtils.h" // for gfxUtils
#include "libyuv.h"
#include "mozilla/RefPtr.h" // for already_AddRefed
#include "mozilla/ipc/CrossProcessMutex.h" // for CrossProcessMutex, etc
#include "mozilla/layers/CompositorTypes.h"
#include "mozilla/layers/ImageBridgeChild.h" // for ImageBridgeChild
#include "mozilla/layers/ImageClient.h" // for ImageClient
#include "mozilla/layers/LayersMessages.h"
#include "mozilla/layers/SharedPlanarYCbCrImage.h"
#include "mozilla/layers/SharedRGBImage.h"
#include "mozilla/layers/TextureClientRecycleAllocator.h"
#include "mozilla/gfx/gfxVars.h"
#include "nsISupportsUtils.h" // for NS_IF_ADDREF
#include "YCbCrUtils.h" // for YCbCr conversions
#include "gfx2DGlue.h"
#include "mozilla/gfx/2D.h"
#include "mozilla/CheckedInt.h"
#ifdef XP_MACOSX
#include "mozilla/gfx/QuartzSupport.h"
#endif
#ifdef XP_WIN
#include "gfxWindowsPlatform.h"
#include <d3d10_1.h>
#include "mozilla/gfx/DeviceManagerDx.h"
#include "mozilla/layers/D3D11YCbCrImage.h"
#endif
namespace mozilla {
namespace layers {
using namespace mozilla::ipc;
using namespace android;
using namespace mozilla::gfx;
Atomic<int32_t> Image::sSerialCounter(0);
Atomic<uint32_t> ImageContainer::sGenerationCounter(0);
RefPtr<PlanarYCbCrImage>
ImageFactory::CreatePlanarYCbCrImage(const gfx::IntSize& aScaleHint, BufferRecycleBin *aRecycleBin)
{
return new RecyclingPlanarYCbCrImage(aRecycleBin);
}
BufferRecycleBin::BufferRecycleBin()
: mLock("mozilla.layers.BufferRecycleBin.mLock")
// This member is only valid when the bin is not empty and will be properly
// initialized in RecycleBuffer, but initializing it here avoids static analysis
// noise.
, mRecycledBufferSize(0)
{
}
void
BufferRecycleBin::RecycleBuffer(UniquePtr<uint8_t[]> aBuffer, uint32_t aSize)
{
MutexAutoLock lock(mLock);
if (!mRecycledBuffers.IsEmpty() && aSize != mRecycledBufferSize) {
mRecycledBuffers.Clear();
}
mRecycledBufferSize = aSize;
mRecycledBuffers.AppendElement(Move(aBuffer));
}
UniquePtr<uint8_t[]>
BufferRecycleBin::GetBuffer(uint32_t aSize)
{
MutexAutoLock lock(mLock);
if (mRecycledBuffers.IsEmpty() || mRecycledBufferSize != aSize) {
return UniquePtr<uint8_t[]>(new (fallible) uint8_t[aSize]);
}
uint32_t last = mRecycledBuffers.Length() - 1;
UniquePtr<uint8_t[]> result = Move(mRecycledBuffers[last]);
mRecycledBuffers.RemoveElementAt(last);
return result;
}
void
BufferRecycleBin::ClearRecycledBuffers()
{
MutexAutoLock lock(mLock);
if (!mRecycledBuffers.IsEmpty()) {
mRecycledBuffers.Clear();
}
mRecycledBufferSize = 0;
}
ImageContainerListener::ImageContainerListener(ImageContainer* aImageContainer)
: mLock("mozilla.layers.ImageContainerListener.mLock")
, mImageContainer(aImageContainer)
{
}
ImageContainerListener::~ImageContainerListener()
{
}
void
ImageContainerListener::NotifyComposite(const ImageCompositeNotification& aNotification)
{
MutexAutoLock lock(mLock);
if (mImageContainer) {
mImageContainer->NotifyComposite(aNotification);
}
}
void
ImageContainerListener::ClearImageContainer()
{
MutexAutoLock lock(mLock);
mImageContainer = nullptr;
}
void
ImageContainerListener::DropImageClient()
{
MutexAutoLock lock(mLock);
if (mImageContainer) {
mImageContainer->DropImageClient();
}
}
already_AddRefed<ImageClient>
ImageContainer::GetImageClient()
{
RecursiveMutexAutoLock mon(mRecursiveMutex);
EnsureImageClient();
RefPtr<ImageClient> imageClient = mImageClient;
return imageClient.forget();
}
void
ImageContainer::DropImageClient()
{
RecursiveMutexAutoLock mon(mRecursiveMutex);
if (mImageClient) {
mImageClient->ClearCachedResources();
mImageClient = nullptr;
}
}
void
ImageContainer::EnsureImageClient()
{
// If we're not forcing a new ImageClient, then we can skip this if we don't have an existing
// ImageClient, or if the existing one belongs to an IPC actor that is still open.
if (!mIsAsync) {
return;
}
if (mImageClient && mImageClient->GetForwarder()->GetLayersIPCActor()->IPCOpen()) {
return;
}
RefPtr<ImageBridgeChild> imageBridge = ImageBridgeChild::GetSingleton();
if (imageBridge) {
mImageClient = imageBridge->CreateImageClient(CompositableType::IMAGE, this);
if (mImageClient) {
mAsyncContainerHandle = mImageClient->GetAsyncHandle();
} else {
// It's okay to drop the async container handle since the ImageBridgeChild
// is going to die anyway.
mAsyncContainerHandle = CompositableHandle();
}
}
}
ImageContainer::ImageContainer(Mode flag)
: mRecursiveMutex("ImageContainer.mRecursiveMutex"),
mGenerationCounter(++sGenerationCounter),
mPaintCount(0),
mDroppedImageCount(0),
mImageFactory(new ImageFactory()),
mRecycleBin(new BufferRecycleBin()),
mIsAsync(flag == ASYNCHRONOUS),
mCurrentProducerID(-1)
{
if (flag == ASYNCHRONOUS) {
mNotifyCompositeListener = new ImageContainerListener(this);
EnsureImageClient();
}
}
ImageContainer::ImageContainer(const CompositableHandle& aHandle)
: mRecursiveMutex("ImageContainer.mRecursiveMutex"),
mGenerationCounter(++sGenerationCounter),
mPaintCount(0),
mDroppedImageCount(0),
mImageFactory(nullptr),
mRecycleBin(nullptr),
mIsAsync(true),
mAsyncContainerHandle(aHandle),
mCurrentProducerID(-1)
{
MOZ_ASSERT(mAsyncContainerHandle);
}
ImageContainer::~ImageContainer()
{
if (mNotifyCompositeListener) {
mNotifyCompositeListener->ClearImageContainer();
}
if (mAsyncContainerHandle) {
if (RefPtr<ImageBridgeChild> imageBridge = ImageBridgeChild::GetSingleton()) {
imageBridge->ForgetImageContainer(mAsyncContainerHandle);
}
}
}
RefPtr<PlanarYCbCrImage>
ImageContainer::CreatePlanarYCbCrImage()
{
RecursiveMutexAutoLock lock(mRecursiveMutex);
EnsureImageClient();
if (mImageClient && mImageClient->AsImageClientSingle()) {
return new SharedPlanarYCbCrImage(mImageClient);
}
return mImageFactory->CreatePlanarYCbCrImage(mScaleHint, mRecycleBin);
}
RefPtr<SharedRGBImage>
ImageContainer::CreateSharedRGBImage()
{
RecursiveMutexAutoLock lock(mRecursiveMutex);
EnsureImageClient();
if (!mImageClient || !mImageClient->AsImageClientSingle()) {
return nullptr;
}
return new SharedRGBImage(mImageClient);
}
void
ImageContainer::SetCurrentImageInternal(const nsTArray<NonOwningImage>& aImages)
{
RecursiveMutexAutoLock lock(mRecursiveMutex);
mGenerationCounter = ++sGenerationCounter;
if (!aImages.IsEmpty()) {
NS_ASSERTION(mCurrentImages.IsEmpty() ||
mCurrentImages[0].mProducerID != aImages[0].mProducerID ||
mCurrentImages[0].mFrameID <= aImages[0].mFrameID,
"frame IDs shouldn't go backwards");
if (aImages[0].mProducerID != mCurrentProducerID) {
mFrameIDsNotYetComposited.Clear();
mCurrentProducerID = aImages[0].mProducerID;
} else if (!aImages[0].mTimeStamp.IsNull()) {
// Check for expired frames
for (auto& img : mCurrentImages) {
if (img.mProducerID != aImages[0].mProducerID ||
img.mTimeStamp.IsNull() ||
img.mTimeStamp >= aImages[0].mTimeStamp) {
break;
}
if (!img.mComposited && !img.mTimeStamp.IsNull() &&
img.mFrameID != aImages[0].mFrameID) {
mFrameIDsNotYetComposited.AppendElement(img.mFrameID);
}
}
// Remove really old frames, assuming they'll never be composited.
const uint32_t maxFrames = 100;
if (mFrameIDsNotYetComposited.Length() > maxFrames) {
uint32_t dropFrames = mFrameIDsNotYetComposited.Length() - maxFrames;
mDroppedImageCount += dropFrames;
mFrameIDsNotYetComposited.RemoveElementsAt(0, dropFrames);
}
}
}
nsTArray<OwningImage> newImages;
for (uint32_t i = 0; i < aImages.Length(); ++i) {
NS_ASSERTION(aImages[i].mImage, "image can't be null");
NS_ASSERTION(!aImages[i].mTimeStamp.IsNull() || aImages.Length() == 1,
"Multiple images require timestamps");
if (i > 0) {
NS_ASSERTION(aImages[i].mTimeStamp >= aImages[i - 1].mTimeStamp,
"Timestamps must not decrease");
NS_ASSERTION(aImages[i].mFrameID > aImages[i - 1].mFrameID,
"FrameIDs must increase");
NS_ASSERTION(aImages[i].mProducerID == aImages[i - 1].mProducerID,
"ProducerIDs must be the same");
}
OwningImage* img = newImages.AppendElement();
img->mImage = aImages[i].mImage;
img->mTimeStamp = aImages[i].mTimeStamp;
img->mFrameID = aImages[i].mFrameID;
img->mProducerID = aImages[i].mProducerID;
for (auto& oldImg : mCurrentImages) {
if (oldImg.mFrameID == img->mFrameID &&
oldImg.mProducerID == img->mProducerID) {
img->mComposited = oldImg.mComposited;
break;
}
}
}
mCurrentImages.SwapElements(newImages);
}
void
ImageContainer::ClearImagesFromImageBridge()
{
RecursiveMutexAutoLock lock(mRecursiveMutex);
SetCurrentImageInternal(nsTArray<NonOwningImage>());
}
void
ImageContainer::SetCurrentImages(const nsTArray<NonOwningImage>& aImages)
{
MOZ_ASSERT(!aImages.IsEmpty());
RecursiveMutexAutoLock lock(mRecursiveMutex);
if (mIsAsync) {
if (RefPtr<ImageBridgeChild> imageBridge = ImageBridgeChild::GetSingleton()) {
imageBridge->UpdateImageClient(this);
}
}
SetCurrentImageInternal(aImages);
}
void
ImageContainer::ClearAllImages()
{
if (mImageClient) {
// Let ImageClient release all TextureClients. This doesn't return
// until ImageBridge has called ClearCurrentImageFromImageBridge.
if (RefPtr<ImageBridgeChild> imageBridge = ImageBridgeChild::GetSingleton()) {
imageBridge->FlushAllImages(mImageClient, this);
}
return;
}
RecursiveMutexAutoLock lock(mRecursiveMutex);
SetCurrentImageInternal(nsTArray<NonOwningImage>());
}
void
ImageContainer::ClearCachedResources()
{
RecursiveMutexAutoLock lock(mRecursiveMutex);
if (mImageClient && mImageClient->AsImageClientSingle()) {
if (!mImageClient->HasTextureClientRecycler()) {
return;
}
mImageClient->GetTextureClientRecycler()->ShrinkToMinimumSize();
return;
}
return mRecycleBin->ClearRecycledBuffers();
}
void
ImageContainer::SetCurrentImageInTransaction(Image *aImage)
{
AutoTArray<NonOwningImage,1> images;
images.AppendElement(NonOwningImage(aImage));
SetCurrentImagesInTransaction(images);
}
void
ImageContainer::SetCurrentImagesInTransaction(const nsTArray<NonOwningImage>& aImages)
{
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
NS_ASSERTION(!mImageClient, "Should use async image transfer with ImageBridge.");
SetCurrentImageInternal(aImages);
}
bool ImageContainer::IsAsync() const
{
return mIsAsync;
}
CompositableHandle ImageContainer::GetAsyncContainerHandle()
{
NS_ASSERTION(IsAsync(), "Shared image ID is only relevant to async ImageContainers");
NS_ASSERTION(mAsyncContainerHandle, "Should have a shared image ID");
RecursiveMutexAutoLock mon(mRecursiveMutex);
EnsureImageClient();
return mAsyncContainerHandle;
}
bool
ImageContainer::HasCurrentImage()
{
RecursiveMutexAutoLock lock(mRecursiveMutex);
return !mCurrentImages.IsEmpty();
}
void
ImageContainer::GetCurrentImages(nsTArray<OwningImage>* aImages,
uint32_t* aGenerationCounter)
{
RecursiveMutexAutoLock lock(mRecursiveMutex);
*aImages = mCurrentImages;
if (aGenerationCounter) {
*aGenerationCounter = mGenerationCounter;
}
}
gfx::IntSize
ImageContainer::GetCurrentSize()
{
RecursiveMutexAutoLock lock(mRecursiveMutex);
if (mCurrentImages.IsEmpty()) {
return gfx::IntSize(0, 0);
}
return mCurrentImages[0].mImage->GetSize();
}
void
ImageContainer::NotifyComposite(const ImageCompositeNotification& aNotification)
{
RecursiveMutexAutoLock lock(mRecursiveMutex);
// An image composition notification is sent the first time a particular
// image is composited by an ImageHost. Thus, every time we receive such
// a notification, a new image has been painted.
++mPaintCount;
if (aNotification.producerID() == mCurrentProducerID) {
uint32_t i;
for (i = 0; i < mFrameIDsNotYetComposited.Length(); ++i) {
if (mFrameIDsNotYetComposited[i] <= aNotification.frameID()) {
if (mFrameIDsNotYetComposited[i] < aNotification.frameID()) {
++mDroppedImageCount;
}
} else {
break;
}
}
mFrameIDsNotYetComposited.RemoveElementsAt(0, i);
for (auto& img : mCurrentImages) {
if (img.mFrameID == aNotification.frameID()) {
img.mComposited = true;
}
}
}
if (!aNotification.imageTimeStamp().IsNull()) {
mPaintDelay = aNotification.firstCompositeTimeStamp() -
aNotification.imageTimeStamp();
}
}
#ifdef XP_WIN
D3D11YCbCrRecycleAllocator*
ImageContainer::GetD3D11YCbCrRecycleAllocator(KnowsCompositor* aAllocator)
{
if (mD3D11YCbCrRecycleAllocator &&
aAllocator == mD3D11YCbCrRecycleAllocator->GetAllocator()) {
return mD3D11YCbCrRecycleAllocator;
}
RefPtr<ID3D11Device> device = gfx::DeviceManagerDx::Get()->GetContentDevice();
if (!device) {
device = gfx::DeviceManagerDx::Get()->GetCompositorDevice();
}
if (!device || !aAllocator->SupportsD3D11()) {
return nullptr;
}
RefPtr<ID3D10Multithread> multi;
HRESULT hr =
device->QueryInterface((ID3D10Multithread**)getter_AddRefs(multi));
if (FAILED(hr) || !multi) {
gfxWarning() << "Multithread safety interface not supported. " << hr;
return nullptr;
}
multi->SetMultithreadProtected(TRUE);
mD3D11YCbCrRecycleAllocator =
new D3D11YCbCrRecycleAllocator(aAllocator, device);
return mD3D11YCbCrRecycleAllocator;
}
#endif
PlanarYCbCrImage::PlanarYCbCrImage()
: Image(nullptr, ImageFormat::PLANAR_YCBCR)
, mOffscreenFormat(SurfaceFormat::UNKNOWN)
, mBufferSize(0)
{
}
RecyclingPlanarYCbCrImage::~RecyclingPlanarYCbCrImage()
{
if (mBuffer) {
mRecycleBin->RecycleBuffer(Move(mBuffer), mBufferSize);
}
}
size_t
RecyclingPlanarYCbCrImage::SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const
{
// Ignoring:
// - mData - just wraps mBuffer
// - Surfaces should be reported under gfx-surfaces-*:
// - mSourceSurface
// - Base class:
// - mImplData is not used
// Not owned:
// - mRecycleBin
size_t size = aMallocSizeOf(mBuffer.get());
// Could add in the future:
// - mBackendData (from base class)
return size;
}
UniquePtr<uint8_t[]>
RecyclingPlanarYCbCrImage::AllocateBuffer(uint32_t aSize)
{
return mRecycleBin->GetBuffer(aSize);
}
static void
CopyPlane(uint8_t *aDst, const uint8_t *aSrc,
const gfx::IntSize &aSize, int32_t aStride, int32_t aSkip)
{
int32_t height = aSize.height;
int32_t width = aSize.width;
MOZ_RELEASE_ASSERT(width <= aStride);
if (!aSkip) {
// Fast path: planar input.
memcpy(aDst, aSrc, height * aStride);
} else {
for (int y = 0; y < height; ++y) {
const uint8_t *src = aSrc;
uint8_t *dst = aDst;
// Slow path
for (int x = 0; x < width; ++x) {
*dst++ = *src++;
src += aSkip;
}
aSrc += aStride;
aDst += aStride;
}
}
}
bool
RecyclingPlanarYCbCrImage::CopyData(const Data& aData)
{
// update buffer size
// Use uint32_t throughout to match AllocateBuffer's param and mBufferSize
const auto checkedSize =
CheckedInt<uint32_t>(aData.mCbCrStride) * aData.mCbCrSize.height * 2 +
CheckedInt<uint32_t>(aData.mYStride) * aData.mYSize.height;
if (!checkedSize.isValid())
return false;
const auto size = checkedSize.value();
// get new buffer
mBuffer = AllocateBuffer(size);
if (!mBuffer)
return false;
// update buffer size
mBufferSize = size;
mData = aData;
mData.mYChannel = mBuffer.get();
mData.mCbChannel = mData.mYChannel + mData.mYStride * mData.mYSize.height;
mData.mCrChannel = mData.mCbChannel + mData.mCbCrStride * mData.mCbCrSize.height;
mData.mYSkip = mData.mCbSkip = mData.mCrSkip = 0;
CopyPlane(mData.mYChannel, aData.mYChannel,
aData.mYSize, aData.mYStride, aData.mYSkip);
CopyPlane(mData.mCbChannel, aData.mCbChannel,
aData.mCbCrSize, aData.mCbCrStride, aData.mCbSkip);
CopyPlane(mData.mCrChannel, aData.mCrChannel,
aData.mCbCrSize, aData.mCbCrStride, aData.mCrSkip);
mSize = aData.mPicSize;
mOrigin = gfx::IntPoint(aData.mPicX, aData.mPicY);
return true;
}
gfxImageFormat
PlanarYCbCrImage::GetOffscreenFormat() const
{
return mOffscreenFormat == SurfaceFormat::UNKNOWN ?
gfxVars::OffscreenFormat() :
mOffscreenFormat;
}
bool
PlanarYCbCrImage::AdoptData(const Data& aData)
{
mData = aData;
mSize = aData.mPicSize;
mOrigin = gfx::IntPoint(aData.mPicX, aData.mPicY);
return true;
}
already_AddRefed<gfx::SourceSurface>
PlanarYCbCrImage::GetAsSourceSurface()
{
if (mSourceSurface) {
RefPtr<gfx::SourceSurface> surface(mSourceSurface);
return surface.forget();
}
gfx::IntSize size(mSize);
gfx::SurfaceFormat format = gfx::ImageFormatToSurfaceFormat(GetOffscreenFormat());
gfx::GetYCbCrToRGBDestFormatAndSize(mData, format, size);
if (mSize.width > PlanarYCbCrImage::MAX_DIMENSION ||
mSize.height > PlanarYCbCrImage::MAX_DIMENSION) {
NS_ERROR("Illegal image dest width or height");
return nullptr;
}
RefPtr<gfx::DataSourceSurface> surface = gfx::Factory::CreateDataSourceSurface(size, format);
if (NS_WARN_IF(!surface)) {
return nullptr;
}
DataSourceSurface::ScopedMap mapping(surface, DataSourceSurface::WRITE);
if (NS_WARN_IF(!mapping.IsMapped())) {
return nullptr;
}
gfx::ConvertYCbCrToRGB(mData, format, size, mapping.GetData(), mapping.GetStride());
mSourceSurface = surface;
return surface.forget();
}
NVImage::NVImage()
: Image(nullptr, ImageFormat::NV_IMAGE)
, mBufferSize(0)
{
}
NVImage::~NVImage() = default;
IntSize
NVImage::GetSize() const
{
return mSize;
}
IntRect
NVImage::GetPictureRect() const
{
return mData.GetPictureRect();
}
already_AddRefed<SourceSurface>
NVImage::GetAsSourceSurface()
{
if (mSourceSurface) {
RefPtr<gfx::SourceSurface> surface(mSourceSurface);
return surface.forget();
}
// Convert the current NV12 or NV21 data to YUV420P so that we can follow the
// logics in PlanarYCbCrImage::GetAsSourceSurface().
const int bufferLength = mData.mYSize.height * mData.mYStride +
mData.mCbCrSize.height * mData.mCbCrSize.width * 2;
auto *buffer = new uint8_t[bufferLength];
Data aData = mData;
aData.mCbCrStride = aData.mCbCrSize.width;
aData.mCbSkip = 0;
aData.mCrSkip = 0;
aData.mYChannel = buffer;
aData.mCbChannel = aData.mYChannel + aData.mYSize.height * aData.mYStride;
aData.mCrChannel = aData.mCbChannel + aData.mCbCrSize.height * aData.mCbCrStride;
if (mData.mCbChannel < mData.mCrChannel) { // NV12
libyuv::NV12ToI420(mData.mYChannel, mData.mYStride,
mData.mCbChannel, mData.mCbCrStride,
aData.mYChannel, aData.mYStride,
aData.mCbChannel, aData.mCbCrStride,
aData.mCrChannel, aData.mCbCrStride,
aData.mYSize.width, aData.mYSize.height);
} else { // NV21
libyuv::NV21ToI420(mData.mYChannel, mData.mYStride,
mData.mCrChannel, mData.mCbCrStride,
aData.mYChannel, aData.mYStride,
aData.mCbChannel, aData.mCbCrStride,
aData.mCrChannel, aData.mCbCrStride,
aData.mYSize.width, aData.mYSize.height);
}
// The logics in PlanarYCbCrImage::GetAsSourceSurface().
gfx::IntSize size(mSize);
gfx::SurfaceFormat format =
gfx::ImageFormatToSurfaceFormat(gfxPlatform::GetPlatform()->GetOffscreenFormat());
gfx::GetYCbCrToRGBDestFormatAndSize(aData, format, size);
if (mSize.width > PlanarYCbCrImage::MAX_DIMENSION ||
mSize.height > PlanarYCbCrImage::MAX_DIMENSION) {
NS_ERROR("Illegal image dest width or height");
return nullptr;
}
RefPtr<gfx::DataSourceSurface> surface = gfx::Factory::CreateDataSourceSurface(size, format);
if (NS_WARN_IF(!surface)) {
return nullptr;
}
DataSourceSurface::ScopedMap mapping(surface, DataSourceSurface::WRITE);
if (NS_WARN_IF(!mapping.IsMapped())) {
return nullptr;
}
gfx::ConvertYCbCrToRGB(aData, format, size, mapping.GetData(), mapping.GetStride());
mSourceSurface = surface;
// Release the temporary buffer.
delete[] buffer;
return surface.forget();
}
bool
NVImage::IsValid() const
{
return !!mBufferSize;
}
uint32_t
NVImage::GetBufferSize() const
{
return mBufferSize;
}
NVImage*
NVImage::AsNVImage()
{
return this;
};
bool
NVImage::SetData(const Data& aData)
{
MOZ_ASSERT(aData.mCbSkip == 1 && aData.mCrSkip == 1);
MOZ_ASSERT((int)std::abs(aData.mCbChannel - aData.mCrChannel) == 1);
// Calculate buffer size
// Use uint32_t throughout to match AllocateBuffer's param and mBufferSize
const auto checkedSize =
CheckedInt<uint32_t>(aData.mYSize.height) * aData.mYStride +
CheckedInt<uint32_t>(aData.mCbCrSize.height) * aData.mCbCrStride;
if (!checkedSize.isValid())
return false;
const auto size = checkedSize.value();
// Allocate a new buffer.
mBuffer = AllocateBuffer(size);
if (!mBuffer) {
return false;
}
// Update mBufferSize.
mBufferSize = size;
// Update mData.
mData = aData;
mData.mYChannel = mBuffer.get();
mData.mCbChannel = mData.mYChannel + (aData.mCbChannel - aData.mYChannel);
mData.mCrChannel = mData.mYChannel + (aData.mCrChannel - aData.mYChannel);
// Update mSize.
mSize = aData.mPicSize;
// Copy the input data into mBuffer.
// This copies the y-channel and the interleaving CbCr-channel.
memcpy(mData.mYChannel, aData.mYChannel, mBufferSize);
return true;
}
const NVImage::Data*
NVImage::GetData() const
{
return &mData;
}
UniquePtr<uint8_t>
NVImage::AllocateBuffer(uint32_t aSize)
{
UniquePtr<uint8_t> buffer(new uint8_t[aSize]);
return buffer;
}
SourceSurfaceImage::SourceSurfaceImage(const gfx::IntSize& aSize,
gfx::SourceSurface* aSourceSurface)
: Image(nullptr, ImageFormat::CAIRO_SURFACE)
, mSize(aSize)
, mSourceSurface(aSourceSurface)
, mTextureFlags(TextureFlags::DEFAULT)
{
}
SourceSurfaceImage::SourceSurfaceImage(gfx::SourceSurface* aSourceSurface)
: Image(nullptr, ImageFormat::CAIRO_SURFACE)
, mSize(aSourceSurface->GetSize())
, mSourceSurface(aSourceSurface)
, mTextureFlags(TextureFlags::DEFAULT)
{
}
SourceSurfaceImage::~SourceSurfaceImage() = default;
TextureClient*
SourceSurfaceImage::GetTextureClient(KnowsCompositor* aForwarder)
{
if (!aForwarder) {
return nullptr;
}
auto entry = mTextureClients.LookupForAdd(aForwarder->GetSerial());
if (entry) {
return entry.Data();
}
RefPtr<TextureClient> textureClient;
RefPtr<SourceSurface> surface = GetAsSourceSurface();
MOZ_ASSERT(surface);
if (surface) {
// gfx::BackendType::NONE means default to content backend
textureClient =
TextureClient::CreateFromSurface(aForwarder,
surface,
BackendSelector::Content,
mTextureFlags,
ALLOC_DEFAULT);
}
if (textureClient) {
textureClient->SyncWithObject(aForwarder->GetSyncObject());
entry.OrInsert([&textureClient](){ return textureClient; });
return textureClient;
}
// Remove the speculatively added entry.
entry.OrRemove();
return nullptr;
}
ImageContainer::ProducerID
ImageContainer::AllocateProducerID()
{
// Callable on all threads.
static Atomic<ImageContainer::ProducerID> sProducerID(0u);
return ++sProducerID;
}
} // namespace layers
} // namespace mozilla