зеркало из https://github.com/mozilla/gecko-dev.git
1942 строки
67 KiB
C
1942 строки
67 KiB
C
/*
|
|
* xxHash - Extremely Fast Hash algorithm
|
|
* Header File
|
|
* Copyright (C) 2012-present, Yann Collet.
|
|
*
|
|
* BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php)
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following disclaimer
|
|
* in the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* You can contact the author at:
|
|
* - xxHash homepage: https://www.xxhash.com
|
|
* - xxHash source repository: https://github.com/Cyan4973/xxHash
|
|
*/
|
|
|
|
/* TODO: update */
|
|
/* Notice extracted from xxHash homepage:
|
|
|
|
xxHash is an extremely fast hash algorithm, running at RAM speed limits.
|
|
It also successfully passes all tests from the SMHasher suite.
|
|
|
|
Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo @3GHz)
|
|
|
|
Name Speed Q.Score Author
|
|
xxHash 5.4 GB/s 10
|
|
CrapWow 3.2 GB/s 2 Andrew
|
|
MumurHash 3a 2.7 GB/s 10 Austin Appleby
|
|
SpookyHash 2.0 GB/s 10 Bob Jenkins
|
|
SBox 1.4 GB/s 9 Bret Mulvey
|
|
Lookup3 1.2 GB/s 9 Bob Jenkins
|
|
SuperFastHash 1.2 GB/s 1 Paul Hsieh
|
|
CityHash64 1.05 GB/s 10 Pike & Alakuijala
|
|
FNV 0.55 GB/s 5 Fowler, Noll, Vo
|
|
CRC32 0.43 GB/s 9
|
|
MD5-32 0.33 GB/s 10 Ronald L. Rivest
|
|
SHA1-32 0.28 GB/s 10
|
|
|
|
Q.Score is a measure of quality of the hash function.
|
|
It depends on successfully passing SMHasher test set.
|
|
10 is a perfect score.
|
|
|
|
Note: SMHasher's CRC32 implementation is not the fastest one.
|
|
Other speed-oriented implementations can be faster,
|
|
especially in combination with PCLMUL instruction:
|
|
https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html?showComment=1552696407071#c3490092340461170735
|
|
|
|
A 64-bit version, named XXH64, is available since r35.
|
|
It offers much better speed, but for 64-bit applications only.
|
|
Name Speed on 64 bits Speed on 32 bits
|
|
XXH64 13.8 GB/s 1.9 GB/s
|
|
XXH32 6.8 GB/s 6.0 GB/s
|
|
*/
|
|
|
|
#if defined (__cplusplus)
|
|
extern "C" {
|
|
#endif
|
|
|
|
/* ****************************
|
|
* INLINE mode
|
|
******************************/
|
|
/*!
|
|
* XXH_INLINE_ALL (and XXH_PRIVATE_API)
|
|
* Use these build macros to inline xxhash into the target unit.
|
|
* Inlining improves performance on small inputs, especially when the length is
|
|
* expressed as a compile-time constant:
|
|
*
|
|
* https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html
|
|
*
|
|
* It also keeps xxHash symbols private to the unit, so they are not exported.
|
|
*
|
|
* Usage:
|
|
* #define XXH_INLINE_ALL
|
|
* #include "xxhash.h"
|
|
*
|
|
* Do not compile and link xxhash.o as a separate object, as it is not useful.
|
|
*/
|
|
#if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)) \
|
|
&& !defined(XXH_INLINE_ALL_31684351384)
|
|
/* this section should be traversed only once */
|
|
# define XXH_INLINE_ALL_31684351384
|
|
/* give access to the advanced API, required to compile implementations */
|
|
# undef XXH_STATIC_LINKING_ONLY /* avoid macro redef */
|
|
# define XXH_STATIC_LINKING_ONLY
|
|
/* make all functions private */
|
|
# undef XXH_PUBLIC_API
|
|
# if defined(__GNUC__)
|
|
# define XXH_PUBLIC_API static __inline __attribute__((unused))
|
|
# elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
|
|
# define XXH_PUBLIC_API static inline
|
|
# elif defined(_MSC_VER)
|
|
# define XXH_PUBLIC_API static __inline
|
|
# else
|
|
/* note: this version may generate warnings for unused static functions */
|
|
# define XXH_PUBLIC_API static
|
|
# endif
|
|
|
|
/*
|
|
* This part deals with the special case where a unit wants to inline xxHash,
|
|
* but "xxhash.h" has previously been included without XXH_INLINE_ALL, such
|
|
* as part of some previously included *.h header file.
|
|
* Without further action, the new include would just be ignored,
|
|
* and functions would effectively _not_ be inlined (silent failure).
|
|
* The following macros solve this situation by prefixing all inlined names,
|
|
* avoiding naming collision with previous inclusions.
|
|
*/
|
|
# ifdef XXH_NAMESPACE
|
|
# error "XXH_INLINE_ALL with XXH_NAMESPACE is not supported"
|
|
/*
|
|
* Note: Alternative: #undef all symbols (it's a pretty large list).
|
|
* Without #error: it compiles, but functions are actually not inlined.
|
|
*/
|
|
# endif
|
|
# define XXH_NAMESPACE XXH_INLINE_
|
|
/*
|
|
* Some identifiers (enums, type names) are not symbols, but they must
|
|
* still be renamed to avoid redeclaration.
|
|
* Alternative solution: do not redeclare them.
|
|
* However, this requires some #ifdefs, and is a more dispersed action.
|
|
* Meanwhile, renaming can be achieved in a single block
|
|
*/
|
|
# define XXH_IPREF(Id) XXH_INLINE_ ## Id
|
|
# define XXH_OK XXH_IPREF(XXH_OK)
|
|
# define XXH_ERROR XXH_IPREF(XXH_ERROR)
|
|
# define XXH_errorcode XXH_IPREF(XXH_errorcode)
|
|
# define XXH32_canonical_t XXH_IPREF(XXH32_canonical_t)
|
|
# define XXH64_canonical_t XXH_IPREF(XXH64_canonical_t)
|
|
# define XXH128_canonical_t XXH_IPREF(XXH128_canonical_t)
|
|
# define XXH32_state_s XXH_IPREF(XXH32_state_s)
|
|
# define XXH32_state_t XXH_IPREF(XXH32_state_t)
|
|
# define XXH64_state_s XXH_IPREF(XXH64_state_s)
|
|
# define XXH64_state_t XXH_IPREF(XXH64_state_t)
|
|
# define XXH3_state_s XXH_IPREF(XXH3_state_s)
|
|
# define XXH3_state_t XXH_IPREF(XXH3_state_t)
|
|
# define XXH128_hash_t XXH_IPREF(XXH128_hash_t)
|
|
/* Ensure the header is parsed again, even if it was previously included */
|
|
# undef XXHASH_H_5627135585666179
|
|
# undef XXHASH_H_STATIC_13879238742
|
|
#endif /* XXH_INLINE_ALL || XXH_PRIVATE_API */
|
|
|
|
|
|
|
|
/* ****************************************************************
|
|
* Stable API
|
|
*****************************************************************/
|
|
#ifndef XXHASH_H_5627135585666179
|
|
#define XXHASH_H_5627135585666179 1
|
|
|
|
/* specific declaration modes for Windows */
|
|
#if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API)
|
|
# if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT))
|
|
# ifdef XXH_EXPORT
|
|
# define XXH_PUBLIC_API __declspec(dllexport)
|
|
# elif XXH_IMPORT
|
|
# define XXH_PUBLIC_API __declspec(dllimport)
|
|
# endif
|
|
# else
|
|
# define XXH_PUBLIC_API /* do nothing */
|
|
# endif
|
|
#endif
|
|
|
|
/*!
|
|
* XXH_NAMESPACE, aka Namespace Emulation:
|
|
*
|
|
* If you want to include _and expose_ xxHash functions from within your own
|
|
* library, but also want to avoid symbol collisions with other libraries which
|
|
* may also include xxHash, you can use XXH_NAMESPACE to automatically prefix
|
|
* any public symbol from xxhash library with the value of XXH_NAMESPACE
|
|
* (therefore, avoid empty or numeric values).
|
|
*
|
|
* Note that no change is required within the calling program as long as it
|
|
* includes `xxhash.h`: Regular symbol names will be automatically translated
|
|
* by this header.
|
|
*/
|
|
#ifdef XXH_NAMESPACE
|
|
# define XXH_CAT(A,B) A##B
|
|
# define XXH_NAME2(A,B) XXH_CAT(A,B)
|
|
# define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber)
|
|
# define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32)
|
|
# define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState)
|
|
# define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState)
|
|
# define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset)
|
|
# define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update)
|
|
# define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest)
|
|
# define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState)
|
|
# define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash)
|
|
# define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical)
|
|
# define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64)
|
|
# define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState)
|
|
# define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState)
|
|
# define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset)
|
|
# define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update)
|
|
# define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest)
|
|
# define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState)
|
|
# define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash)
|
|
# define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical)
|
|
#endif
|
|
|
|
|
|
/* *************************************
|
|
* Version
|
|
***************************************/
|
|
#define XXH_VERSION_MAJOR 0
|
|
#define XXH_VERSION_MINOR 7
|
|
#define XXH_VERSION_RELEASE 3
|
|
#define XXH_VERSION_NUMBER (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE)
|
|
XXH_PUBLIC_API unsigned XXH_versionNumber (void);
|
|
|
|
|
|
/* ****************************
|
|
* Definitions
|
|
******************************/
|
|
#include <stddef.h> /* size_t */
|
|
typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode;
|
|
|
|
|
|
/*-**********************************************************************
|
|
* 32-bit hash
|
|
************************************************************************/
|
|
#if !defined (__VMS) \
|
|
&& (defined (__cplusplus) \
|
|
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
|
|
# include <stdint.h>
|
|
typedef uint32_t XXH32_hash_t;
|
|
#else
|
|
# include <limits.h>
|
|
# if UINT_MAX == 0xFFFFFFFFUL
|
|
typedef unsigned int XXH32_hash_t;
|
|
# else
|
|
# if ULONG_MAX == 0xFFFFFFFFUL
|
|
typedef unsigned long XXH32_hash_t;
|
|
# else
|
|
# error "unsupported platform: need a 32-bit type"
|
|
# endif
|
|
# endif
|
|
#endif
|
|
|
|
/*!
|
|
* XXH32():
|
|
* Calculate the 32-bit hash of sequence "length" bytes stored at memory address "input".
|
|
* The memory between input & input+length must be valid (allocated and read-accessible).
|
|
* "seed" can be used to alter the result predictably.
|
|
* Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark): 5.4 GB/s
|
|
*/
|
|
XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed);
|
|
|
|
/******* Streaming *******/
|
|
|
|
/*
|
|
* Streaming functions generate the xxHash value from an incrememtal input.
|
|
* This method is slower than single-call functions, due to state management.
|
|
* For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized.
|
|
*
|
|
* An XXH state must first be allocated using `XXH*_createState()`.
|
|
*
|
|
* Start a new hash by initializing the state with a seed using `XXH*_reset()`.
|
|
*
|
|
* Then, feed the hash state by calling `XXH*_update()` as many times as necessary.
|
|
*
|
|
* The function returns an error code, with 0 meaning OK, and any other value
|
|
* meaning there is an error.
|
|
*
|
|
* Finally, a hash value can be produced anytime, by using `XXH*_digest()`.
|
|
* This function returns the nn-bits hash as an int or long long.
|
|
*
|
|
* It's still possible to continue inserting input into the hash state after a
|
|
* digest, and generate new hash values later on by invoking `XXH*_digest()`.
|
|
*
|
|
* When done, release the state using `XXH*_freeState()`.
|
|
*/
|
|
|
|
typedef struct XXH32_state_s XXH32_state_t; /* incomplete type */
|
|
XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void);
|
|
XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr);
|
|
XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dst_state, const XXH32_state_t* src_state);
|
|
|
|
XXH_PUBLIC_API XXH_errorcode XXH32_reset (XXH32_state_t* statePtr, XXH32_hash_t seed);
|
|
XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length);
|
|
XXH_PUBLIC_API XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr);
|
|
|
|
/******* Canonical representation *******/
|
|
|
|
/*
|
|
* The default return values from XXH functions are unsigned 32 and 64 bit
|
|
* integers.
|
|
* This the simplest and fastest format for further post-processing.
|
|
*
|
|
* However, this leaves open the question of what is the order on the byte level,
|
|
* since little and big endian conventions will store the same number differently.
|
|
*
|
|
* The canonical representation settles this issue by mandating big-endian
|
|
* convention, the same convention as human-readable numbers (large digits first).
|
|
*
|
|
* When writing hash values to storage, sending them over a network, or printing
|
|
* them, it's highly recommended to use the canonical representation to ensure
|
|
* portability across a wider range of systems, present and future.
|
|
*
|
|
* The following functions allow transformation of hash values to and from
|
|
* canonical format.
|
|
*/
|
|
|
|
typedef struct { unsigned char digest[4]; } XXH32_canonical_t;
|
|
XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash);
|
|
XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src);
|
|
|
|
|
|
#ifndef XXH_NO_LONG_LONG
|
|
/*-**********************************************************************
|
|
* 64-bit hash
|
|
************************************************************************/
|
|
#if !defined (__VMS) \
|
|
&& (defined (__cplusplus) \
|
|
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
|
|
# include <stdint.h>
|
|
typedef uint64_t XXH64_hash_t;
|
|
#else
|
|
/* the following type must have a width of 64-bit */
|
|
typedef unsigned long long XXH64_hash_t;
|
|
#endif
|
|
|
|
/*!
|
|
* XXH64():
|
|
* Returns the 64-bit hash of sequence of length @length stored at memory
|
|
* address @input.
|
|
* @seed can be used to alter the result predictably.
|
|
* This function usually runs faster on 64-bit systems, but slower on 32-bit
|
|
* systems (see benchmark).
|
|
*/
|
|
XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t length, XXH64_hash_t seed);
|
|
|
|
/******* Streaming *******/
|
|
typedef struct XXH64_state_s XXH64_state_t; /* incomplete type */
|
|
XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void);
|
|
XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr);
|
|
XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dst_state, const XXH64_state_t* src_state);
|
|
|
|
XXH_PUBLIC_API XXH_errorcode XXH64_reset (XXH64_state_t* statePtr, XXH64_hash_t seed);
|
|
XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* statePtr, const void* input, size_t length);
|
|
XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* statePtr);
|
|
|
|
/******* Canonical representation *******/
|
|
typedef struct { unsigned char digest[8]; } XXH64_canonical_t;
|
|
XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash);
|
|
XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src);
|
|
|
|
|
|
#endif /* XXH_NO_LONG_LONG */
|
|
|
|
#endif /* XXHASH_H_5627135585666179 */
|
|
|
|
|
|
|
|
#if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742)
|
|
#define XXHASH_H_STATIC_13879238742
|
|
/* ****************************************************************************
|
|
* This section contains declarations which are not guaranteed to remain stable.
|
|
* They may change in future versions, becoming incompatible with a different
|
|
* version of the library.
|
|
* These declarations should only be used with static linking.
|
|
* Never use them in association with dynamic linking!
|
|
***************************************************************************** */
|
|
|
|
/*
|
|
* These definitions are only present to allow static allocation of an XXH
|
|
* state, for example, on the stack or in a struct.
|
|
* Never **ever** access members directly.
|
|
*/
|
|
|
|
struct XXH32_state_s {
|
|
XXH32_hash_t total_len_32;
|
|
XXH32_hash_t large_len;
|
|
XXH32_hash_t v1;
|
|
XXH32_hash_t v2;
|
|
XXH32_hash_t v3;
|
|
XXH32_hash_t v4;
|
|
XXH32_hash_t mem32[4];
|
|
XXH32_hash_t memsize;
|
|
XXH32_hash_t reserved; /* never read nor write, might be removed in a future version */
|
|
}; /* typedef'd to XXH32_state_t */
|
|
|
|
|
|
#ifndef XXH_NO_LONG_LONG /* defined when there is no 64-bit support */
|
|
|
|
struct XXH64_state_s {
|
|
XXH64_hash_t total_len;
|
|
XXH64_hash_t v1;
|
|
XXH64_hash_t v2;
|
|
XXH64_hash_t v3;
|
|
XXH64_hash_t v4;
|
|
XXH64_hash_t mem64[4];
|
|
XXH32_hash_t memsize;
|
|
XXH32_hash_t reserved32; /* required for padding anyway */
|
|
XXH64_hash_t reserved64; /* never read nor write, might be removed in a future version */
|
|
}; /* typedef'd to XXH64_state_t */
|
|
|
|
|
|
/*-**********************************************************************
|
|
* XXH3
|
|
* New experimental hash
|
|
************************************************************************/
|
|
|
|
/* ************************************************************************
|
|
* XXH3 is a new hash algorithm featuring:
|
|
* - Improved speed for both small and large inputs
|
|
* - True 64-bit and 128-bit outputs
|
|
* - SIMD acceleration
|
|
* - Improved 32-bit viability
|
|
*
|
|
* Speed analysis methodology is explained here:
|
|
*
|
|
* https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html
|
|
*
|
|
* In general, expect XXH3 to run about ~2x faster on large inputs and >3x
|
|
* faster on small ones compared to XXH64, though exact differences depend on
|
|
* the platform.
|
|
*
|
|
* The algorithm is portable: Like XXH32 and XXH64, it generates the same hash
|
|
* on all platforms.
|
|
*
|
|
* It benefits greatly from SIMD and 64-bit arithmetic, but does not require it.
|
|
*
|
|
* Almost all 32-bit and 64-bit targets that can run XXH32 smoothly can run
|
|
* XXH3 at usable speeds, even if XXH64 runs slowly. Further details are
|
|
* explained in the implementation.
|
|
*
|
|
* Optimized implementations are provided for AVX2, SSE2, NEON, POWER8, ZVector,
|
|
* and scalar targets. This can be controlled with the XXH_VECTOR macro.
|
|
*
|
|
* XXH3 offers 2 variants, _64bits and _128bits.
|
|
* When only 64 bits are needed, prefer calling the _64bits variant, as it
|
|
* reduces the amount of mixing, resulting in faster speed on small inputs.
|
|
*
|
|
* It's also generally simpler to manipulate a scalar return type than a struct.
|
|
*
|
|
* The 128-bit version adds additional strength, but it is slightly slower.
|
|
*
|
|
* The XXH3 algorithm is still in development.
|
|
* The results it produces may still change in future versions.
|
|
*
|
|
* Results produced by v0.7.x are not comparable with results from v0.7.y.
|
|
* However, the API is completely stable, and it can safely be used for
|
|
* ephemeral data (local sessions).
|
|
*
|
|
* Avoid storing values in long-term storage until the algorithm is finalized.
|
|
*
|
|
* The API supports one-shot hashing, streaming mode, and custom secrets.
|
|
*/
|
|
|
|
#ifdef XXH_NAMESPACE
|
|
# define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits)
|
|
# define XXH3_64bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret)
|
|
# define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed)
|
|
|
|
# define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState)
|
|
# define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState)
|
|
# define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState)
|
|
|
|
# define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset)
|
|
# define XXH3_64bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed)
|
|
# define XXH3_64bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret)
|
|
# define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update)
|
|
# define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest)
|
|
#endif
|
|
|
|
/* XXH3_64bits():
|
|
* default 64-bit variant, using default secret and default seed of 0.
|
|
* It's the fastest variant. */
|
|
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* data, size_t len);
|
|
|
|
/*
|
|
* XXH3_64bits_withSecret():
|
|
* It's possible to provide any blob of bytes as a "secret" to generate the hash.
|
|
* This makes it more difficult for an external actor to prepare an intentional
|
|
* collision.
|
|
* The secret *must* be large enough (>= XXH3_SECRET_SIZE_MIN).
|
|
* It should consist of random bytes.
|
|
* Avoid trivial sequences, such as repeating sequences and especially '\0',
|
|
* as this can cancel out itself.
|
|
* Failure to respect these conditions will result in a poor quality hash.
|
|
*/
|
|
#define XXH3_SECRET_SIZE_MIN 136
|
|
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize);
|
|
|
|
/*
|
|
* XXH3_64bits_withSeed():
|
|
* This variant generates a custom secret on the fly based on the default
|
|
* secret, altered using the `seed` value.
|
|
* While this operation is decently fast, note that it's not completely free.
|
|
* Note: seed==0 produces the same results as XXH3_64bits().
|
|
*/
|
|
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSeed(const void* data, size_t len, XXH64_hash_t seed);
|
|
|
|
|
|
/* streaming 64-bit */
|
|
|
|
#if defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* C11+ */
|
|
# include <stdalign.h>
|
|
# define XXH_ALIGN(n) alignas(n)
|
|
#elif defined(__GNUC__)
|
|
# define XXH_ALIGN(n) __attribute__ ((aligned(n)))
|
|
#elif defined(_MSC_VER)
|
|
# define XXH_ALIGN(n) __declspec(align(n))
|
|
#else
|
|
# define XXH_ALIGN(n) /* disabled */
|
|
#endif
|
|
|
|
/* Old GCC versions only accept the attribute after the type in structures. */
|
|
#if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)) /* C11+ */ \
|
|
&& defined(__GNUC__)
|
|
# define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align)
|
|
#else
|
|
# define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type
|
|
#endif
|
|
|
|
typedef struct XXH3_state_s XXH3_state_t;
|
|
|
|
#define XXH3_SECRET_DEFAULT_SIZE 192 /* minimum XXH3_SECRET_SIZE_MIN */
|
|
#define XXH3_INTERNALBUFFER_SIZE 256
|
|
struct XXH3_state_s {
|
|
XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]);
|
|
/* used to store a custom secret generated from the seed. Makes state larger.
|
|
* Design might change */
|
|
XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]);
|
|
XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]);
|
|
XXH32_hash_t bufferedSize;
|
|
XXH32_hash_t nbStripesPerBlock;
|
|
XXH32_hash_t nbStripesSoFar;
|
|
XXH32_hash_t secretLimit;
|
|
XXH32_hash_t reserved32;
|
|
XXH32_hash_t reserved32_2;
|
|
XXH64_hash_t totalLen;
|
|
XXH64_hash_t seed;
|
|
XXH64_hash_t reserved64;
|
|
/* note: there is some padding after due to alignment on 64 bytes */
|
|
const unsigned char* secret;
|
|
}; /* typedef'd to XXH3_state_t */
|
|
|
|
#undef XXH_ALIGN_MEMBER
|
|
|
|
/*
|
|
* Streaming requires state maintenance.
|
|
* This operation costs memory and CPU.
|
|
* As a consequence, streaming is slower than one-shot hashing.
|
|
* For better performance, prefer one-shot functions whenever possible.
|
|
*/
|
|
XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void);
|
|
XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr);
|
|
XXH_PUBLIC_API void XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state);
|
|
|
|
|
|
/*
|
|
* XXH3_64bits_reset():
|
|
* Initialize with the default parameters.
|
|
* The result will be equivalent to `XXH3_64bits()`.
|
|
*/
|
|
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH3_state_t* statePtr);
|
|
/*
|
|
* XXH3_64bits_reset_withSeed():
|
|
* Generate a custom secret from `seed`, and store it into `statePtr`.
|
|
* digest will be equivalent to `XXH3_64bits_withSeed()`.
|
|
*/
|
|
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed);
|
|
/*
|
|
* XXH3_64bits_reset_withSecret():
|
|
* `secret` is referenced, and must outlive the hash streaming session, so
|
|
* be careful when using stack arrays.
|
|
* `secretSize` must be >= `XXH3_SECRET_SIZE_MIN`.
|
|
*/
|
|
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize);
|
|
|
|
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH3_state_t* statePtr, const void* input, size_t length);
|
|
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* statePtr);
|
|
|
|
|
|
/* 128-bit */
|
|
|
|
#ifdef XXH_NAMESPACE
|
|
# define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128)
|
|
# define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits)
|
|
# define XXH3_128bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed)
|
|
# define XXH3_128bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret)
|
|
|
|
# define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset)
|
|
# define XXH3_128bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed)
|
|
# define XXH3_128bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret)
|
|
# define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update)
|
|
# define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest)
|
|
|
|
# define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual)
|
|
# define XXH128_cmp XXH_NAME2(XXH_NAMESPACE, XXH128_cmp)
|
|
# define XXH128_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash)
|
|
# define XXH128_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical)
|
|
#endif
|
|
|
|
typedef struct {
|
|
XXH64_hash_t low64;
|
|
XXH64_hash_t high64;
|
|
} XXH128_hash_t;
|
|
|
|
XXH_PUBLIC_API XXH128_hash_t XXH128(const void* data, size_t len, XXH64_hash_t seed);
|
|
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* data, size_t len);
|
|
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSeed(const void* data, size_t len, XXH64_hash_t seed); /* == XXH128() */
|
|
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize);
|
|
|
|
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH3_state_t* statePtr);
|
|
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed);
|
|
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize);
|
|
|
|
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH3_state_t* statePtr, const void* input, size_t length);
|
|
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* statePtr);
|
|
|
|
|
|
/* Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */
|
|
|
|
/*!
|
|
* XXH128_isEqual():
|
|
* Return: 1 if `h1` and `h2` are equal, 0 if they are not.
|
|
*/
|
|
XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2);
|
|
|
|
/*!
|
|
* XXH128_cmp():
|
|
*
|
|
* This comparator is compatible with stdlib's `qsort()`/`bsearch()`.
|
|
*
|
|
* return: >0 if *h128_1 > *h128_2
|
|
* <0 if *h128_1 < *h128_2
|
|
* =0 if *h128_1 == *h128_2
|
|
*/
|
|
XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2);
|
|
|
|
|
|
/******* Canonical representation *******/
|
|
typedef struct { unsigned char digest[16]; } XXH128_canonical_t;
|
|
XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash);
|
|
XXH_PUBLIC_API XXH128_hash_t XXH128_hashFromCanonical(const XXH128_canonical_t* src);
|
|
|
|
|
|
#endif /* XXH_NO_LONG_LONG */
|
|
|
|
#if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)
|
|
# define XXH_IMPLEMENTATION
|
|
#endif
|
|
|
|
#endif /* defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) */
|
|
|
|
|
|
/* ======================================================================== */
|
|
/* ======================================================================== */
|
|
/* ======================================================================== */
|
|
|
|
|
|
/*-**********************************************************************
|
|
* xxHash implementation
|
|
*-**********************************************************************
|
|
* xxHash's implementation used to be found in xxhash.c.
|
|
*
|
|
* However, code inlining requires the implementation to be visible to the
|
|
* compiler, usually within the header.
|
|
*
|
|
* As a workaround, xxhash.c used to be included within xxhash.h. This caused
|
|
* some issues with some build systems, especially ones which treat .c files
|
|
* as source files.
|
|
*
|
|
* Therefore, the implementation is now directly integrated within xxhash.h.
|
|
* Another small advantage is that xxhash.c is no longer needed in /include.
|
|
************************************************************************/
|
|
|
|
#if ( defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) \
|
|
|| defined(XXH_IMPLEMENTATION) ) && !defined(XXH_IMPLEM_13a8737387)
|
|
# define XXH_IMPLEM_13a8737387
|
|
|
|
/* *************************************
|
|
* Tuning parameters
|
|
***************************************/
|
|
/*!
|
|
* XXH_FORCE_MEMORY_ACCESS:
|
|
* By default, access to unaligned memory is controlled by `memcpy()`, which is
|
|
* safe and portable.
|
|
*
|
|
* Unfortunately, on some target/compiler combinations, the generated assembly
|
|
* is sub-optimal.
|
|
*
|
|
* The below switch allow to select a different access method for improved
|
|
* performance.
|
|
* Method 0 (default):
|
|
* Use `memcpy()`. Safe and portable.
|
|
* Method 1:
|
|
* `__attribute__((packed))` statement. It depends on compiler extensions
|
|
* and is therefore not portable.
|
|
* This method is safe if your compiler supports it, and *generally* as
|
|
* fast or faster than `memcpy`.
|
|
* Method 2:
|
|
* Direct access via cast. This method doesn't depend on the compiler but
|
|
* violates the C standard.
|
|
* It can generate buggy code on targets which do not support unaligned
|
|
* memory accesses.
|
|
* But in some circumstances, it's the only known way to get the most
|
|
* performance (ie GCC + ARMv6)
|
|
* Method 3:
|
|
* Byteshift. This can generate the best code on old compilers which don't
|
|
* inline small `memcpy()` calls, and it might also be faster on big-endian
|
|
* systems which lack a native byteswap instruction.
|
|
* See https://stackoverflow.com/a/32095106/646947 for details.
|
|
* Prefer these methods in priority order (0 > 1 > 2 > 3)
|
|
*/
|
|
#ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
|
|
# if !defined(__clang__) && defined(__GNUC__) && defined(__ARM_FEATURE_UNALIGNED) && defined(__ARM_ARCH) && (__ARM_ARCH == 6)
|
|
# define XXH_FORCE_MEMORY_ACCESS 2
|
|
# elif !defined(__clang__) && ((defined(__INTEL_COMPILER) && !defined(_WIN32)) || \
|
|
(defined(__GNUC__) && (defined(__ARM_ARCH) && __ARM_ARCH >= 7)))
|
|
# define XXH_FORCE_MEMORY_ACCESS 1
|
|
# endif
|
|
#endif
|
|
|
|
/*!
|
|
*XXH_ACCEPT_NULL_INPUT_POINTER:
|
|
* If the input pointer is NULL, xxHash's default behavior is to dereference it,
|
|
* triggering a segfault.
|
|
* When this macro is enabled, xxHash actively checks the input for a null pointer.
|
|
* If it is, the result for null input pointers is the same as a zero-length input.
|
|
*/
|
|
#ifndef XXH_ACCEPT_NULL_INPUT_POINTER /* can be defined externally */
|
|
# define XXH_ACCEPT_NULL_INPUT_POINTER 0
|
|
#endif
|
|
|
|
/*!
|
|
* XXH_FORCE_ALIGN_CHECK:
|
|
* This is a minor performance trick, only useful with lots of very small keys.
|
|
* It means: check for aligned/unaligned input.
|
|
* The check costs one initial branch per hash;
|
|
* Set it to 0 when the input is guaranteed to be aligned or when alignment
|
|
* doesn't matter for performance.
|
|
*
|
|
* This option does not affect XXH3.
|
|
*/
|
|
#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
|
|
# if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
|
|
# define XXH_FORCE_ALIGN_CHECK 0
|
|
# else
|
|
# define XXH_FORCE_ALIGN_CHECK 1
|
|
# endif
|
|
#endif
|
|
|
|
/*!
|
|
* XXH_NO_INLINE_HINTS:
|
|
*
|
|
* By default, xxHash tries to force the compiler to inline almost all internal
|
|
* functions.
|
|
*
|
|
* This can usually improve performance due to reduced jumping and improved
|
|
* constant folding, but significantly increases the size of the binary which
|
|
* might not be favorable.
|
|
*
|
|
* Additionally, sometimes the forced inlining can be detrimental to performance,
|
|
* depending on the architecture.
|
|
*
|
|
* XXH_NO_INLINE_HINTS marks all internal functions as static, giving the
|
|
* compiler full control on whether to inline or not.
|
|
*
|
|
* When not optimizing (-O0), optimizing for size (-Os, -Oz), or using
|
|
* -fno-inline with GCC or Clang, this will automatically be defined.
|
|
*/
|
|
#ifndef XXH_NO_INLINE_HINTS
|
|
# if defined(__OPTIMIZE_SIZE__) /* -Os, -Oz */ \
|
|
|| defined(__NO_INLINE__) /* -O0, -fno-inline */
|
|
# define XXH_NO_INLINE_HINTS 1
|
|
# else
|
|
# define XXH_NO_INLINE_HINTS 0
|
|
# endif
|
|
#endif
|
|
|
|
/*!
|
|
* XXH_REROLL:
|
|
* Whether to reroll XXH32_finalize, and XXH64_finalize,
|
|
* instead of using an unrolled jump table/if statement loop.
|
|
*
|
|
* This is automatically defined on -Os/-Oz on GCC and Clang.
|
|
*/
|
|
#ifndef XXH_REROLL
|
|
# if defined(__OPTIMIZE_SIZE__)
|
|
# define XXH_REROLL 1
|
|
# else
|
|
# define XXH_REROLL 0
|
|
# endif
|
|
#endif
|
|
|
|
|
|
/* *************************************
|
|
* Includes & Memory related functions
|
|
***************************************/
|
|
/*!
|
|
* Modify the local functions below should you wish to use some other memory
|
|
* routines for malloc() and free()
|
|
*/
|
|
#include <stdlib.h>
|
|
static void* XXH_malloc(size_t s) { return malloc(s); }
|
|
static void XXH_free (void* p) { free(p); }
|
|
/*! and for memcpy() */
|
|
#include <string.h>
|
|
static void* XXH_memcpy(void* dest, const void* src, size_t size)
|
|
{
|
|
return memcpy(dest,src,size);
|
|
}
|
|
|
|
#include <limits.h> /* ULLONG_MAX */
|
|
|
|
|
|
/* *************************************
|
|
* Compiler Specific Options
|
|
***************************************/
|
|
#ifdef _MSC_VER /* Visual Studio warning fix */
|
|
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
|
|
#endif
|
|
|
|
#if XXH_NO_INLINE_HINTS /* disable inlining hints */
|
|
# define XXH_FORCE_INLINE static
|
|
# define XXH_NO_INLINE static
|
|
#elif defined(_MSC_VER) /* Visual Studio */
|
|
# define XXH_FORCE_INLINE static __forceinline
|
|
# define XXH_NO_INLINE static __declspec(noinline)
|
|
#else
|
|
# if defined (__cplusplus) \
|
|
|| defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
|
|
# ifdef __GNUC__
|
|
# define XXH_FORCE_INLINE static inline __attribute__((always_inline))
|
|
# define XXH_NO_INLINE static __attribute__((noinline))
|
|
# else
|
|
# define XXH_FORCE_INLINE static inline
|
|
# define XXH_NO_INLINE static
|
|
# endif
|
|
# else
|
|
# define XXH_FORCE_INLINE static
|
|
# define XXH_NO_INLINE static
|
|
# endif /* __STDC_VERSION__ */
|
|
#endif
|
|
|
|
|
|
|
|
/* *************************************
|
|
* Debug
|
|
***************************************/
|
|
/*
|
|
* DEBUGLEVEL is expected to be defined externally, typically via the compiler's
|
|
* command line options. The value must be a number.
|
|
*/
|
|
#ifndef DEBUGLEVEL
|
|
# define DEBUGLEVEL 0
|
|
#endif
|
|
|
|
#if (DEBUGLEVEL>=1)
|
|
# include <assert.h> /* note: can still be disabled with NDEBUG */
|
|
# define XXH_ASSERT(c) assert(c)
|
|
#else
|
|
# define XXH_ASSERT(c) ((void)0)
|
|
#endif
|
|
|
|
/* note: use after variable declarations */
|
|
#define XXH_STATIC_ASSERT(c) { enum { XXH_sa = 1/(int)(!!(c)) }; }
|
|
|
|
|
|
/* *************************************
|
|
* Basic Types
|
|
***************************************/
|
|
#if !defined (__VMS) \
|
|
&& (defined (__cplusplus) \
|
|
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
|
|
# include <stdint.h>
|
|
typedef uint8_t xxh_u8;
|
|
#else
|
|
typedef unsigned char xxh_u8;
|
|
#endif
|
|
typedef XXH32_hash_t xxh_u32;
|
|
|
|
|
|
/* *** Memory access *** */
|
|
|
|
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
|
|
/*
|
|
* Manual byteshift. Best for old compilers which don't inline memcpy.
|
|
* We actually directly use XXH_readLE32 and XXH_readBE32.
|
|
*/
|
|
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
|
|
|
|
/*
|
|
* Force direct memory access. Only works on CPU which support unaligned memory
|
|
* access in hardware.
|
|
*/
|
|
static xxh_u32 XXH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr; }
|
|
|
|
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
|
|
|
|
/*
|
|
* __pack instructions are safer but compiler specific, hence potentially
|
|
* problematic for some compilers.
|
|
*
|
|
* Currently only defined for GCC and ICC.
|
|
*/
|
|
typedef union { xxh_u32 u32; } __attribute__((packed)) unalign;
|
|
static xxh_u32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
|
|
|
|
#else
|
|
|
|
/*
|
|
* Portable and safe solution. Generally efficient.
|
|
* see: https://stackoverflow.com/a/32095106/646947
|
|
*/
|
|
static xxh_u32 XXH_read32(const void* memPtr)
|
|
{
|
|
xxh_u32 val;
|
|
memcpy(&val, memPtr, sizeof(val));
|
|
return val;
|
|
}
|
|
|
|
#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
|
|
|
|
|
|
/* *** Endianess *** */
|
|
typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
|
|
|
|
/*!
|
|
* XXH_CPU_LITTLE_ENDIAN:
|
|
* Defined to 1 if the target is little endian, or 0 if it is big endian.
|
|
* It can be defined externally, for example on the compiler command line.
|
|
*
|
|
* If it is not defined, a runtime check (which is usually constant folded)
|
|
* is used instead.
|
|
*/
|
|
#ifndef XXH_CPU_LITTLE_ENDIAN
|
|
/*
|
|
* Try to detect endianness automatically, to avoid the nonstandard behavior
|
|
* in `XXH_isLittleEndian()`
|
|
*/
|
|
# if defined(_WIN32) /* Windows is always little endian */ \
|
|
|| defined(__LITTLE_ENDIAN__) \
|
|
|| (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
|
|
# define XXH_CPU_LITTLE_ENDIAN 1
|
|
# elif defined(__BIG_ENDIAN__) \
|
|
|| (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
|
|
# define XXH_CPU_LITTLE_ENDIAN 0
|
|
# else
|
|
static int XXH_isLittleEndian(void)
|
|
{
|
|
/*
|
|
* Nonstandard, but well-defined behavior in practice.
|
|
* Don't use static: it is detrimental to performance.
|
|
*/
|
|
const union { xxh_u32 u; xxh_u8 c[4]; } one = { 1 };
|
|
return one.c[0];
|
|
}
|
|
# define XXH_CPU_LITTLE_ENDIAN XXH_isLittleEndian()
|
|
# endif
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* ****************************************
|
|
* Compiler-specific Functions and Macros
|
|
******************************************/
|
|
#define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
|
|
|
|
#ifndef __has_builtin
|
|
# define __has_builtin(x) 0
|
|
#endif
|
|
|
|
#if !defined(NO_CLANG_BUILTIN) && __has_builtin(__builtin_rotateleft32) \
|
|
&& __has_builtin(__builtin_rotateleft64)
|
|
# define XXH_rotl32 __builtin_rotateleft32
|
|
# define XXH_rotl64 __builtin_rotateleft64
|
|
/* Note: although _rotl exists for minGW (GCC under windows), performance seems poor */
|
|
#elif defined(_MSC_VER)
|
|
# define XXH_rotl32(x,r) _rotl(x,r)
|
|
# define XXH_rotl64(x,r) _rotl64(x,r)
|
|
#else
|
|
# define XXH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r))))
|
|
# define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r))))
|
|
#endif
|
|
|
|
#if defined(_MSC_VER) /* Visual Studio */
|
|
# define XXH_swap32 _byteswap_ulong
|
|
#elif XXH_GCC_VERSION >= 403
|
|
# define XXH_swap32 __builtin_bswap32
|
|
#else
|
|
static xxh_u32 XXH_swap32 (xxh_u32 x)
|
|
{
|
|
return ((x << 24) & 0xff000000 ) |
|
|
((x << 8) & 0x00ff0000 ) |
|
|
((x >> 8) & 0x0000ff00 ) |
|
|
((x >> 24) & 0x000000ff );
|
|
}
|
|
#endif
|
|
|
|
|
|
/* ***************************
|
|
* Memory reads
|
|
*****************************/
|
|
typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
|
|
|
|
/*
|
|
* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load.
|
|
*
|
|
* This is ideal for older compilers which don't inline memcpy.
|
|
*/
|
|
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
|
|
|
|
XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* memPtr)
|
|
{
|
|
const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
|
|
return bytePtr[0]
|
|
| ((xxh_u32)bytePtr[1] << 8)
|
|
| ((xxh_u32)bytePtr[2] << 16)
|
|
| ((xxh_u32)bytePtr[3] << 24);
|
|
}
|
|
|
|
XXH_FORCE_INLINE xxh_u32 XXH_readBE32(const void* memPtr)
|
|
{
|
|
const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
|
|
return bytePtr[3]
|
|
| ((xxh_u32)bytePtr[2] << 8)
|
|
| ((xxh_u32)bytePtr[1] << 16)
|
|
| ((xxh_u32)bytePtr[0] << 24);
|
|
}
|
|
|
|
#else
|
|
XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* ptr)
|
|
{
|
|
return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
|
|
}
|
|
|
|
static xxh_u32 XXH_readBE32(const void* ptr)
|
|
{
|
|
return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
|
|
}
|
|
#endif
|
|
|
|
XXH_FORCE_INLINE xxh_u32
|
|
XXH_readLE32_align(const void* ptr, XXH_alignment align)
|
|
{
|
|
if (align==XXH_unaligned) {
|
|
return XXH_readLE32(ptr);
|
|
} else {
|
|
return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u32*)ptr : XXH_swap32(*(const xxh_u32*)ptr);
|
|
}
|
|
}
|
|
|
|
|
|
/* *************************************
|
|
* Misc
|
|
***************************************/
|
|
XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
|
|
|
|
|
|
/* *******************************************************************
|
|
* 32-bit hash functions
|
|
*********************************************************************/
|
|
static const xxh_u32 PRIME32_1 = 0x9E3779B1U; /* 0b10011110001101110111100110110001 */
|
|
static const xxh_u32 PRIME32_2 = 0x85EBCA77U; /* 0b10000101111010111100101001110111 */
|
|
static const xxh_u32 PRIME32_3 = 0xC2B2AE3DU; /* 0b11000010101100101010111000111101 */
|
|
static const xxh_u32 PRIME32_4 = 0x27D4EB2FU; /* 0b00100111110101001110101100101111 */
|
|
static const xxh_u32 PRIME32_5 = 0x165667B1U; /* 0b00010110010101100110011110110001 */
|
|
|
|
static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input)
|
|
{
|
|
acc += input * PRIME32_2;
|
|
acc = XXH_rotl32(acc, 13);
|
|
acc *= PRIME32_1;
|
|
#if defined(__GNUC__) && defined(__SSE4_1__) && !defined(XXH_ENABLE_AUTOVECTORIZE)
|
|
/*
|
|
* UGLY HACK:
|
|
* This inline assembly hack forces acc into a normal register. This is the
|
|
* only thing that prevents GCC and Clang from autovectorizing the XXH32
|
|
* loop (pragmas and attributes don't work for some resason) without globally
|
|
* disabling SSE4.1.
|
|
*
|
|
* The reason we want to avoid vectorization is because despite working on
|
|
* 4 integers at a time, there are multiple factors slowing XXH32 down on
|
|
* SSE4:
|
|
* - There's a ridiculous amount of lag from pmulld (10 cycles of latency on
|
|
* newer chips!) making it slightly slower to multiply four integers at
|
|
* once compared to four integers independently. Even when pmulld was
|
|
* fastest, Sandy/Ivy Bridge, it is still not worth it to go into SSE
|
|
* just to multiply unless doing a long operation.
|
|
*
|
|
* - Four instructions are required to rotate,
|
|
* movqda tmp, v // not required with VEX encoding
|
|
* pslld tmp, 13 // tmp <<= 13
|
|
* psrld v, 19 // x >>= 19
|
|
* por v, tmp // x |= tmp
|
|
* compared to one for scalar:
|
|
* roll v, 13 // reliably fast across the board
|
|
* shldl v, v, 13 // Sandy Bridge and later prefer this for some reason
|
|
*
|
|
* - Instruction level parallelism is actually more beneficial here because
|
|
* the SIMD actually serializes this operation: While v1 is rotating, v2
|
|
* can load data, while v3 can multiply. SSE forces them to operate
|
|
* together.
|
|
*
|
|
* How this hack works:
|
|
* __asm__("" // Declare an assembly block but don't declare any instructions
|
|
* : // However, as an Input/Output Operand,
|
|
* "+r" // constrain a read/write operand (+) as a general purpose register (r).
|
|
* (acc) // and set acc as the operand
|
|
* );
|
|
*
|
|
* Because of the 'r', the compiler has promised that seed will be in a
|
|
* general purpose register and the '+' says that it will be 'read/write',
|
|
* so it has to assume it has changed. It is like volatile without all the
|
|
* loads and stores.
|
|
*
|
|
* Since the argument has to be in a normal register (not an SSE register),
|
|
* each time XXH32_round is called, it is impossible to vectorize.
|
|
*/
|
|
__asm__("" : "+r" (acc));
|
|
#endif
|
|
return acc;
|
|
}
|
|
|
|
/* mix all bits */
|
|
static xxh_u32 XXH32_avalanche(xxh_u32 h32)
|
|
{
|
|
h32 ^= h32 >> 15;
|
|
h32 *= PRIME32_2;
|
|
h32 ^= h32 >> 13;
|
|
h32 *= PRIME32_3;
|
|
h32 ^= h32 >> 16;
|
|
return(h32);
|
|
}
|
|
|
|
#define XXH_get32bits(p) XXH_readLE32_align(p, align)
|
|
|
|
static xxh_u32
|
|
XXH32_finalize(xxh_u32 h32, const xxh_u8* ptr, size_t len, XXH_alignment align)
|
|
{
|
|
#define PROCESS1 \
|
|
h32 += (*ptr++) * PRIME32_5; \
|
|
h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
|
|
|
|
#define PROCESS4 \
|
|
h32 += XXH_get32bits(ptr) * PRIME32_3; \
|
|
ptr+=4; \
|
|
h32 = XXH_rotl32(h32, 17) * PRIME32_4 ;
|
|
|
|
/* Compact rerolled version */
|
|
if (XXH_REROLL) {
|
|
len &= 15;
|
|
while (len >= 4) {
|
|
PROCESS4;
|
|
len -= 4;
|
|
}
|
|
while (len > 0) {
|
|
PROCESS1;
|
|
--len;
|
|
}
|
|
return XXH32_avalanche(h32);
|
|
} else {
|
|
switch(len&15) /* or switch(bEnd - p) */ {
|
|
case 12: PROCESS4;
|
|
/* fallthrough */
|
|
case 8: PROCESS4;
|
|
/* fallthrough */
|
|
case 4: PROCESS4;
|
|
return XXH32_avalanche(h32);
|
|
|
|
case 13: PROCESS4;
|
|
/* fallthrough */
|
|
case 9: PROCESS4;
|
|
/* fallthrough */
|
|
case 5: PROCESS4;
|
|
PROCESS1;
|
|
return XXH32_avalanche(h32);
|
|
|
|
case 14: PROCESS4;
|
|
/* fallthrough */
|
|
case 10: PROCESS4;
|
|
/* fallthrough */
|
|
case 6: PROCESS4;
|
|
PROCESS1;
|
|
PROCESS1;
|
|
return XXH32_avalanche(h32);
|
|
|
|
case 15: PROCESS4;
|
|
/* fallthrough */
|
|
case 11: PROCESS4;
|
|
/* fallthrough */
|
|
case 7: PROCESS4;
|
|
/* fallthrough */
|
|
case 3: PROCESS1;
|
|
/* fallthrough */
|
|
case 2: PROCESS1;
|
|
/* fallthrough */
|
|
case 1: PROCESS1;
|
|
/* fallthrough */
|
|
case 0: return XXH32_avalanche(h32);
|
|
}
|
|
XXH_ASSERT(0);
|
|
return h32; /* reaching this point is deemed impossible */
|
|
}
|
|
}
|
|
|
|
XXH_FORCE_INLINE xxh_u32
|
|
XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment align)
|
|
{
|
|
const xxh_u8* bEnd = input + len;
|
|
xxh_u32 h32;
|
|
|
|
#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
|
|
if (input==NULL) {
|
|
len=0;
|
|
bEnd=input=(const xxh_u8*)(size_t)16;
|
|
}
|
|
#endif
|
|
|
|
if (len>=16) {
|
|
const xxh_u8* const limit = bEnd - 15;
|
|
xxh_u32 v1 = seed + PRIME32_1 + PRIME32_2;
|
|
xxh_u32 v2 = seed + PRIME32_2;
|
|
xxh_u32 v3 = seed + 0;
|
|
xxh_u32 v4 = seed - PRIME32_1;
|
|
|
|
do {
|
|
v1 = XXH32_round(v1, XXH_get32bits(input)); input += 4;
|
|
v2 = XXH32_round(v2, XXH_get32bits(input)); input += 4;
|
|
v3 = XXH32_round(v3, XXH_get32bits(input)); input += 4;
|
|
v4 = XXH32_round(v4, XXH_get32bits(input)); input += 4;
|
|
} while (input < limit);
|
|
|
|
h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7)
|
|
+ XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
|
|
} else {
|
|
h32 = seed + PRIME32_5;
|
|
}
|
|
|
|
h32 += (xxh_u32)len;
|
|
|
|
return XXH32_finalize(h32, input, len&15, align);
|
|
}
|
|
|
|
|
|
XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t seed)
|
|
{
|
|
#if 0
|
|
/* Simple version, good for code maintenance, but unfortunately slow for small inputs */
|
|
XXH32_state_t state;
|
|
XXH32_reset(&state, seed);
|
|
XXH32_update(&state, (const xxh_u8*)input, len);
|
|
return XXH32_digest(&state);
|
|
|
|
#else
|
|
|
|
if (XXH_FORCE_ALIGN_CHECK) {
|
|
if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */
|
|
return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
|
|
} }
|
|
|
|
return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
|
|
#endif
|
|
}
|
|
|
|
|
|
|
|
/******* Hash streaming *******/
|
|
|
|
XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
|
|
{
|
|
return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
|
|
}
|
|
XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
|
|
{
|
|
XXH_free(statePtr);
|
|
return XXH_OK;
|
|
}
|
|
|
|
XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState)
|
|
{
|
|
memcpy(dstState, srcState, sizeof(*dstState));
|
|
}
|
|
|
|
XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed)
|
|
{
|
|
XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
|
|
memset(&state, 0, sizeof(state));
|
|
state.v1 = seed + PRIME32_1 + PRIME32_2;
|
|
state.v2 = seed + PRIME32_2;
|
|
state.v3 = seed + 0;
|
|
state.v4 = seed - PRIME32_1;
|
|
/* do not write into reserved, planned to be removed in a future version */
|
|
memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved));
|
|
return XXH_OK;
|
|
}
|
|
|
|
|
|
XXH_PUBLIC_API XXH_errorcode
|
|
XXH32_update(XXH32_state_t* state, const void* input, size_t len)
|
|
{
|
|
if (input==NULL)
|
|
#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
|
|
return XXH_OK;
|
|
#else
|
|
return XXH_ERROR;
|
|
#endif
|
|
|
|
{ const xxh_u8* p = (const xxh_u8*)input;
|
|
const xxh_u8* const bEnd = p + len;
|
|
|
|
state->total_len_32 += (XXH32_hash_t)len;
|
|
state->large_len |= (XXH32_hash_t)((len>=16) | (state->total_len_32>=16));
|
|
|
|
if (state->memsize + len < 16) { /* fill in tmp buffer */
|
|
XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, len);
|
|
state->memsize += (XXH32_hash_t)len;
|
|
return XXH_OK;
|
|
}
|
|
|
|
if (state->memsize) { /* some data left from previous update */
|
|
XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, 16-state->memsize);
|
|
{ const xxh_u32* p32 = state->mem32;
|
|
state->v1 = XXH32_round(state->v1, XXH_readLE32(p32)); p32++;
|
|
state->v2 = XXH32_round(state->v2, XXH_readLE32(p32)); p32++;
|
|
state->v3 = XXH32_round(state->v3, XXH_readLE32(p32)); p32++;
|
|
state->v4 = XXH32_round(state->v4, XXH_readLE32(p32));
|
|
}
|
|
p += 16-state->memsize;
|
|
state->memsize = 0;
|
|
}
|
|
|
|
if (p <= bEnd-16) {
|
|
const xxh_u8* const limit = bEnd - 16;
|
|
xxh_u32 v1 = state->v1;
|
|
xxh_u32 v2 = state->v2;
|
|
xxh_u32 v3 = state->v3;
|
|
xxh_u32 v4 = state->v4;
|
|
|
|
do {
|
|
v1 = XXH32_round(v1, XXH_readLE32(p)); p+=4;
|
|
v2 = XXH32_round(v2, XXH_readLE32(p)); p+=4;
|
|
v3 = XXH32_round(v3, XXH_readLE32(p)); p+=4;
|
|
v4 = XXH32_round(v4, XXH_readLE32(p)); p+=4;
|
|
} while (p<=limit);
|
|
|
|
state->v1 = v1;
|
|
state->v2 = v2;
|
|
state->v3 = v3;
|
|
state->v4 = v4;
|
|
}
|
|
|
|
if (p < bEnd) {
|
|
XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
|
|
state->memsize = (unsigned)(bEnd-p);
|
|
}
|
|
}
|
|
|
|
return XXH_OK;
|
|
}
|
|
|
|
|
|
XXH_PUBLIC_API XXH32_hash_t XXH32_digest (const XXH32_state_t* state)
|
|
{
|
|
xxh_u32 h32;
|
|
|
|
if (state->large_len) {
|
|
h32 = XXH_rotl32(state->v1, 1)
|
|
+ XXH_rotl32(state->v2, 7)
|
|
+ XXH_rotl32(state->v3, 12)
|
|
+ XXH_rotl32(state->v4, 18);
|
|
} else {
|
|
h32 = state->v3 /* == seed */ + PRIME32_5;
|
|
}
|
|
|
|
h32 += state->total_len_32;
|
|
|
|
return XXH32_finalize(h32, (const xxh_u8*)state->mem32, state->memsize, XXH_aligned);
|
|
}
|
|
|
|
|
|
/******* Canonical representation *******/
|
|
|
|
/*
|
|
* The default return values from XXH functions are unsigned 32 and 64 bit
|
|
* integers.
|
|
*
|
|
* The canonical representation uses big endian convention, the same convention
|
|
* as human-readable numbers (large digits first).
|
|
*
|
|
* This way, hash values can be written into a file or buffer, remaining
|
|
* comparable across different systems.
|
|
*
|
|
* The following functions allow transformation of hash values to and from their
|
|
* canonical format.
|
|
*/
|
|
XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
|
|
{
|
|
XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
|
|
if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
|
|
memcpy(dst, &hash, sizeof(*dst));
|
|
}
|
|
|
|
XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
|
|
{
|
|
return XXH_readBE32(src);
|
|
}
|
|
|
|
|
|
#ifndef XXH_NO_LONG_LONG
|
|
|
|
/* *******************************************************************
|
|
* 64-bit hash functions
|
|
*********************************************************************/
|
|
|
|
/******* Memory access *******/
|
|
|
|
typedef XXH64_hash_t xxh_u64;
|
|
|
|
|
|
/*!
|
|
* XXH_REROLL_XXH64:
|
|
* Whether to reroll the XXH64_finalize() loop.
|
|
*
|
|
* Just like XXH32, we can unroll the XXH64_finalize() loop. This can be a
|
|
* performance gain on 64-bit hosts, as only one jump is required.
|
|
*
|
|
* However, on 32-bit hosts, because arithmetic needs to be done with two 32-bit
|
|
* registers, and 64-bit arithmetic needs to be simulated, it isn't beneficial
|
|
* to unroll. The code becomes ridiculously large (the largest function in the
|
|
* binary on i386!), and rerolling it saves anywhere from 3kB to 20kB. It is
|
|
* also slightly faster because it fits into cache better and is more likely
|
|
* to be inlined by the compiler.
|
|
*
|
|
* If XXH_REROLL is defined, this is ignored and the loop is always rerolled.
|
|
*/
|
|
#ifndef XXH_REROLL_XXH64
|
|
# if (defined(__ILP32__) || defined(_ILP32)) /* ILP32 is often defined on 32-bit GCC family */ \
|
|
|| !(defined(__x86_64__) || defined(_M_X64) || defined(_M_AMD64) /* x86-64 */ \
|
|
|| defined(_M_ARM64) || defined(__aarch64__) || defined(__arm64__) /* aarch64 */ \
|
|
|| defined(__PPC64__) || defined(__PPC64LE__) || defined(__ppc64__) || defined(__powerpc64__) /* ppc64 */ \
|
|
|| defined(__mips64__) || defined(__mips64)) /* mips64 */ \
|
|
|| (!defined(SIZE_MAX) || SIZE_MAX < ULLONG_MAX) /* check limits */
|
|
# define XXH_REROLL_XXH64 1
|
|
# else
|
|
# define XXH_REROLL_XXH64 0
|
|
# endif
|
|
#endif /* !defined(XXH_REROLL_XXH64) */
|
|
|
|
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
|
|
/*
|
|
* Manual byteshift. Best for old compilers which don't inline memcpy.
|
|
* We actually directly use XXH_readLE64 and XXH_readBE64.
|
|
*/
|
|
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
|
|
|
|
/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
|
|
static xxh_u64 XXH_read64(const void* memPtr) { return *(const xxh_u64*) memPtr; }
|
|
|
|
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
|
|
|
|
/*
|
|
* __pack instructions are safer, but compiler specific, hence potentially
|
|
* problematic for some compilers.
|
|
*
|
|
* Currently only defined for GCC and ICC.
|
|
*/
|
|
typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) unalign64;
|
|
static xxh_u64 XXH_read64(const void* ptr) { return ((const unalign64*)ptr)->u64; }
|
|
|
|
#else
|
|
|
|
/*
|
|
* Portable and safe solution. Generally efficient.
|
|
* see: https://stackoverflow.com/a/32095106/646947
|
|
*/
|
|
static xxh_u64 XXH_read64(const void* memPtr)
|
|
{
|
|
xxh_u64 val;
|
|
memcpy(&val, memPtr, sizeof(val));
|
|
return val;
|
|
}
|
|
|
|
#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
|
|
|
|
#if defined(_MSC_VER) /* Visual Studio */
|
|
# define XXH_swap64 _byteswap_uint64
|
|
#elif XXH_GCC_VERSION >= 403
|
|
# define XXH_swap64 __builtin_bswap64
|
|
#else
|
|
static xxh_u64 XXH_swap64 (xxh_u64 x)
|
|
{
|
|
return ((x << 56) & 0xff00000000000000ULL) |
|
|
((x << 40) & 0x00ff000000000000ULL) |
|
|
((x << 24) & 0x0000ff0000000000ULL) |
|
|
((x << 8) & 0x000000ff00000000ULL) |
|
|
((x >> 8) & 0x00000000ff000000ULL) |
|
|
((x >> 24) & 0x0000000000ff0000ULL) |
|
|
((x >> 40) & 0x000000000000ff00ULL) |
|
|
((x >> 56) & 0x00000000000000ffULL);
|
|
}
|
|
#endif
|
|
|
|
|
|
/* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. */
|
|
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
|
|
|
|
XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* memPtr)
|
|
{
|
|
const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
|
|
return bytePtr[0]
|
|
| ((xxh_u64)bytePtr[1] << 8)
|
|
| ((xxh_u64)bytePtr[2] << 16)
|
|
| ((xxh_u64)bytePtr[3] << 24)
|
|
| ((xxh_u64)bytePtr[4] << 32)
|
|
| ((xxh_u64)bytePtr[5] << 40)
|
|
| ((xxh_u64)bytePtr[6] << 48)
|
|
| ((xxh_u64)bytePtr[7] << 56);
|
|
}
|
|
|
|
XXH_FORCE_INLINE xxh_u64 XXH_readBE64(const void* memPtr)
|
|
{
|
|
const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
|
|
return bytePtr[7]
|
|
| ((xxh_u64)bytePtr[6] << 8)
|
|
| ((xxh_u64)bytePtr[5] << 16)
|
|
| ((xxh_u64)bytePtr[4] << 24)
|
|
| ((xxh_u64)bytePtr[3] << 32)
|
|
| ((xxh_u64)bytePtr[2] << 40)
|
|
| ((xxh_u64)bytePtr[1] << 48)
|
|
| ((xxh_u64)bytePtr[0] << 56);
|
|
}
|
|
|
|
#else
|
|
XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* ptr)
|
|
{
|
|
return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
|
|
}
|
|
|
|
static xxh_u64 XXH_readBE64(const void* ptr)
|
|
{
|
|
return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
|
|
}
|
|
#endif
|
|
|
|
XXH_FORCE_INLINE xxh_u64
|
|
XXH_readLE64_align(const void* ptr, XXH_alignment align)
|
|
{
|
|
if (align==XXH_unaligned)
|
|
return XXH_readLE64(ptr);
|
|
else
|
|
return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u64*)ptr : XXH_swap64(*(const xxh_u64*)ptr);
|
|
}
|
|
|
|
|
|
/******* xxh64 *******/
|
|
|
|
static const xxh_u64 PRIME64_1 = 0x9E3779B185EBCA87ULL; /* 0b1001111000110111011110011011000110000101111010111100101010000111 */
|
|
static const xxh_u64 PRIME64_2 = 0xC2B2AE3D27D4EB4FULL; /* 0b1100001010110010101011100011110100100111110101001110101101001111 */
|
|
static const xxh_u64 PRIME64_3 = 0x165667B19E3779F9ULL; /* 0b0001011001010110011001111011000110011110001101110111100111111001 */
|
|
static const xxh_u64 PRIME64_4 = 0x85EBCA77C2B2AE63ULL; /* 0b1000010111101011110010100111011111000010101100101010111001100011 */
|
|
static const xxh_u64 PRIME64_5 = 0x27D4EB2F165667C5ULL; /* 0b0010011111010100111010110010111100010110010101100110011111000101 */
|
|
|
|
static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input)
|
|
{
|
|
acc += input * PRIME64_2;
|
|
acc = XXH_rotl64(acc, 31);
|
|
acc *= PRIME64_1;
|
|
return acc;
|
|
}
|
|
|
|
static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val)
|
|
{
|
|
val = XXH64_round(0, val);
|
|
acc ^= val;
|
|
acc = acc * PRIME64_1 + PRIME64_4;
|
|
return acc;
|
|
}
|
|
|
|
static xxh_u64 XXH64_avalanche(xxh_u64 h64)
|
|
{
|
|
h64 ^= h64 >> 33;
|
|
h64 *= PRIME64_2;
|
|
h64 ^= h64 >> 29;
|
|
h64 *= PRIME64_3;
|
|
h64 ^= h64 >> 32;
|
|
return h64;
|
|
}
|
|
|
|
|
|
#define XXH_get64bits(p) XXH_readLE64_align(p, align)
|
|
|
|
static xxh_u64
|
|
XXH64_finalize(xxh_u64 h64, const xxh_u8* ptr, size_t len, XXH_alignment align)
|
|
{
|
|
#define PROCESS1_64 \
|
|
h64 ^= (*ptr++) * PRIME64_5; \
|
|
h64 = XXH_rotl64(h64, 11) * PRIME64_1;
|
|
|
|
#define PROCESS4_64 \
|
|
h64 ^= (xxh_u64)(XXH_get32bits(ptr)) * PRIME64_1; \
|
|
ptr+=4; \
|
|
h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
|
|
|
|
#define PROCESS8_64 { \
|
|
xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr)); \
|
|
ptr+=8; \
|
|
h64 ^= k1; \
|
|
h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4; \
|
|
}
|
|
|
|
/* Rerolled version for 32-bit targets is faster and much smaller. */
|
|
if (XXH_REROLL || XXH_REROLL_XXH64) {
|
|
len &= 31;
|
|
while (len >= 8) {
|
|
PROCESS8_64;
|
|
len -= 8;
|
|
}
|
|
if (len >= 4) {
|
|
PROCESS4_64;
|
|
len -= 4;
|
|
}
|
|
while (len > 0) {
|
|
PROCESS1_64;
|
|
--len;
|
|
}
|
|
return XXH64_avalanche(h64);
|
|
} else {
|
|
switch(len & 31) {
|
|
case 24: PROCESS8_64;
|
|
/* fallthrough */
|
|
case 16: PROCESS8_64;
|
|
/* fallthrough */
|
|
case 8: PROCESS8_64;
|
|
return XXH64_avalanche(h64);
|
|
|
|
case 28: PROCESS8_64;
|
|
/* fallthrough */
|
|
case 20: PROCESS8_64;
|
|
/* fallthrough */
|
|
case 12: PROCESS8_64;
|
|
/* fallthrough */
|
|
case 4: PROCESS4_64;
|
|
return XXH64_avalanche(h64);
|
|
|
|
case 25: PROCESS8_64;
|
|
/* fallthrough */
|
|
case 17: PROCESS8_64;
|
|
/* fallthrough */
|
|
case 9: PROCESS8_64;
|
|
PROCESS1_64;
|
|
return XXH64_avalanche(h64);
|
|
|
|
case 29: PROCESS8_64;
|
|
/* fallthrough */
|
|
case 21: PROCESS8_64;
|
|
/* fallthrough */
|
|
case 13: PROCESS8_64;
|
|
/* fallthrough */
|
|
case 5: PROCESS4_64;
|
|
PROCESS1_64;
|
|
return XXH64_avalanche(h64);
|
|
|
|
case 26: PROCESS8_64;
|
|
/* fallthrough */
|
|
case 18: PROCESS8_64;
|
|
/* fallthrough */
|
|
case 10: PROCESS8_64;
|
|
PROCESS1_64;
|
|
PROCESS1_64;
|
|
return XXH64_avalanche(h64);
|
|
|
|
case 30: PROCESS8_64;
|
|
/* fallthrough */
|
|
case 22: PROCESS8_64;
|
|
/* fallthrough */
|
|
case 14: PROCESS8_64;
|
|
/* fallthrough */
|
|
case 6: PROCESS4_64;
|
|
PROCESS1_64;
|
|
PROCESS1_64;
|
|
return XXH64_avalanche(h64);
|
|
|
|
case 27: PROCESS8_64;
|
|
/* fallthrough */
|
|
case 19: PROCESS8_64;
|
|
/* fallthrough */
|
|
case 11: PROCESS8_64;
|
|
PROCESS1_64;
|
|
PROCESS1_64;
|
|
PROCESS1_64;
|
|
return XXH64_avalanche(h64);
|
|
|
|
case 31: PROCESS8_64;
|
|
/* fallthrough */
|
|
case 23: PROCESS8_64;
|
|
/* fallthrough */
|
|
case 15: PROCESS8_64;
|
|
/* fallthrough */
|
|
case 7: PROCESS4_64;
|
|
/* fallthrough */
|
|
case 3: PROCESS1_64;
|
|
/* fallthrough */
|
|
case 2: PROCESS1_64;
|
|
/* fallthrough */
|
|
case 1: PROCESS1_64;
|
|
/* fallthrough */
|
|
case 0: return XXH64_avalanche(h64);
|
|
}
|
|
}
|
|
/* impossible to reach */
|
|
XXH_ASSERT(0);
|
|
return 0; /* unreachable, but some compilers complain without it */
|
|
}
|
|
|
|
XXH_FORCE_INLINE xxh_u64
|
|
XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment align)
|
|
{
|
|
const xxh_u8* bEnd = input + len;
|
|
xxh_u64 h64;
|
|
|
|
#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
|
|
if (input==NULL) {
|
|
len=0;
|
|
bEnd=input=(const xxh_u8*)(size_t)32;
|
|
}
|
|
#endif
|
|
|
|
if (len>=32) {
|
|
const xxh_u8* const limit = bEnd - 32;
|
|
xxh_u64 v1 = seed + PRIME64_1 + PRIME64_2;
|
|
xxh_u64 v2 = seed + PRIME64_2;
|
|
xxh_u64 v3 = seed + 0;
|
|
xxh_u64 v4 = seed - PRIME64_1;
|
|
|
|
do {
|
|
v1 = XXH64_round(v1, XXH_get64bits(input)); input+=8;
|
|
v2 = XXH64_round(v2, XXH_get64bits(input)); input+=8;
|
|
v3 = XXH64_round(v3, XXH_get64bits(input)); input+=8;
|
|
v4 = XXH64_round(v4, XXH_get64bits(input)); input+=8;
|
|
} while (input<=limit);
|
|
|
|
h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
|
|
h64 = XXH64_mergeRound(h64, v1);
|
|
h64 = XXH64_mergeRound(h64, v2);
|
|
h64 = XXH64_mergeRound(h64, v3);
|
|
h64 = XXH64_mergeRound(h64, v4);
|
|
|
|
} else {
|
|
h64 = seed + PRIME64_5;
|
|
}
|
|
|
|
h64 += (xxh_u64) len;
|
|
|
|
return XXH64_finalize(h64, input, len, align);
|
|
}
|
|
|
|
|
|
XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t len, XXH64_hash_t seed)
|
|
{
|
|
#if 0
|
|
/* Simple version, good for code maintenance, but unfortunately slow for small inputs */
|
|
XXH64_state_t state;
|
|
XXH64_reset(&state, seed);
|
|
XXH64_update(&state, (const xxh_u8*)input, len);
|
|
return XXH64_digest(&state);
|
|
|
|
#else
|
|
|
|
if (XXH_FORCE_ALIGN_CHECK) {
|
|
if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */
|
|
return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
|
|
} }
|
|
|
|
return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
|
|
|
|
#endif
|
|
}
|
|
|
|
/******* Hash Streaming *******/
|
|
|
|
XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
|
|
{
|
|
return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
|
|
}
|
|
XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
|
|
{
|
|
XXH_free(statePtr);
|
|
return XXH_OK;
|
|
}
|
|
|
|
XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState)
|
|
{
|
|
memcpy(dstState, srcState, sizeof(*dstState));
|
|
}
|
|
|
|
XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, XXH64_hash_t seed)
|
|
{
|
|
XXH64_state_t state; /* use a local state to memcpy() in order to avoid strict-aliasing warnings */
|
|
memset(&state, 0, sizeof(state));
|
|
state.v1 = seed + PRIME64_1 + PRIME64_2;
|
|
state.v2 = seed + PRIME64_2;
|
|
state.v3 = seed + 0;
|
|
state.v4 = seed - PRIME64_1;
|
|
/* do not write into reserved64, might be removed in a future version */
|
|
memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved64));
|
|
return XXH_OK;
|
|
}
|
|
|
|
XXH_PUBLIC_API XXH_errorcode
|
|
XXH64_update (XXH64_state_t* state, const void* input, size_t len)
|
|
{
|
|
if (input==NULL)
|
|
#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
|
|
return XXH_OK;
|
|
#else
|
|
return XXH_ERROR;
|
|
#endif
|
|
|
|
{ const xxh_u8* p = (const xxh_u8*)input;
|
|
const xxh_u8* const bEnd = p + len;
|
|
|
|
state->total_len += len;
|
|
|
|
if (state->memsize + len < 32) { /* fill in tmp buffer */
|
|
XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, len);
|
|
state->memsize += (xxh_u32)len;
|
|
return XXH_OK;
|
|
}
|
|
|
|
if (state->memsize) { /* tmp buffer is full */
|
|
XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, 32-state->memsize);
|
|
state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0));
|
|
state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1));
|
|
state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2));
|
|
state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3));
|
|
p += 32-state->memsize;
|
|
state->memsize = 0;
|
|
}
|
|
|
|
if (p+32 <= bEnd) {
|
|
const xxh_u8* const limit = bEnd - 32;
|
|
xxh_u64 v1 = state->v1;
|
|
xxh_u64 v2 = state->v2;
|
|
xxh_u64 v3 = state->v3;
|
|
xxh_u64 v4 = state->v4;
|
|
|
|
do {
|
|
v1 = XXH64_round(v1, XXH_readLE64(p)); p+=8;
|
|
v2 = XXH64_round(v2, XXH_readLE64(p)); p+=8;
|
|
v3 = XXH64_round(v3, XXH_readLE64(p)); p+=8;
|
|
v4 = XXH64_round(v4, XXH_readLE64(p)); p+=8;
|
|
} while (p<=limit);
|
|
|
|
state->v1 = v1;
|
|
state->v2 = v2;
|
|
state->v3 = v3;
|
|
state->v4 = v4;
|
|
}
|
|
|
|
if (p < bEnd) {
|
|
XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
|
|
state->memsize = (unsigned)(bEnd-p);
|
|
}
|
|
}
|
|
|
|
return XXH_OK;
|
|
}
|
|
|
|
|
|
XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* state)
|
|
{
|
|
xxh_u64 h64;
|
|
|
|
if (state->total_len >= 32) {
|
|
xxh_u64 const v1 = state->v1;
|
|
xxh_u64 const v2 = state->v2;
|
|
xxh_u64 const v3 = state->v3;
|
|
xxh_u64 const v4 = state->v4;
|
|
|
|
h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
|
|
h64 = XXH64_mergeRound(h64, v1);
|
|
h64 = XXH64_mergeRound(h64, v2);
|
|
h64 = XXH64_mergeRound(h64, v3);
|
|
h64 = XXH64_mergeRound(h64, v4);
|
|
} else {
|
|
h64 = state->v3 /*seed*/ + PRIME64_5;
|
|
}
|
|
|
|
h64 += (xxh_u64) state->total_len;
|
|
|
|
return XXH64_finalize(h64, (const xxh_u8*)state->mem64, (size_t)state->total_len, XXH_aligned);
|
|
}
|
|
|
|
|
|
/******* Canonical representation *******/
|
|
|
|
XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
|
|
{
|
|
XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
|
|
if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
|
|
memcpy(dst, &hash, sizeof(*dst));
|
|
}
|
|
|
|
XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
|
|
{
|
|
return XXH_readBE64(src);
|
|
}
|
|
|
|
|
|
|
|
/* *********************************************************************
|
|
* XXH3
|
|
* New generation hash designed for speed on small keys and vectorization
|
|
************************************************************************ */
|
|
|
|
#include "xxh3.h"
|
|
|
|
|
|
#endif /* XXH_NO_LONG_LONG */
|
|
|
|
|
|
#endif /* XXH_IMPLEMENTATION */
|
|
|
|
|
|
#if defined (__cplusplus)
|
|
}
|
|
#endif
|