зеркало из https://github.com/mozilla/gecko-dev.git
2109 строки
68 KiB
C++
2109 строки
68 KiB
C++
/*
|
|
* Copyright 2011 The LibYuv Project Authors. All rights reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <time.h>
|
|
|
|
#include "libyuv/compare.h"
|
|
#include "libyuv/convert.h"
|
|
#include "libyuv/convert_argb.h"
|
|
#include "libyuv/convert_from.h"
|
|
#include "libyuv/convert_from_argb.h"
|
|
#include "libyuv/cpu_id.h"
|
|
#include "libyuv/format_conversion.h"
|
|
#include "libyuv/planar_functions.h"
|
|
#include "libyuv/rotate.h"
|
|
#include "libyuv/row.h" // For Sobel
|
|
#include "../unit_test/unit_test.h"
|
|
|
|
#if defined(_MSC_VER)
|
|
#define SIMD_ALIGNED(var) __declspec(align(16)) var
|
|
#else // __GNUC__
|
|
#define SIMD_ALIGNED(var) var __attribute__((aligned(16)))
|
|
#endif
|
|
|
|
namespace libyuv {
|
|
|
|
TEST_F(libyuvTest, TestAttenuate) {
|
|
const int kSize = 1280 * 4;
|
|
align_buffer_64(orig_pixels, kSize);
|
|
align_buffer_64(atten_pixels, kSize);
|
|
align_buffer_64(unatten_pixels, kSize);
|
|
align_buffer_64(atten2_pixels, kSize);
|
|
|
|
// Test unattenuation clamps
|
|
orig_pixels[0 * 4 + 0] = 200u;
|
|
orig_pixels[0 * 4 + 1] = 129u;
|
|
orig_pixels[0 * 4 + 2] = 127u;
|
|
orig_pixels[0 * 4 + 3] = 128u;
|
|
// Test unattenuation transparent and opaque are unaffected
|
|
orig_pixels[1 * 4 + 0] = 16u;
|
|
orig_pixels[1 * 4 + 1] = 64u;
|
|
orig_pixels[1 * 4 + 2] = 192u;
|
|
orig_pixels[1 * 4 + 3] = 0u;
|
|
orig_pixels[2 * 4 + 0] = 16u;
|
|
orig_pixels[2 * 4 + 1] = 64u;
|
|
orig_pixels[2 * 4 + 2] = 192u;
|
|
orig_pixels[2 * 4 + 3] = 255u;
|
|
orig_pixels[3 * 4 + 0] = 16u;
|
|
orig_pixels[3 * 4 + 1] = 64u;
|
|
orig_pixels[3 * 4 + 2] = 192u;
|
|
orig_pixels[3 * 4 + 3] = 128u;
|
|
ARGBUnattenuate(orig_pixels, 0, unatten_pixels, 0, 4, 1);
|
|
EXPECT_EQ(255u, unatten_pixels[0 * 4 + 0]);
|
|
EXPECT_EQ(255u, unatten_pixels[0 * 4 + 1]);
|
|
EXPECT_EQ(254u, unatten_pixels[0 * 4 + 2]);
|
|
EXPECT_EQ(128u, unatten_pixels[0 * 4 + 3]);
|
|
EXPECT_EQ(0u, unatten_pixels[1 * 4 + 0]);
|
|
EXPECT_EQ(0u, unatten_pixels[1 * 4 + 1]);
|
|
EXPECT_EQ(0u, unatten_pixels[1 * 4 + 2]);
|
|
EXPECT_EQ(0u, unatten_pixels[1 * 4 + 3]);
|
|
EXPECT_EQ(16u, unatten_pixels[2 * 4 + 0]);
|
|
EXPECT_EQ(64u, unatten_pixels[2 * 4 + 1]);
|
|
EXPECT_EQ(192u, unatten_pixels[2 * 4 + 2]);
|
|
EXPECT_EQ(255u, unatten_pixels[2 * 4 + 3]);
|
|
EXPECT_EQ(32u, unatten_pixels[3 * 4 + 0]);
|
|
EXPECT_EQ(128u, unatten_pixels[3 * 4 + 1]);
|
|
EXPECT_EQ(255u, unatten_pixels[3 * 4 + 2]);
|
|
EXPECT_EQ(128u, unatten_pixels[3 * 4 + 3]);
|
|
|
|
for (int i = 0; i < 1280; ++i) {
|
|
orig_pixels[i * 4 + 0] = i;
|
|
orig_pixels[i * 4 + 1] = i / 2;
|
|
orig_pixels[i * 4 + 2] = i / 3;
|
|
orig_pixels[i * 4 + 3] = i;
|
|
}
|
|
ARGBAttenuate(orig_pixels, 0, atten_pixels, 0, 1280, 1);
|
|
ARGBUnattenuate(atten_pixels, 0, unatten_pixels, 0, 1280, 1);
|
|
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
|
|
ARGBAttenuate(unatten_pixels, 0, atten2_pixels, 0, 1280, 1);
|
|
}
|
|
for (int i = 0; i < 1280; ++i) {
|
|
EXPECT_NEAR(atten_pixels[i * 4 + 0], atten2_pixels[i * 4 + 0], 2);
|
|
EXPECT_NEAR(atten_pixels[i * 4 + 1], atten2_pixels[i * 4 + 1], 2);
|
|
EXPECT_NEAR(atten_pixels[i * 4 + 2], atten2_pixels[i * 4 + 2], 2);
|
|
EXPECT_NEAR(atten_pixels[i * 4 + 3], atten2_pixels[i * 4 + 3], 2);
|
|
}
|
|
// Make sure transparent, 50% and opaque are fully accurate.
|
|
EXPECT_EQ(0, atten_pixels[0 * 4 + 0]);
|
|
EXPECT_EQ(0, atten_pixels[0 * 4 + 1]);
|
|
EXPECT_EQ(0, atten_pixels[0 * 4 + 2]);
|
|
EXPECT_EQ(0, atten_pixels[0 * 4 + 3]);
|
|
EXPECT_EQ(64, atten_pixels[128 * 4 + 0]);
|
|
EXPECT_EQ(32, atten_pixels[128 * 4 + 1]);
|
|
EXPECT_EQ(21, atten_pixels[128 * 4 + 2]);
|
|
EXPECT_EQ(128, atten_pixels[128 * 4 + 3]);
|
|
EXPECT_NEAR(255, atten_pixels[255 * 4 + 0], 1);
|
|
EXPECT_NEAR(127, atten_pixels[255 * 4 + 1], 1);
|
|
EXPECT_NEAR(85, atten_pixels[255 * 4 + 2], 1);
|
|
EXPECT_EQ(255, atten_pixels[255 * 4 + 3]);
|
|
|
|
free_aligned_buffer_64(atten2_pixels);
|
|
free_aligned_buffer_64(unatten_pixels);
|
|
free_aligned_buffer_64(atten_pixels);
|
|
free_aligned_buffer_64(orig_pixels);
|
|
}
|
|
|
|
static int TestAttenuateI(int width, int height, int benchmark_iterations,
|
|
int invert, int off) {
|
|
if (width < 1) {
|
|
width = 1;
|
|
}
|
|
const int kBpp = 4;
|
|
const int kStride = (width * kBpp + 15) & ~15;
|
|
align_buffer_64(src_argb, kStride * height + off);
|
|
align_buffer_64(dst_argb_c, kStride * height);
|
|
align_buffer_64(dst_argb_opt, kStride * height);
|
|
srandom(time(NULL));
|
|
for (int i = 0; i < kStride * height; ++i) {
|
|
src_argb[i + off] = (random() & 0xff);
|
|
}
|
|
memset(dst_argb_c, 0, kStride * height);
|
|
memset(dst_argb_opt, 0, kStride * height);
|
|
|
|
MaskCpuFlags(0);
|
|
ARGBAttenuate(src_argb + off, kStride,
|
|
dst_argb_c, kStride,
|
|
width, invert * height);
|
|
MaskCpuFlags(-1);
|
|
for (int i = 0; i < benchmark_iterations; ++i) {
|
|
ARGBAttenuate(src_argb + off, kStride,
|
|
dst_argb_opt, kStride,
|
|
width, invert * height);
|
|
}
|
|
int max_diff = 0;
|
|
for (int i = 0; i < kStride * height; ++i) {
|
|
int abs_diff =
|
|
abs(static_cast<int>(dst_argb_c[i]) -
|
|
static_cast<int>(dst_argb_opt[i]));
|
|
if (abs_diff > max_diff) {
|
|
max_diff = abs_diff;
|
|
}
|
|
}
|
|
free_aligned_buffer_64(src_argb);
|
|
free_aligned_buffer_64(dst_argb_c);
|
|
free_aligned_buffer_64(dst_argb_opt);
|
|
return max_diff;
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBAttenuate_Any) {
|
|
int max_diff = TestAttenuateI(benchmark_width_ - 1, benchmark_height_,
|
|
benchmark_iterations_, +1, 0);
|
|
EXPECT_LE(max_diff, 2);
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBAttenuate_Unaligned) {
|
|
int max_diff = TestAttenuateI(benchmark_width_, benchmark_height_,
|
|
benchmark_iterations_, +1, 1);
|
|
EXPECT_LE(max_diff, 2);
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBAttenuate_Invert) {
|
|
int max_diff = TestAttenuateI(benchmark_width_, benchmark_height_,
|
|
benchmark_iterations_, -1, 0);
|
|
EXPECT_LE(max_diff, 2);
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBAttenuate_Opt) {
|
|
int max_diff = TestAttenuateI(benchmark_width_, benchmark_height_,
|
|
benchmark_iterations_, +1, 0);
|
|
EXPECT_LE(max_diff, 2);
|
|
}
|
|
|
|
static int TestUnattenuateI(int width, int height, int benchmark_iterations,
|
|
int invert, int off) {
|
|
if (width < 1) {
|
|
width = 1;
|
|
}
|
|
const int kBpp = 4;
|
|
const int kStride = (width * kBpp + 15) & ~15;
|
|
align_buffer_64(src_argb, kStride * height + off);
|
|
align_buffer_64(dst_argb_c, kStride * height);
|
|
align_buffer_64(dst_argb_opt, kStride * height);
|
|
srandom(time(NULL));
|
|
for (int i = 0; i < kStride * height; ++i) {
|
|
src_argb[i + off] = (random() & 0xff);
|
|
}
|
|
ARGBAttenuate(src_argb + off, kStride,
|
|
src_argb + off, kStride,
|
|
width, height);
|
|
memset(dst_argb_c, 0, kStride * height);
|
|
memset(dst_argb_opt, 0, kStride * height);
|
|
|
|
MaskCpuFlags(0);
|
|
ARGBUnattenuate(src_argb + off, kStride,
|
|
dst_argb_c, kStride,
|
|
width, invert * height);
|
|
MaskCpuFlags(-1);
|
|
for (int i = 0; i < benchmark_iterations; ++i) {
|
|
ARGBUnattenuate(src_argb + off, kStride,
|
|
dst_argb_opt, kStride,
|
|
width, invert * height);
|
|
}
|
|
int max_diff = 0;
|
|
for (int i = 0; i < kStride * height; ++i) {
|
|
int abs_diff =
|
|
abs(static_cast<int>(dst_argb_c[i]) -
|
|
static_cast<int>(dst_argb_opt[i]));
|
|
if (abs_diff > max_diff) {
|
|
max_diff = abs_diff;
|
|
}
|
|
}
|
|
free_aligned_buffer_64(src_argb);
|
|
free_aligned_buffer_64(dst_argb_c);
|
|
free_aligned_buffer_64(dst_argb_opt);
|
|
return max_diff;
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBUnattenuate_Any) {
|
|
int max_diff = TestUnattenuateI(benchmark_width_ - 1, benchmark_height_,
|
|
benchmark_iterations_, +1, 0);
|
|
EXPECT_LE(max_diff, 2);
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBUnattenuate_Unaligned) {
|
|
int max_diff = TestUnattenuateI(benchmark_width_, benchmark_height_,
|
|
benchmark_iterations_, +1, 1);
|
|
EXPECT_LE(max_diff, 2);
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBUnattenuate_Invert) {
|
|
int max_diff = TestUnattenuateI(benchmark_width_, benchmark_height_,
|
|
benchmark_iterations_, -1, 0);
|
|
EXPECT_LE(max_diff, 2);
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBUnattenuate_Opt) {
|
|
int max_diff = TestUnattenuateI(benchmark_width_, benchmark_height_,
|
|
benchmark_iterations_, +1, 0);
|
|
EXPECT_LE(max_diff, 2);
|
|
}
|
|
|
|
TEST_F(libyuvTest, TestARGBComputeCumulativeSum) {
|
|
SIMD_ALIGNED(uint8 orig_pixels[16][16][4]);
|
|
SIMD_ALIGNED(int32 added_pixels[16][16][4]);
|
|
|
|
for (int y = 0; y < 16; ++y) {
|
|
for (int x = 0; x < 16; ++x) {
|
|
orig_pixels[y][x][0] = 1u;
|
|
orig_pixels[y][x][1] = 2u;
|
|
orig_pixels[y][x][2] = 3u;
|
|
orig_pixels[y][x][3] = 255u;
|
|
}
|
|
}
|
|
|
|
ARGBComputeCumulativeSum(&orig_pixels[0][0][0], 16 * 4,
|
|
&added_pixels[0][0][0], 16 * 4,
|
|
16, 16);
|
|
|
|
for (int y = 0; y < 16; ++y) {
|
|
for (int x = 0; x < 16; ++x) {
|
|
EXPECT_EQ((x + 1) * (y + 1), added_pixels[y][x][0]);
|
|
EXPECT_EQ((x + 1) * (y + 1) * 2, added_pixels[y][x][1]);
|
|
EXPECT_EQ((x + 1) * (y + 1) * 3, added_pixels[y][x][2]);
|
|
EXPECT_EQ((x + 1) * (y + 1) * 255, added_pixels[y][x][3]);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_F(libyuvTest, TestARGBGray) {
|
|
SIMD_ALIGNED(uint8 orig_pixels[1280][4]);
|
|
memset(orig_pixels, 0, sizeof(orig_pixels));
|
|
|
|
// Test blue
|
|
orig_pixels[0][0] = 255u;
|
|
orig_pixels[0][1] = 0u;
|
|
orig_pixels[0][2] = 0u;
|
|
orig_pixels[0][3] = 128u;
|
|
// Test green
|
|
orig_pixels[1][0] = 0u;
|
|
orig_pixels[1][1] = 255u;
|
|
orig_pixels[1][2] = 0u;
|
|
orig_pixels[1][3] = 0u;
|
|
// Test red
|
|
orig_pixels[2][0] = 0u;
|
|
orig_pixels[2][1] = 0u;
|
|
orig_pixels[2][2] = 255u;
|
|
orig_pixels[2][3] = 255u;
|
|
// Test black
|
|
orig_pixels[3][0] = 0u;
|
|
orig_pixels[3][1] = 0u;
|
|
orig_pixels[3][2] = 0u;
|
|
orig_pixels[3][3] = 255u;
|
|
// Test white
|
|
orig_pixels[4][0] = 255u;
|
|
orig_pixels[4][1] = 255u;
|
|
orig_pixels[4][2] = 255u;
|
|
orig_pixels[4][3] = 255u;
|
|
// Test color
|
|
orig_pixels[5][0] = 16u;
|
|
orig_pixels[5][1] = 64u;
|
|
orig_pixels[5][2] = 192u;
|
|
orig_pixels[5][3] = 224u;
|
|
// Do 16 to test asm version.
|
|
ARGBGray(&orig_pixels[0][0], 0, 0, 0, 16, 1);
|
|
EXPECT_EQ(30u, orig_pixels[0][0]);
|
|
EXPECT_EQ(30u, orig_pixels[0][1]);
|
|
EXPECT_EQ(30u, orig_pixels[0][2]);
|
|
EXPECT_EQ(128u, orig_pixels[0][3]);
|
|
EXPECT_EQ(149u, orig_pixels[1][0]);
|
|
EXPECT_EQ(149u, orig_pixels[1][1]);
|
|
EXPECT_EQ(149u, orig_pixels[1][2]);
|
|
EXPECT_EQ(0u, orig_pixels[1][3]);
|
|
EXPECT_EQ(76u, orig_pixels[2][0]);
|
|
EXPECT_EQ(76u, orig_pixels[2][1]);
|
|
EXPECT_EQ(76u, orig_pixels[2][2]);
|
|
EXPECT_EQ(255u, orig_pixels[2][3]);
|
|
EXPECT_EQ(0u, orig_pixels[3][0]);
|
|
EXPECT_EQ(0u, orig_pixels[3][1]);
|
|
EXPECT_EQ(0u, orig_pixels[3][2]);
|
|
EXPECT_EQ(255u, orig_pixels[3][3]);
|
|
EXPECT_EQ(255u, orig_pixels[4][0]);
|
|
EXPECT_EQ(255u, orig_pixels[4][1]);
|
|
EXPECT_EQ(255u, orig_pixels[4][2]);
|
|
EXPECT_EQ(255u, orig_pixels[4][3]);
|
|
EXPECT_EQ(96u, orig_pixels[5][0]);
|
|
EXPECT_EQ(96u, orig_pixels[5][1]);
|
|
EXPECT_EQ(96u, orig_pixels[5][2]);
|
|
EXPECT_EQ(224u, orig_pixels[5][3]);
|
|
for (int i = 0; i < 1280; ++i) {
|
|
orig_pixels[i][0] = i;
|
|
orig_pixels[i][1] = i / 2;
|
|
orig_pixels[i][2] = i / 3;
|
|
orig_pixels[i][3] = i;
|
|
}
|
|
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
|
|
ARGBGray(&orig_pixels[0][0], 0, 0, 0, 1280, 1);
|
|
}
|
|
}
|
|
|
|
TEST_F(libyuvTest, TestARGBGrayTo) {
|
|
SIMD_ALIGNED(uint8 orig_pixels[1280][4]);
|
|
SIMD_ALIGNED(uint8 gray_pixels[1280][4]);
|
|
memset(orig_pixels, 0, sizeof(orig_pixels));
|
|
|
|
// Test blue
|
|
orig_pixels[0][0] = 255u;
|
|
orig_pixels[0][1] = 0u;
|
|
orig_pixels[0][2] = 0u;
|
|
orig_pixels[0][3] = 128u;
|
|
// Test green
|
|
orig_pixels[1][0] = 0u;
|
|
orig_pixels[1][1] = 255u;
|
|
orig_pixels[1][2] = 0u;
|
|
orig_pixels[1][3] = 0u;
|
|
// Test red
|
|
orig_pixels[2][0] = 0u;
|
|
orig_pixels[2][1] = 0u;
|
|
orig_pixels[2][2] = 255u;
|
|
orig_pixels[2][3] = 255u;
|
|
// Test black
|
|
orig_pixels[3][0] = 0u;
|
|
orig_pixels[3][1] = 0u;
|
|
orig_pixels[3][2] = 0u;
|
|
orig_pixels[3][3] = 255u;
|
|
// Test white
|
|
orig_pixels[4][0] = 255u;
|
|
orig_pixels[4][1] = 255u;
|
|
orig_pixels[4][2] = 255u;
|
|
orig_pixels[4][3] = 255u;
|
|
// Test color
|
|
orig_pixels[5][0] = 16u;
|
|
orig_pixels[5][1] = 64u;
|
|
orig_pixels[5][2] = 192u;
|
|
orig_pixels[5][3] = 224u;
|
|
// Do 16 to test asm version.
|
|
ARGBGrayTo(&orig_pixels[0][0], 0, &gray_pixels[0][0], 0, 16, 1);
|
|
EXPECT_EQ(30u, gray_pixels[0][0]);
|
|
EXPECT_EQ(30u, gray_pixels[0][1]);
|
|
EXPECT_EQ(30u, gray_pixels[0][2]);
|
|
EXPECT_EQ(128u, gray_pixels[0][3]);
|
|
EXPECT_EQ(149u, gray_pixels[1][0]);
|
|
EXPECT_EQ(149u, gray_pixels[1][1]);
|
|
EXPECT_EQ(149u, gray_pixels[1][2]);
|
|
EXPECT_EQ(0u, gray_pixels[1][3]);
|
|
EXPECT_EQ(76u, gray_pixels[2][0]);
|
|
EXPECT_EQ(76u, gray_pixels[2][1]);
|
|
EXPECT_EQ(76u, gray_pixels[2][2]);
|
|
EXPECT_EQ(255u, gray_pixels[2][3]);
|
|
EXPECT_EQ(0u, gray_pixels[3][0]);
|
|
EXPECT_EQ(0u, gray_pixels[3][1]);
|
|
EXPECT_EQ(0u, gray_pixels[3][2]);
|
|
EXPECT_EQ(255u, gray_pixels[3][3]);
|
|
EXPECT_EQ(255u, gray_pixels[4][0]);
|
|
EXPECT_EQ(255u, gray_pixels[4][1]);
|
|
EXPECT_EQ(255u, gray_pixels[4][2]);
|
|
EXPECT_EQ(255u, gray_pixels[4][3]);
|
|
EXPECT_EQ(96u, gray_pixels[5][0]);
|
|
EXPECT_EQ(96u, gray_pixels[5][1]);
|
|
EXPECT_EQ(96u, gray_pixels[5][2]);
|
|
EXPECT_EQ(224u, gray_pixels[5][3]);
|
|
for (int i = 0; i < 1280; ++i) {
|
|
orig_pixels[i][0] = i;
|
|
orig_pixels[i][1] = i / 2;
|
|
orig_pixels[i][2] = i / 3;
|
|
orig_pixels[i][3] = i;
|
|
}
|
|
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
|
|
ARGBGrayTo(&orig_pixels[0][0], 0, &gray_pixels[0][0], 0, 1280, 1);
|
|
}
|
|
}
|
|
|
|
TEST_F(libyuvTest, TestARGBSepia) {
|
|
SIMD_ALIGNED(uint8 orig_pixels[1280][4]);
|
|
memset(orig_pixels, 0, sizeof(orig_pixels));
|
|
|
|
// Test blue
|
|
orig_pixels[0][0] = 255u;
|
|
orig_pixels[0][1] = 0u;
|
|
orig_pixels[0][2] = 0u;
|
|
orig_pixels[0][3] = 128u;
|
|
// Test green
|
|
orig_pixels[1][0] = 0u;
|
|
orig_pixels[1][1] = 255u;
|
|
orig_pixels[1][2] = 0u;
|
|
orig_pixels[1][3] = 0u;
|
|
// Test red
|
|
orig_pixels[2][0] = 0u;
|
|
orig_pixels[2][1] = 0u;
|
|
orig_pixels[2][2] = 255u;
|
|
orig_pixels[2][3] = 255u;
|
|
// Test black
|
|
orig_pixels[3][0] = 0u;
|
|
orig_pixels[3][1] = 0u;
|
|
orig_pixels[3][2] = 0u;
|
|
orig_pixels[3][3] = 255u;
|
|
// Test white
|
|
orig_pixels[4][0] = 255u;
|
|
orig_pixels[4][1] = 255u;
|
|
orig_pixels[4][2] = 255u;
|
|
orig_pixels[4][3] = 255u;
|
|
// Test color
|
|
orig_pixels[5][0] = 16u;
|
|
orig_pixels[5][1] = 64u;
|
|
orig_pixels[5][2] = 192u;
|
|
orig_pixels[5][3] = 224u;
|
|
// Do 16 to test asm version.
|
|
ARGBSepia(&orig_pixels[0][0], 0, 0, 0, 16, 1);
|
|
EXPECT_EQ(33u, orig_pixels[0][0]);
|
|
EXPECT_EQ(43u, orig_pixels[0][1]);
|
|
EXPECT_EQ(47u, orig_pixels[0][2]);
|
|
EXPECT_EQ(128u, orig_pixels[0][3]);
|
|
EXPECT_EQ(135u, orig_pixels[1][0]);
|
|
EXPECT_EQ(175u, orig_pixels[1][1]);
|
|
EXPECT_EQ(195u, orig_pixels[1][2]);
|
|
EXPECT_EQ(0u, orig_pixels[1][3]);
|
|
EXPECT_EQ(69u, orig_pixels[2][0]);
|
|
EXPECT_EQ(89u, orig_pixels[2][1]);
|
|
EXPECT_EQ(99u, orig_pixels[2][2]);
|
|
EXPECT_EQ(255u, orig_pixels[2][3]);
|
|
EXPECT_EQ(0u, orig_pixels[3][0]);
|
|
EXPECT_EQ(0u, orig_pixels[3][1]);
|
|
EXPECT_EQ(0u, orig_pixels[3][2]);
|
|
EXPECT_EQ(255u, orig_pixels[3][3]);
|
|
EXPECT_EQ(239u, orig_pixels[4][0]);
|
|
EXPECT_EQ(255u, orig_pixels[4][1]);
|
|
EXPECT_EQ(255u, orig_pixels[4][2]);
|
|
EXPECT_EQ(255u, orig_pixels[4][3]);
|
|
EXPECT_EQ(88u, orig_pixels[5][0]);
|
|
EXPECT_EQ(114u, orig_pixels[5][1]);
|
|
EXPECT_EQ(127u, orig_pixels[5][2]);
|
|
EXPECT_EQ(224u, orig_pixels[5][3]);
|
|
|
|
for (int i = 0; i < 1280; ++i) {
|
|
orig_pixels[i][0] = i;
|
|
orig_pixels[i][1] = i / 2;
|
|
orig_pixels[i][2] = i / 3;
|
|
orig_pixels[i][3] = i;
|
|
}
|
|
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
|
|
ARGBSepia(&orig_pixels[0][0], 0, 0, 0, 1280, 1);
|
|
}
|
|
}
|
|
|
|
TEST_F(libyuvTest, TestARGBColorMatrix) {
|
|
SIMD_ALIGNED(uint8 orig_pixels[1280][4]);
|
|
SIMD_ALIGNED(uint8 dst_pixels_opt[1280][4]);
|
|
SIMD_ALIGNED(uint8 dst_pixels_c[1280][4]);
|
|
|
|
// Matrix for Sepia.
|
|
SIMD_ALIGNED(static const int8 kRGBToSepia[]) = {
|
|
17 / 2, 68 / 2, 35 / 2, 0,
|
|
22 / 2, 88 / 2, 45 / 2, 0,
|
|
24 / 2, 98 / 2, 50 / 2, 0,
|
|
0, 0, 0, 64, // Copy alpha.
|
|
};
|
|
memset(orig_pixels, 0, sizeof(orig_pixels));
|
|
|
|
// Test blue
|
|
orig_pixels[0][0] = 255u;
|
|
orig_pixels[0][1] = 0u;
|
|
orig_pixels[0][2] = 0u;
|
|
orig_pixels[0][3] = 128u;
|
|
// Test green
|
|
orig_pixels[1][0] = 0u;
|
|
orig_pixels[1][1] = 255u;
|
|
orig_pixels[1][2] = 0u;
|
|
orig_pixels[1][3] = 0u;
|
|
// Test red
|
|
orig_pixels[2][0] = 0u;
|
|
orig_pixels[2][1] = 0u;
|
|
orig_pixels[2][2] = 255u;
|
|
orig_pixels[2][3] = 255u;
|
|
// Test color
|
|
orig_pixels[3][0] = 16u;
|
|
orig_pixels[3][1] = 64u;
|
|
orig_pixels[3][2] = 192u;
|
|
orig_pixels[3][3] = 224u;
|
|
// Do 16 to test asm version.
|
|
ARGBColorMatrix(&orig_pixels[0][0], 0, &dst_pixels_opt[0][0], 0,
|
|
&kRGBToSepia[0], 16, 1);
|
|
EXPECT_EQ(31u, dst_pixels_opt[0][0]);
|
|
EXPECT_EQ(43u, dst_pixels_opt[0][1]);
|
|
EXPECT_EQ(47u, dst_pixels_opt[0][2]);
|
|
EXPECT_EQ(128u, dst_pixels_opt[0][3]);
|
|
EXPECT_EQ(135u, dst_pixels_opt[1][0]);
|
|
EXPECT_EQ(175u, dst_pixels_opt[1][1]);
|
|
EXPECT_EQ(195u, dst_pixels_opt[1][2]);
|
|
EXPECT_EQ(0u, dst_pixels_opt[1][3]);
|
|
EXPECT_EQ(67u, dst_pixels_opt[2][0]);
|
|
EXPECT_EQ(87u, dst_pixels_opt[2][1]);
|
|
EXPECT_EQ(99u, dst_pixels_opt[2][2]);
|
|
EXPECT_EQ(255u, dst_pixels_opt[2][3]);
|
|
EXPECT_EQ(87u, dst_pixels_opt[3][0]);
|
|
EXPECT_EQ(112u, dst_pixels_opt[3][1]);
|
|
EXPECT_EQ(127u, dst_pixels_opt[3][2]);
|
|
EXPECT_EQ(224u, dst_pixels_opt[3][3]);
|
|
|
|
for (int i = 0; i < 1280; ++i) {
|
|
orig_pixels[i][0] = i;
|
|
orig_pixels[i][1] = i / 2;
|
|
orig_pixels[i][2] = i / 3;
|
|
orig_pixels[i][3] = i;
|
|
}
|
|
MaskCpuFlags(0);
|
|
ARGBColorMatrix(&orig_pixels[0][0], 0, &dst_pixels_c[0][0], 0,
|
|
&kRGBToSepia[0], 1280, 1);
|
|
MaskCpuFlags(-1);
|
|
|
|
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
|
|
ARGBColorMatrix(&orig_pixels[0][0], 0, &dst_pixels_opt[0][0], 0,
|
|
&kRGBToSepia[0], 1280, 1);
|
|
}
|
|
|
|
for (int i = 0; i < 1280; ++i) {
|
|
EXPECT_EQ(dst_pixels_c[i][0], dst_pixels_opt[i][0]);
|
|
EXPECT_EQ(dst_pixels_c[i][1], dst_pixels_opt[i][1]);
|
|
EXPECT_EQ(dst_pixels_c[i][2], dst_pixels_opt[i][2]);
|
|
EXPECT_EQ(dst_pixels_c[i][3], dst_pixels_opt[i][3]);
|
|
}
|
|
}
|
|
|
|
TEST_F(libyuvTest, TestRGBColorMatrix) {
|
|
SIMD_ALIGNED(uint8 orig_pixels[1280][4]);
|
|
|
|
// Matrix for Sepia.
|
|
SIMD_ALIGNED(static const int8 kRGBToSepia[]) = {
|
|
17, 68, 35, 0,
|
|
22, 88, 45, 0,
|
|
24, 98, 50, 0,
|
|
0, 0, 0, 0, // Unused but makes matrix 16 bytes.
|
|
};
|
|
memset(orig_pixels, 0, sizeof(orig_pixels));
|
|
|
|
// Test blue
|
|
orig_pixels[0][0] = 255u;
|
|
orig_pixels[0][1] = 0u;
|
|
orig_pixels[0][2] = 0u;
|
|
orig_pixels[0][3] = 128u;
|
|
// Test green
|
|
orig_pixels[1][0] = 0u;
|
|
orig_pixels[1][1] = 255u;
|
|
orig_pixels[1][2] = 0u;
|
|
orig_pixels[1][3] = 0u;
|
|
// Test red
|
|
orig_pixels[2][0] = 0u;
|
|
orig_pixels[2][1] = 0u;
|
|
orig_pixels[2][2] = 255u;
|
|
orig_pixels[2][3] = 255u;
|
|
// Test color
|
|
orig_pixels[3][0] = 16u;
|
|
orig_pixels[3][1] = 64u;
|
|
orig_pixels[3][2] = 192u;
|
|
orig_pixels[3][3] = 224u;
|
|
// Do 16 to test asm version.
|
|
RGBColorMatrix(&orig_pixels[0][0], 0, &kRGBToSepia[0], 0, 0, 16, 1);
|
|
EXPECT_EQ(31u, orig_pixels[0][0]);
|
|
EXPECT_EQ(43u, orig_pixels[0][1]);
|
|
EXPECT_EQ(47u, orig_pixels[0][2]);
|
|
EXPECT_EQ(128u, orig_pixels[0][3]);
|
|
EXPECT_EQ(135u, orig_pixels[1][0]);
|
|
EXPECT_EQ(175u, orig_pixels[1][1]);
|
|
EXPECT_EQ(195u, orig_pixels[1][2]);
|
|
EXPECT_EQ(0u, orig_pixels[1][3]);
|
|
EXPECT_EQ(67u, orig_pixels[2][0]);
|
|
EXPECT_EQ(87u, orig_pixels[2][1]);
|
|
EXPECT_EQ(99u, orig_pixels[2][2]);
|
|
EXPECT_EQ(255u, orig_pixels[2][3]);
|
|
EXPECT_EQ(87u, orig_pixels[3][0]);
|
|
EXPECT_EQ(112u, orig_pixels[3][1]);
|
|
EXPECT_EQ(127u, orig_pixels[3][2]);
|
|
EXPECT_EQ(224u, orig_pixels[3][3]);
|
|
|
|
for (int i = 0; i < 1280; ++i) {
|
|
orig_pixels[i][0] = i;
|
|
orig_pixels[i][1] = i / 2;
|
|
orig_pixels[i][2] = i / 3;
|
|
orig_pixels[i][3] = i;
|
|
}
|
|
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
|
|
RGBColorMatrix(&orig_pixels[0][0], 0, &kRGBToSepia[0], 0, 0, 1280, 1);
|
|
}
|
|
}
|
|
|
|
TEST_F(libyuvTest, TestARGBColorTable) {
|
|
SIMD_ALIGNED(uint8 orig_pixels[1280][4]);
|
|
memset(orig_pixels, 0, sizeof(orig_pixels));
|
|
|
|
// Matrix for Sepia.
|
|
static const uint8 kARGBTable[256 * 4] = {
|
|
1u, 2u, 3u, 4u,
|
|
5u, 6u, 7u, 8u,
|
|
9u, 10u, 11u, 12u,
|
|
13u, 14u, 15u, 16u,
|
|
};
|
|
|
|
orig_pixels[0][0] = 0u;
|
|
orig_pixels[0][1] = 0u;
|
|
orig_pixels[0][2] = 0u;
|
|
orig_pixels[0][3] = 0u;
|
|
orig_pixels[1][0] = 1u;
|
|
orig_pixels[1][1] = 1u;
|
|
orig_pixels[1][2] = 1u;
|
|
orig_pixels[1][3] = 1u;
|
|
orig_pixels[2][0] = 2u;
|
|
orig_pixels[2][1] = 2u;
|
|
orig_pixels[2][2] = 2u;
|
|
orig_pixels[2][3] = 2u;
|
|
orig_pixels[3][0] = 0u;
|
|
orig_pixels[3][1] = 1u;
|
|
orig_pixels[3][2] = 2u;
|
|
orig_pixels[3][3] = 3u;
|
|
// Do 16 to test asm version.
|
|
ARGBColorTable(&orig_pixels[0][0], 0, &kARGBTable[0], 0, 0, 16, 1);
|
|
EXPECT_EQ(1u, orig_pixels[0][0]);
|
|
EXPECT_EQ(2u, orig_pixels[0][1]);
|
|
EXPECT_EQ(3u, orig_pixels[0][2]);
|
|
EXPECT_EQ(4u, orig_pixels[0][3]);
|
|
EXPECT_EQ(5u, orig_pixels[1][0]);
|
|
EXPECT_EQ(6u, orig_pixels[1][1]);
|
|
EXPECT_EQ(7u, orig_pixels[1][2]);
|
|
EXPECT_EQ(8u, orig_pixels[1][3]);
|
|
EXPECT_EQ(9u, orig_pixels[2][0]);
|
|
EXPECT_EQ(10u, orig_pixels[2][1]);
|
|
EXPECT_EQ(11u, orig_pixels[2][2]);
|
|
EXPECT_EQ(12u, orig_pixels[2][3]);
|
|
EXPECT_EQ(1u, orig_pixels[3][0]);
|
|
EXPECT_EQ(6u, orig_pixels[3][1]);
|
|
EXPECT_EQ(11u, orig_pixels[3][2]);
|
|
EXPECT_EQ(16u, orig_pixels[3][3]);
|
|
|
|
for (int i = 0; i < 1280; ++i) {
|
|
orig_pixels[i][0] = i;
|
|
orig_pixels[i][1] = i / 2;
|
|
orig_pixels[i][2] = i / 3;
|
|
orig_pixels[i][3] = i;
|
|
}
|
|
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
|
|
ARGBColorTable(&orig_pixels[0][0], 0, &kARGBTable[0], 0, 0, 1280, 1);
|
|
}
|
|
}
|
|
|
|
// Same as TestARGBColorTable except alpha does not change.
|
|
TEST_F(libyuvTest, TestRGBColorTable) {
|
|
SIMD_ALIGNED(uint8 orig_pixels[1280][4]);
|
|
memset(orig_pixels, 0, sizeof(orig_pixels));
|
|
|
|
// Matrix for Sepia.
|
|
static const uint8 kARGBTable[256 * 4] = {
|
|
1u, 2u, 3u, 4u,
|
|
5u, 6u, 7u, 8u,
|
|
9u, 10u, 11u, 12u,
|
|
13u, 14u, 15u, 16u,
|
|
};
|
|
|
|
orig_pixels[0][0] = 0u;
|
|
orig_pixels[0][1] = 0u;
|
|
orig_pixels[0][2] = 0u;
|
|
orig_pixels[0][3] = 0u;
|
|
orig_pixels[1][0] = 1u;
|
|
orig_pixels[1][1] = 1u;
|
|
orig_pixels[1][2] = 1u;
|
|
orig_pixels[1][3] = 1u;
|
|
orig_pixels[2][0] = 2u;
|
|
orig_pixels[2][1] = 2u;
|
|
orig_pixels[2][2] = 2u;
|
|
orig_pixels[2][3] = 2u;
|
|
orig_pixels[3][0] = 0u;
|
|
orig_pixels[3][1] = 1u;
|
|
orig_pixels[3][2] = 2u;
|
|
orig_pixels[3][3] = 3u;
|
|
// Do 16 to test asm version.
|
|
RGBColorTable(&orig_pixels[0][0], 0, &kARGBTable[0], 0, 0, 16, 1);
|
|
EXPECT_EQ(1u, orig_pixels[0][0]);
|
|
EXPECT_EQ(2u, orig_pixels[0][1]);
|
|
EXPECT_EQ(3u, orig_pixels[0][2]);
|
|
EXPECT_EQ(0u, orig_pixels[0][3]); // Alpha unchanged.
|
|
EXPECT_EQ(5u, orig_pixels[1][0]);
|
|
EXPECT_EQ(6u, orig_pixels[1][1]);
|
|
EXPECT_EQ(7u, orig_pixels[1][2]);
|
|
EXPECT_EQ(1u, orig_pixels[1][3]); // Alpha unchanged.
|
|
EXPECT_EQ(9u, orig_pixels[2][0]);
|
|
EXPECT_EQ(10u, orig_pixels[2][1]);
|
|
EXPECT_EQ(11u, orig_pixels[2][2]);
|
|
EXPECT_EQ(2u, orig_pixels[2][3]); // Alpha unchanged.
|
|
EXPECT_EQ(1u, orig_pixels[3][0]);
|
|
EXPECT_EQ(6u, orig_pixels[3][1]);
|
|
EXPECT_EQ(11u, orig_pixels[3][2]);
|
|
EXPECT_EQ(3u, orig_pixels[3][3]); // Alpha unchanged.
|
|
|
|
for (int i = 0; i < 1280; ++i) {
|
|
orig_pixels[i][0] = i;
|
|
orig_pixels[i][1] = i / 2;
|
|
orig_pixels[i][2] = i / 3;
|
|
orig_pixels[i][3] = i;
|
|
}
|
|
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
|
|
RGBColorTable(&orig_pixels[0][0], 0, &kARGBTable[0], 0, 0, 1280, 1);
|
|
}
|
|
}
|
|
|
|
TEST_F(libyuvTest, TestARGBQuantize) {
|
|
SIMD_ALIGNED(uint8 orig_pixels[1280][4]);
|
|
|
|
for (int i = 0; i < 1280; ++i) {
|
|
orig_pixels[i][0] = i;
|
|
orig_pixels[i][1] = i / 2;
|
|
orig_pixels[i][2] = i / 3;
|
|
orig_pixels[i][3] = i;
|
|
}
|
|
ARGBQuantize(&orig_pixels[0][0], 0,
|
|
(65536 + (8 / 2)) / 8, 8, 8 / 2, 0, 0, 1280, 1);
|
|
|
|
for (int i = 0; i < 1280; ++i) {
|
|
EXPECT_EQ((i / 8 * 8 + 8 / 2) & 255, orig_pixels[i][0]);
|
|
EXPECT_EQ((i / 2 / 8 * 8 + 8 / 2) & 255, orig_pixels[i][1]);
|
|
EXPECT_EQ((i / 3 / 8 * 8 + 8 / 2) & 255, orig_pixels[i][2]);
|
|
EXPECT_EQ(i & 255, orig_pixels[i][3]);
|
|
}
|
|
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
|
|
ARGBQuantize(&orig_pixels[0][0], 0,
|
|
(65536 + (8 / 2)) / 8, 8, 8 / 2, 0, 0, 1280, 1);
|
|
}
|
|
}
|
|
|
|
TEST_F(libyuvTest, TestARGBMirror) {
|
|
SIMD_ALIGNED(uint8 orig_pixels[1280][4]);
|
|
SIMD_ALIGNED(uint8 dst_pixels[1280][4]);
|
|
|
|
for (int i = 0; i < 1280; ++i) {
|
|
orig_pixels[i][0] = i;
|
|
orig_pixels[i][1] = i / 2;
|
|
orig_pixels[i][2] = i / 3;
|
|
orig_pixels[i][3] = i / 4;
|
|
}
|
|
ARGBMirror(&orig_pixels[0][0], 0, &dst_pixels[0][0], 0, 1280, 1);
|
|
|
|
for (int i = 0; i < 1280; ++i) {
|
|
EXPECT_EQ(i & 255, dst_pixels[1280 - 1 - i][0]);
|
|
EXPECT_EQ((i / 2) & 255, dst_pixels[1280 - 1 - i][1]);
|
|
EXPECT_EQ((i / 3) & 255, dst_pixels[1280 - 1 - i][2]);
|
|
EXPECT_EQ((i / 4) & 255, dst_pixels[1280 - 1 - i][3]);
|
|
}
|
|
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
|
|
ARGBMirror(&orig_pixels[0][0], 0, &dst_pixels[0][0], 0, 1280, 1);
|
|
}
|
|
}
|
|
|
|
TEST_F(libyuvTest, TestShade) {
|
|
SIMD_ALIGNED(uint8 orig_pixels[1280][4]);
|
|
SIMD_ALIGNED(uint8 shade_pixels[1280][4]);
|
|
memset(orig_pixels, 0, sizeof(orig_pixels));
|
|
|
|
orig_pixels[0][0] = 10u;
|
|
orig_pixels[0][1] = 20u;
|
|
orig_pixels[0][2] = 40u;
|
|
orig_pixels[0][3] = 80u;
|
|
orig_pixels[1][0] = 0u;
|
|
orig_pixels[1][1] = 0u;
|
|
orig_pixels[1][2] = 0u;
|
|
orig_pixels[1][3] = 255u;
|
|
orig_pixels[2][0] = 0u;
|
|
orig_pixels[2][1] = 0u;
|
|
orig_pixels[2][2] = 0u;
|
|
orig_pixels[2][3] = 0u;
|
|
orig_pixels[3][0] = 0u;
|
|
orig_pixels[3][1] = 0u;
|
|
orig_pixels[3][2] = 0u;
|
|
orig_pixels[3][3] = 0u;
|
|
// Do 8 pixels to allow opt version to be used.
|
|
ARGBShade(&orig_pixels[0][0], 0, &shade_pixels[0][0], 0, 8, 1, 0x80ffffff);
|
|
EXPECT_EQ(10u, shade_pixels[0][0]);
|
|
EXPECT_EQ(20u, shade_pixels[0][1]);
|
|
EXPECT_EQ(40u, shade_pixels[0][2]);
|
|
EXPECT_EQ(40u, shade_pixels[0][3]);
|
|
EXPECT_EQ(0u, shade_pixels[1][0]);
|
|
EXPECT_EQ(0u, shade_pixels[1][1]);
|
|
EXPECT_EQ(0u, shade_pixels[1][2]);
|
|
EXPECT_EQ(128u, shade_pixels[1][3]);
|
|
EXPECT_EQ(0u, shade_pixels[2][0]);
|
|
EXPECT_EQ(0u, shade_pixels[2][1]);
|
|
EXPECT_EQ(0u, shade_pixels[2][2]);
|
|
EXPECT_EQ(0u, shade_pixels[2][3]);
|
|
EXPECT_EQ(0u, shade_pixels[3][0]);
|
|
EXPECT_EQ(0u, shade_pixels[3][1]);
|
|
EXPECT_EQ(0u, shade_pixels[3][2]);
|
|
EXPECT_EQ(0u, shade_pixels[3][3]);
|
|
|
|
ARGBShade(&orig_pixels[0][0], 0, &shade_pixels[0][0], 0, 8, 1, 0x80808080);
|
|
EXPECT_EQ(5u, shade_pixels[0][0]);
|
|
EXPECT_EQ(10u, shade_pixels[0][1]);
|
|
EXPECT_EQ(20u, shade_pixels[0][2]);
|
|
EXPECT_EQ(40u, shade_pixels[0][3]);
|
|
|
|
ARGBShade(&orig_pixels[0][0], 0, &shade_pixels[0][0], 0, 8, 1, 0x10204080);
|
|
EXPECT_EQ(5u, shade_pixels[0][0]);
|
|
EXPECT_EQ(5u, shade_pixels[0][1]);
|
|
EXPECT_EQ(5u, shade_pixels[0][2]);
|
|
EXPECT_EQ(5u, shade_pixels[0][3]);
|
|
|
|
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
|
|
ARGBShade(&orig_pixels[0][0], 0, &shade_pixels[0][0], 0, 1280, 1,
|
|
0x80808080);
|
|
}
|
|
}
|
|
|
|
TEST_F(libyuvTest, TestInterpolate) {
|
|
SIMD_ALIGNED(uint8 orig_pixels_0[1280][4]);
|
|
SIMD_ALIGNED(uint8 orig_pixels_1[1280][4]);
|
|
SIMD_ALIGNED(uint8 interpolate_pixels[1280][4]);
|
|
memset(orig_pixels_0, 0, sizeof(orig_pixels_0));
|
|
memset(orig_pixels_1, 0, sizeof(orig_pixels_1));
|
|
|
|
orig_pixels_0[0][0] = 16u;
|
|
orig_pixels_0[0][1] = 32u;
|
|
orig_pixels_0[0][2] = 64u;
|
|
orig_pixels_0[0][3] = 128u;
|
|
orig_pixels_0[1][0] = 0u;
|
|
orig_pixels_0[1][1] = 0u;
|
|
orig_pixels_0[1][2] = 0u;
|
|
orig_pixels_0[1][3] = 255u;
|
|
orig_pixels_0[2][0] = 0u;
|
|
orig_pixels_0[2][1] = 0u;
|
|
orig_pixels_0[2][2] = 0u;
|
|
orig_pixels_0[2][3] = 0u;
|
|
orig_pixels_0[3][0] = 0u;
|
|
orig_pixels_0[3][1] = 0u;
|
|
orig_pixels_0[3][2] = 0u;
|
|
orig_pixels_0[3][3] = 0u;
|
|
|
|
orig_pixels_1[0][0] = 0u;
|
|
orig_pixels_1[0][1] = 0u;
|
|
orig_pixels_1[0][2] = 0u;
|
|
orig_pixels_1[0][3] = 0u;
|
|
orig_pixels_1[1][0] = 0u;
|
|
orig_pixels_1[1][1] = 0u;
|
|
orig_pixels_1[1][2] = 0u;
|
|
orig_pixels_1[1][3] = 0u;
|
|
orig_pixels_1[2][0] = 0u;
|
|
orig_pixels_1[2][1] = 0u;
|
|
orig_pixels_1[2][2] = 0u;
|
|
orig_pixels_1[2][3] = 0u;
|
|
orig_pixels_1[3][0] = 255u;
|
|
orig_pixels_1[3][1] = 255u;
|
|
orig_pixels_1[3][2] = 255u;
|
|
orig_pixels_1[3][3] = 255u;
|
|
|
|
ARGBInterpolate(&orig_pixels_0[0][0], 0, &orig_pixels_1[0][0], 0,
|
|
&interpolate_pixels[0][0], 0, 4, 1, 128);
|
|
EXPECT_EQ(8u, interpolate_pixels[0][0]);
|
|
EXPECT_EQ(16u, interpolate_pixels[0][1]);
|
|
EXPECT_EQ(32u, interpolate_pixels[0][2]);
|
|
EXPECT_EQ(64u, interpolate_pixels[0][3]);
|
|
EXPECT_EQ(0u, interpolate_pixels[1][0]);
|
|
EXPECT_EQ(0u, interpolate_pixels[1][1]);
|
|
EXPECT_EQ(0u, interpolate_pixels[1][2]);
|
|
EXPECT_NEAR(128u, interpolate_pixels[1][3], 1); // C = 127, SSE = 128.
|
|
EXPECT_EQ(0u, interpolate_pixels[2][0]);
|
|
EXPECT_EQ(0u, interpolate_pixels[2][1]);
|
|
EXPECT_EQ(0u, interpolate_pixels[2][2]);
|
|
EXPECT_EQ(0u, interpolate_pixels[2][3]);
|
|
EXPECT_NEAR(128u, interpolate_pixels[3][0], 1);
|
|
EXPECT_NEAR(128u, interpolate_pixels[3][1], 1);
|
|
EXPECT_NEAR(128u, interpolate_pixels[3][2], 1);
|
|
EXPECT_NEAR(128u, interpolate_pixels[3][3], 1);
|
|
|
|
ARGBInterpolate(&orig_pixels_0[0][0], 0, &orig_pixels_1[0][0], 0,
|
|
&interpolate_pixels[0][0], 0, 4, 1, 0);
|
|
EXPECT_EQ(16u, interpolate_pixels[0][0]);
|
|
EXPECT_EQ(32u, interpolate_pixels[0][1]);
|
|
EXPECT_EQ(64u, interpolate_pixels[0][2]);
|
|
EXPECT_EQ(128u, interpolate_pixels[0][3]);
|
|
|
|
ARGBInterpolate(&orig_pixels_0[0][0], 0, &orig_pixels_1[0][0], 0,
|
|
&interpolate_pixels[0][0], 0, 4, 1, 192);
|
|
|
|
EXPECT_EQ(4u, interpolate_pixels[0][0]);
|
|
EXPECT_EQ(8u, interpolate_pixels[0][1]);
|
|
EXPECT_EQ(16u, interpolate_pixels[0][2]);
|
|
EXPECT_EQ(32u, interpolate_pixels[0][3]);
|
|
|
|
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
|
|
ARGBInterpolate(&orig_pixels_0[0][0], 0, &orig_pixels_1[0][0], 0,
|
|
&interpolate_pixels[0][0], 0, 1280, 1, 128);
|
|
}
|
|
}
|
|
|
|
#define TESTTERP(FMT_A, BPP_A, STRIDE_A, \
|
|
FMT_B, BPP_B, STRIDE_B, \
|
|
W1280, TERP, DIFF, N, NEG, OFF) \
|
|
TEST_F(libyuvTest, ARGBInterpolate##TERP##N) { \
|
|
const int kWidth = ((W1280) > 0) ? (W1280) : 1; \
|
|
const int kHeight = benchmark_height_; \
|
|
const int kStrideA = (kWidth * BPP_A + STRIDE_A - 1) / STRIDE_A * STRIDE_A; \
|
|
const int kStrideB = (kWidth * BPP_B + STRIDE_B - 1) / STRIDE_B * STRIDE_B; \
|
|
align_buffer_64(src_argb_a, kStrideA * kHeight + OFF); \
|
|
align_buffer_64(src_argb_b, kStrideA * kHeight + OFF); \
|
|
align_buffer_64(dst_argb_c, kStrideB * kHeight); \
|
|
align_buffer_64(dst_argb_opt, kStrideB * kHeight); \
|
|
srandom(time(NULL)); \
|
|
for (int i = 0; i < kStrideA * kHeight; ++i) { \
|
|
src_argb_a[i + OFF] = (random() & 0xff); \
|
|
src_argb_b[i + OFF] = (random() & 0xff); \
|
|
} \
|
|
MaskCpuFlags(0); \
|
|
ARGBInterpolate(src_argb_a + OFF, kStrideA, \
|
|
src_argb_b + OFF, kStrideA, \
|
|
dst_argb_c, kStrideB, \
|
|
kWidth, NEG kHeight, TERP); \
|
|
MaskCpuFlags(-1); \
|
|
for (int i = 0; i < benchmark_iterations_; ++i) { \
|
|
ARGBInterpolate(src_argb_a + OFF, kStrideA, \
|
|
src_argb_b + OFF, kStrideA, \
|
|
dst_argb_opt, kStrideB, \
|
|
kWidth, NEG kHeight, TERP); \
|
|
} \
|
|
int max_diff = 0; \
|
|
for (int i = 0; i < kStrideB * kHeight; ++i) { \
|
|
int abs_diff = \
|
|
abs(static_cast<int>(dst_argb_c[i]) - \
|
|
static_cast<int>(dst_argb_opt[i])); \
|
|
if (abs_diff > max_diff) { \
|
|
max_diff = abs_diff; \
|
|
} \
|
|
} \
|
|
EXPECT_LE(max_diff, DIFF); \
|
|
free_aligned_buffer_64(src_argb_a); \
|
|
free_aligned_buffer_64(src_argb_b); \
|
|
free_aligned_buffer_64(dst_argb_c); \
|
|
free_aligned_buffer_64(dst_argb_opt); \
|
|
}
|
|
|
|
#define TESTINTERPOLATE(TERP) \
|
|
TESTTERP(ARGB, 4, 1, ARGB, 4, 1, \
|
|
benchmark_width_ - 1, TERP, 1, _Any, +, 0) \
|
|
TESTTERP(ARGB, 4, 1, ARGB, 4, 1, \
|
|
benchmark_width_, TERP, 1, _Unaligned, +, 1) \
|
|
TESTTERP(ARGB, 4, 1, ARGB, 4, 1, \
|
|
benchmark_width_, TERP, 1, _Invert, -, 0) \
|
|
TESTTERP(ARGB, 4, 1, ARGB, 4, 1, \
|
|
benchmark_width_, TERP, 1, _Opt, +, 0) \
|
|
TESTTERP(ARGB, 4, 1, ARGB, 4, 1, \
|
|
benchmark_width_ - 1, TERP, 1, _Any_Invert, -, 0)
|
|
|
|
TESTINTERPOLATE(0)
|
|
TESTINTERPOLATE(64)
|
|
TESTINTERPOLATE(128)
|
|
TESTINTERPOLATE(192)
|
|
TESTINTERPOLATE(255)
|
|
|
|
static int TestBlend(int width, int height, int benchmark_iterations,
|
|
int invert, int off) {
|
|
if (width < 1) {
|
|
width = 1;
|
|
}
|
|
const int kBpp = 4;
|
|
const int kStride = width * kBpp;
|
|
align_buffer_64(src_argb_a, kStride * height + off);
|
|
align_buffer_64(src_argb_b, kStride * height + off);
|
|
align_buffer_64(dst_argb_c, kStride * height);
|
|
align_buffer_64(dst_argb_opt, kStride * height);
|
|
srandom(time(NULL));
|
|
for (int i = 0; i < kStride * height; ++i) {
|
|
src_argb_a[i + off] = (random() & 0xff);
|
|
src_argb_b[i + off] = (random() & 0xff);
|
|
}
|
|
ARGBAttenuate(src_argb_a + off, kStride, src_argb_a + off, kStride, width,
|
|
height);
|
|
ARGBAttenuate(src_argb_b + off, kStride, src_argb_b + off, kStride, width,
|
|
height);
|
|
memset(dst_argb_c, 255, kStride * height);
|
|
memset(dst_argb_opt, 255, kStride * height);
|
|
|
|
MaskCpuFlags(0);
|
|
ARGBBlend(src_argb_a + off, kStride,
|
|
src_argb_b + off, kStride,
|
|
dst_argb_c, kStride,
|
|
width, invert * height);
|
|
MaskCpuFlags(-1);
|
|
for (int i = 0; i < benchmark_iterations; ++i) {
|
|
ARGBBlend(src_argb_a + off, kStride,
|
|
src_argb_b + off, kStride,
|
|
dst_argb_opt, kStride,
|
|
width, invert * height);
|
|
}
|
|
int max_diff = 0;
|
|
for (int i = 0; i < kStride * height; ++i) {
|
|
int abs_diff =
|
|
abs(static_cast<int>(dst_argb_c[i]) -
|
|
static_cast<int>(dst_argb_opt[i]));
|
|
if (abs_diff > max_diff) {
|
|
max_diff = abs_diff;
|
|
}
|
|
}
|
|
free_aligned_buffer_64(src_argb_a);
|
|
free_aligned_buffer_64(src_argb_b);
|
|
free_aligned_buffer_64(dst_argb_c);
|
|
free_aligned_buffer_64(dst_argb_opt);
|
|
return max_diff;
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBBlend_Any) {
|
|
int max_diff = TestBlend(benchmark_width_ - 4, benchmark_height_,
|
|
benchmark_iterations_, +1, 0);
|
|
EXPECT_LE(max_diff, 1);
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBBlend_Unaligned) {
|
|
int max_diff = TestBlend(benchmark_width_, benchmark_height_,
|
|
benchmark_iterations_, +1, 1);
|
|
EXPECT_LE(max_diff, 1);
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBBlend_Invert) {
|
|
int max_diff = TestBlend(benchmark_width_, benchmark_height_,
|
|
benchmark_iterations_, -1, 0);
|
|
EXPECT_LE(max_diff, 1);
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBBlend_Opt) {
|
|
int max_diff = TestBlend(benchmark_width_, benchmark_height_,
|
|
benchmark_iterations_, +1, 0);
|
|
EXPECT_LE(max_diff, 1);
|
|
}
|
|
|
|
TEST_F(libyuvTest, TestAffine) {
|
|
SIMD_ALIGNED(uint8 orig_pixels_0[1280][4]);
|
|
SIMD_ALIGNED(uint8 interpolate_pixels_C[1280][4]);
|
|
|
|
for (int i = 0; i < 1280; ++i) {
|
|
for (int j = 0; j < 4; ++j) {
|
|
orig_pixels_0[i][j] = i;
|
|
}
|
|
}
|
|
|
|
float uv_step[4] = { 0.f, 0.f, 0.75f, 0.f };
|
|
|
|
ARGBAffineRow_C(&orig_pixels_0[0][0], 0, &interpolate_pixels_C[0][0],
|
|
uv_step, 1280);
|
|
EXPECT_EQ(0u, interpolate_pixels_C[0][0]);
|
|
EXPECT_EQ(96u, interpolate_pixels_C[128][0]);
|
|
EXPECT_EQ(191u, interpolate_pixels_C[255][3]);
|
|
|
|
#if defined(HAS_ARGBAFFINEROW_SSE2)
|
|
SIMD_ALIGNED(uint8 interpolate_pixels_Opt[1280][4]);
|
|
ARGBAffineRow_SSE2(&orig_pixels_0[0][0], 0, &interpolate_pixels_Opt[0][0],
|
|
uv_step, 1280);
|
|
EXPECT_EQ(0, memcmp(interpolate_pixels_Opt, interpolate_pixels_C, 1280 * 4));
|
|
|
|
int has_sse2 = TestCpuFlag(kCpuHasSSE2);
|
|
if (has_sse2) {
|
|
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
|
|
ARGBAffineRow_SSE2(&orig_pixels_0[0][0], 0, &interpolate_pixels_Opt[0][0],
|
|
uv_step, 1280);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
TEST_F(libyuvTest, TestSobelX) {
|
|
SIMD_ALIGNED(uint8 orig_pixels_0[1280 + 2]);
|
|
SIMD_ALIGNED(uint8 orig_pixels_1[1280 + 2]);
|
|
SIMD_ALIGNED(uint8 orig_pixels_2[1280 + 2]);
|
|
SIMD_ALIGNED(uint8 sobel_pixels_c[1280]);
|
|
SIMD_ALIGNED(uint8 sobel_pixels_opt[1280]);
|
|
|
|
for (int i = 0; i < 1280 + 2; ++i) {
|
|
orig_pixels_0[i] = i;
|
|
orig_pixels_1[i] = i * 2;
|
|
orig_pixels_2[i] = i * 3;
|
|
}
|
|
|
|
SobelXRow_C(orig_pixels_0, orig_pixels_1, orig_pixels_2,
|
|
sobel_pixels_c, 1280);
|
|
|
|
EXPECT_EQ(16u, sobel_pixels_c[0]);
|
|
EXPECT_EQ(16u, sobel_pixels_c[100]);
|
|
EXPECT_EQ(255u, sobel_pixels_c[255]);
|
|
|
|
void (*SobelXRow)(const uint8* src_y0, const uint8* src_y1,
|
|
const uint8* src_y2, uint8* dst_sobely, int width) =
|
|
SobelXRow_C;
|
|
#if defined(HAS_SOBELXROW_SSE2)
|
|
if (TestCpuFlag(kCpuHasSSE2)) {
|
|
SobelXRow = SobelXRow_SSE2;
|
|
}
|
|
#endif
|
|
#if defined(HAS_SOBELXROW_NEON)
|
|
if (TestCpuFlag(kCpuHasNEON)) {
|
|
SobelXRow = SobelXRow_NEON;
|
|
}
|
|
#endif
|
|
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
|
|
SobelXRow(orig_pixels_0, orig_pixels_1, orig_pixels_2,
|
|
sobel_pixels_opt, 1280);
|
|
}
|
|
for (int i = 0; i < 1280; ++i) {
|
|
EXPECT_EQ(sobel_pixels_c[i], sobel_pixels_opt[i]);
|
|
}
|
|
}
|
|
|
|
TEST_F(libyuvTest, TestSobelY) {
|
|
SIMD_ALIGNED(uint8 orig_pixels_0[1280 + 2]);
|
|
SIMD_ALIGNED(uint8 orig_pixels_1[1280 + 2]);
|
|
SIMD_ALIGNED(uint8 sobel_pixels_c[1280]);
|
|
SIMD_ALIGNED(uint8 sobel_pixels_opt[1280]);
|
|
|
|
for (int i = 0; i < 1280 + 2; ++i) {
|
|
orig_pixels_0[i] = i;
|
|
orig_pixels_1[i] = i * 2;
|
|
}
|
|
|
|
SobelYRow_C(orig_pixels_0, orig_pixels_1, sobel_pixels_c, 1280);
|
|
|
|
EXPECT_EQ(4u, sobel_pixels_c[0]);
|
|
EXPECT_EQ(255u, sobel_pixels_c[100]);
|
|
EXPECT_EQ(0u, sobel_pixels_c[255]);
|
|
void (*SobelYRow)(const uint8* src_y0, const uint8* src_y1,
|
|
uint8* dst_sobely, int width) = SobelYRow_C;
|
|
#if defined(HAS_SOBELYROW_SSE2)
|
|
if (TestCpuFlag(kCpuHasSSE2)) {
|
|
SobelYRow = SobelYRow_SSE2;
|
|
}
|
|
#endif
|
|
#if defined(HAS_SOBELYROW_NEON)
|
|
if (TestCpuFlag(kCpuHasNEON)) {
|
|
SobelYRow = SobelYRow_NEON;
|
|
}
|
|
#endif
|
|
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
|
|
SobelYRow(orig_pixels_0, orig_pixels_1, sobel_pixels_opt, 1280);
|
|
}
|
|
for (int i = 0; i < 1280; ++i) {
|
|
EXPECT_EQ(sobel_pixels_c[i], sobel_pixels_opt[i]);
|
|
}
|
|
}
|
|
|
|
TEST_F(libyuvTest, TestSobel) {
|
|
SIMD_ALIGNED(uint8 orig_sobelx[1280]);
|
|
SIMD_ALIGNED(uint8 orig_sobely[1280]);
|
|
SIMD_ALIGNED(uint8 sobel_pixels_c[1280 * 4]);
|
|
SIMD_ALIGNED(uint8 sobel_pixels_opt[1280 * 4]);
|
|
|
|
for (int i = 0; i < 1280; ++i) {
|
|
orig_sobelx[i] = i;
|
|
orig_sobely[i] = i * 2;
|
|
}
|
|
|
|
SobelRow_C(orig_sobelx, orig_sobely, sobel_pixels_c, 1280);
|
|
|
|
EXPECT_EQ(0u, sobel_pixels_c[0]);
|
|
EXPECT_EQ(3u, sobel_pixels_c[4]);
|
|
EXPECT_EQ(3u, sobel_pixels_c[5]);
|
|
EXPECT_EQ(3u, sobel_pixels_c[6]);
|
|
EXPECT_EQ(255u, sobel_pixels_c[7]);
|
|
EXPECT_EQ(6u, sobel_pixels_c[8]);
|
|
EXPECT_EQ(6u, sobel_pixels_c[9]);
|
|
EXPECT_EQ(6u, sobel_pixels_c[10]);
|
|
EXPECT_EQ(255u, sobel_pixels_c[7]);
|
|
EXPECT_EQ(255u, sobel_pixels_c[100 * 4 + 1]);
|
|
EXPECT_EQ(255u, sobel_pixels_c[255 * 4 + 1]);
|
|
void (*SobelRow)(const uint8* src_sobelx, const uint8* src_sobely,
|
|
uint8* dst_argb, int width) = SobelRow_C;
|
|
#if defined(HAS_SOBELROW_SSE2)
|
|
if (TestCpuFlag(kCpuHasSSE2)) {
|
|
SobelRow = SobelRow_SSE2;
|
|
}
|
|
#endif
|
|
#if defined(HAS_SOBELROW_NEON)
|
|
if (TestCpuFlag(kCpuHasNEON)) {
|
|
SobelRow = SobelRow_NEON;
|
|
}
|
|
#endif
|
|
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
|
|
SobelRow(orig_sobelx, orig_sobely, sobel_pixels_opt, 1280);
|
|
}
|
|
for (int i = 0; i < 1280 * 4; ++i) {
|
|
EXPECT_EQ(sobel_pixels_c[i], sobel_pixels_opt[i]);
|
|
}
|
|
}
|
|
|
|
TEST_F(libyuvTest, TestSobelToPlane) {
|
|
SIMD_ALIGNED(uint8 orig_sobelx[1280]);
|
|
SIMD_ALIGNED(uint8 orig_sobely[1280]);
|
|
SIMD_ALIGNED(uint8 sobel_pixels_c[1280]);
|
|
SIMD_ALIGNED(uint8 sobel_pixels_opt[1280]);
|
|
|
|
for (int i = 0; i < 1280; ++i) {
|
|
orig_sobelx[i] = i;
|
|
orig_sobely[i] = i * 2;
|
|
}
|
|
|
|
SobelToPlaneRow_C(orig_sobelx, orig_sobely, sobel_pixels_c, 1280);
|
|
|
|
EXPECT_EQ(0u, sobel_pixels_c[0]);
|
|
EXPECT_EQ(3u, sobel_pixels_c[1]);
|
|
EXPECT_EQ(6u, sobel_pixels_c[2]);
|
|
EXPECT_EQ(99u, sobel_pixels_c[33]);
|
|
EXPECT_EQ(255u, sobel_pixels_c[100]);
|
|
void (*SobelToPlaneRow)(const uint8* src_sobelx, const uint8* src_sobely,
|
|
uint8* dst_y, int width) = SobelToPlaneRow_C;
|
|
#if defined(HAS_SOBELTOPLANEROW_SSE2)
|
|
if (TestCpuFlag(kCpuHasSSE2)) {
|
|
SobelToPlaneRow = SobelToPlaneRow_SSE2;
|
|
}
|
|
#endif
|
|
#if defined(HAS_SOBELTOPLANEROW_NEON)
|
|
if (TestCpuFlag(kCpuHasNEON)) {
|
|
SobelToPlaneRow = SobelToPlaneRow_NEON;
|
|
}
|
|
#endif
|
|
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
|
|
SobelToPlaneRow(orig_sobelx, orig_sobely, sobel_pixels_opt, 1280);
|
|
}
|
|
for (int i = 0; i < 1280; ++i) {
|
|
EXPECT_EQ(sobel_pixels_c[i], sobel_pixels_opt[i]);
|
|
}
|
|
}
|
|
|
|
TEST_F(libyuvTest, TestSobelXY) {
|
|
SIMD_ALIGNED(uint8 orig_sobelx[1280]);
|
|
SIMD_ALIGNED(uint8 orig_sobely[1280]);
|
|
SIMD_ALIGNED(uint8 sobel_pixels_c[1280 * 4]);
|
|
SIMD_ALIGNED(uint8 sobel_pixels_opt[1280 * 4]);
|
|
|
|
for (int i = 0; i < 1280; ++i) {
|
|
orig_sobelx[i] = i;
|
|
orig_sobely[i] = i * 2;
|
|
}
|
|
|
|
SobelXYRow_C(orig_sobelx, orig_sobely, sobel_pixels_c, 1280);
|
|
|
|
EXPECT_EQ(0u, sobel_pixels_c[0]);
|
|
EXPECT_EQ(2u, sobel_pixels_c[4]);
|
|
EXPECT_EQ(3u, sobel_pixels_c[5]);
|
|
EXPECT_EQ(1u, sobel_pixels_c[6]);
|
|
EXPECT_EQ(255u, sobel_pixels_c[7]);
|
|
EXPECT_EQ(255u, sobel_pixels_c[100 * 4 + 1]);
|
|
EXPECT_EQ(255u, sobel_pixels_c[255 * 4 + 1]);
|
|
void (*SobelXYRow)(const uint8* src_sobelx, const uint8* src_sobely,
|
|
uint8* dst_argb, int width) = SobelXYRow_C;
|
|
#if defined(HAS_SOBELXYROW_SSE2)
|
|
if (TestCpuFlag(kCpuHasSSE2)) {
|
|
SobelXYRow = SobelXYRow_SSE2;
|
|
}
|
|
#endif
|
|
#if defined(HAS_SOBELXYROW_NEON)
|
|
if (TestCpuFlag(kCpuHasNEON)) {
|
|
SobelXYRow = SobelXYRow_NEON;
|
|
}
|
|
#endif
|
|
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
|
|
SobelXYRow(orig_sobelx, orig_sobely, sobel_pixels_opt, 1280);
|
|
}
|
|
for (int i = 0; i < 1280 * 4; ++i) {
|
|
EXPECT_EQ(sobel_pixels_c[i], sobel_pixels_opt[i]);
|
|
}
|
|
}
|
|
|
|
TEST_F(libyuvTest, TestCopyPlane) {
|
|
int err = 0;
|
|
int yw = benchmark_width_;
|
|
int yh = benchmark_height_;
|
|
int b = 12;
|
|
int i, j;
|
|
|
|
int y_plane_size = (yw + b * 2) * (yh + b * 2);
|
|
srandom(time(NULL));
|
|
align_buffer_64(orig_y, y_plane_size);
|
|
align_buffer_64(dst_c, y_plane_size);
|
|
align_buffer_64(dst_opt, y_plane_size);
|
|
|
|
memset(orig_y, 0, y_plane_size);
|
|
memset(dst_c, 0, y_plane_size);
|
|
memset(dst_opt, 0, y_plane_size);
|
|
|
|
// Fill image buffers with random data.
|
|
for (i = b; i < (yh + b); ++i) {
|
|
for (j = b; j < (yw + b); ++j) {
|
|
orig_y[i * (yw + b * 2) + j] = random() & 0xff;
|
|
}
|
|
}
|
|
|
|
// Fill destination buffers with random data.
|
|
for (i = 0; i < y_plane_size; ++i) {
|
|
uint8 random_number = random() & 0x7f;
|
|
dst_c[i] = random_number;
|
|
dst_opt[i] = dst_c[i];
|
|
}
|
|
|
|
int y_off = b * (yw + b * 2) + b;
|
|
|
|
int y_st = yw + b * 2;
|
|
int stride = 8;
|
|
|
|
// Disable all optimizations.
|
|
MaskCpuFlags(0);
|
|
double c_time = get_time();
|
|
for (j = 0; j < benchmark_iterations_; j++) {
|
|
CopyPlane(orig_y + y_off, y_st, dst_c + y_off, stride, yw, yh);
|
|
}
|
|
c_time = (get_time() - c_time) / benchmark_iterations_;
|
|
|
|
// Enable optimizations.
|
|
MaskCpuFlags(-1);
|
|
double opt_time = get_time();
|
|
for (j = 0; j < benchmark_iterations_; j++) {
|
|
CopyPlane(orig_y + y_off, y_st, dst_opt + y_off, stride, yw, yh);
|
|
}
|
|
opt_time = (get_time() - opt_time) / benchmark_iterations_;
|
|
|
|
for (i = 0; i < y_plane_size; ++i) {
|
|
if (dst_c[i] != dst_opt[i])
|
|
++err;
|
|
}
|
|
|
|
free_aligned_buffer_64(orig_y);
|
|
free_aligned_buffer_64(dst_c);
|
|
free_aligned_buffer_64(dst_opt);
|
|
|
|
EXPECT_EQ(0, err);
|
|
}
|
|
|
|
static int TestMultiply(int width, int height, int benchmark_iterations,
|
|
int invert, int off) {
|
|
if (width < 1) {
|
|
width = 1;
|
|
}
|
|
const int kBpp = 4;
|
|
const int kStride = (width * kBpp + 15) & ~15;
|
|
align_buffer_64(src_argb_a, kStride * height + off);
|
|
align_buffer_64(src_argb_b, kStride * height + off);
|
|
align_buffer_64(dst_argb_c, kStride * height);
|
|
align_buffer_64(dst_argb_opt, kStride * height);
|
|
srandom(time(NULL));
|
|
for (int i = 0; i < kStride * height; ++i) {
|
|
src_argb_a[i + off] = (random() & 0xff);
|
|
src_argb_b[i + off] = (random() & 0xff);
|
|
}
|
|
memset(dst_argb_c, 0, kStride * height);
|
|
memset(dst_argb_opt, 0, kStride * height);
|
|
|
|
MaskCpuFlags(0);
|
|
ARGBMultiply(src_argb_a + off, kStride,
|
|
src_argb_b + off, kStride,
|
|
dst_argb_c, kStride,
|
|
width, invert * height);
|
|
MaskCpuFlags(-1);
|
|
for (int i = 0; i < benchmark_iterations; ++i) {
|
|
ARGBMultiply(src_argb_a + off, kStride,
|
|
src_argb_b + off, kStride,
|
|
dst_argb_opt, kStride,
|
|
width, invert * height);
|
|
}
|
|
int max_diff = 0;
|
|
for (int i = 0; i < kStride * height; ++i) {
|
|
int abs_diff =
|
|
abs(static_cast<int>(dst_argb_c[i]) -
|
|
static_cast<int>(dst_argb_opt[i]));
|
|
if (abs_diff > max_diff) {
|
|
max_diff = abs_diff;
|
|
}
|
|
}
|
|
free_aligned_buffer_64(src_argb_a);
|
|
free_aligned_buffer_64(src_argb_b);
|
|
free_aligned_buffer_64(dst_argb_c);
|
|
free_aligned_buffer_64(dst_argb_opt);
|
|
return max_diff;
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBMultiply_Any) {
|
|
int max_diff = TestMultiply(benchmark_width_ - 1, benchmark_height_,
|
|
benchmark_iterations_, +1, 0);
|
|
EXPECT_LE(max_diff, 1);
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBMultiply_Unaligned) {
|
|
int max_diff = TestMultiply(benchmark_width_, benchmark_height_,
|
|
benchmark_iterations_, +1, 1);
|
|
EXPECT_LE(max_diff, 1);
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBMultiply_Invert) {
|
|
int max_diff = TestMultiply(benchmark_width_, benchmark_height_,
|
|
benchmark_iterations_, -1, 0);
|
|
EXPECT_LE(max_diff, 1);
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBMultiply_Opt) {
|
|
int max_diff = TestMultiply(benchmark_width_, benchmark_height_,
|
|
benchmark_iterations_, +1, 0);
|
|
EXPECT_LE(max_diff, 1);
|
|
}
|
|
|
|
static int TestAdd(int width, int height, int benchmark_iterations,
|
|
int invert, int off) {
|
|
if (width < 1) {
|
|
width = 1;
|
|
}
|
|
const int kBpp = 4;
|
|
const int kStride = (width * kBpp + 15) & ~15;
|
|
align_buffer_64(src_argb_a, kStride * height + off);
|
|
align_buffer_64(src_argb_b, kStride * height + off);
|
|
align_buffer_64(dst_argb_c, kStride * height);
|
|
align_buffer_64(dst_argb_opt, kStride * height);
|
|
srandom(time(NULL));
|
|
for (int i = 0; i < kStride * height; ++i) {
|
|
src_argb_a[i + off] = (random() & 0xff);
|
|
src_argb_b[i + off] = (random() & 0xff);
|
|
}
|
|
memset(dst_argb_c, 0, kStride * height);
|
|
memset(dst_argb_opt, 0, kStride * height);
|
|
|
|
MaskCpuFlags(0);
|
|
ARGBAdd(src_argb_a + off, kStride,
|
|
src_argb_b + off, kStride,
|
|
dst_argb_c, kStride,
|
|
width, invert * height);
|
|
MaskCpuFlags(-1);
|
|
for (int i = 0; i < benchmark_iterations; ++i) {
|
|
ARGBAdd(src_argb_a + off, kStride,
|
|
src_argb_b + off, kStride,
|
|
dst_argb_opt, kStride,
|
|
width, invert * height);
|
|
}
|
|
int max_diff = 0;
|
|
for (int i = 0; i < kStride * height; ++i) {
|
|
int abs_diff =
|
|
abs(static_cast<int>(dst_argb_c[i]) -
|
|
static_cast<int>(dst_argb_opt[i]));
|
|
if (abs_diff > max_diff) {
|
|
max_diff = abs_diff;
|
|
}
|
|
}
|
|
free_aligned_buffer_64(src_argb_a);
|
|
free_aligned_buffer_64(src_argb_b);
|
|
free_aligned_buffer_64(dst_argb_c);
|
|
free_aligned_buffer_64(dst_argb_opt);
|
|
return max_diff;
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBAdd_Any) {
|
|
int max_diff = TestAdd(benchmark_width_ - 1, benchmark_height_,
|
|
benchmark_iterations_, +1, 0);
|
|
EXPECT_LE(max_diff, 1);
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBAdd_Unaligned) {
|
|
int max_diff = TestAdd(benchmark_width_, benchmark_height_,
|
|
benchmark_iterations_, +1, 1);
|
|
EXPECT_LE(max_diff, 1);
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBAdd_Invert) {
|
|
int max_diff = TestAdd(benchmark_width_, benchmark_height_,
|
|
benchmark_iterations_, -1, 0);
|
|
EXPECT_LE(max_diff, 1);
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBAdd_Opt) {
|
|
int max_diff = TestAdd(benchmark_width_, benchmark_height_,
|
|
benchmark_iterations_, +1, 0);
|
|
EXPECT_LE(max_diff, 1);
|
|
}
|
|
|
|
static int TestSubtract(int width, int height, int benchmark_iterations,
|
|
int invert, int off) {
|
|
if (width < 1) {
|
|
width = 1;
|
|
}
|
|
const int kBpp = 4;
|
|
const int kStride = (width * kBpp + 15) & ~15;
|
|
align_buffer_64(src_argb_a, kStride * height + off);
|
|
align_buffer_64(src_argb_b, kStride * height + off);
|
|
align_buffer_64(dst_argb_c, kStride * height);
|
|
align_buffer_64(dst_argb_opt, kStride * height);
|
|
srandom(time(NULL));
|
|
for (int i = 0; i < kStride * height; ++i) {
|
|
src_argb_a[i + off] = (random() & 0xff);
|
|
src_argb_b[i + off] = (random() & 0xff);
|
|
}
|
|
memset(dst_argb_c, 0, kStride * height);
|
|
memset(dst_argb_opt, 0, kStride * height);
|
|
|
|
MaskCpuFlags(0);
|
|
ARGBSubtract(src_argb_a + off, kStride,
|
|
src_argb_b + off, kStride,
|
|
dst_argb_c, kStride,
|
|
width, invert * height);
|
|
MaskCpuFlags(-1);
|
|
for (int i = 0; i < benchmark_iterations; ++i) {
|
|
ARGBSubtract(src_argb_a + off, kStride,
|
|
src_argb_b + off, kStride,
|
|
dst_argb_opt, kStride,
|
|
width, invert * height);
|
|
}
|
|
int max_diff = 0;
|
|
for (int i = 0; i < kStride * height; ++i) {
|
|
int abs_diff =
|
|
abs(static_cast<int>(dst_argb_c[i]) -
|
|
static_cast<int>(dst_argb_opt[i]));
|
|
if (abs_diff > max_diff) {
|
|
max_diff = abs_diff;
|
|
}
|
|
}
|
|
free_aligned_buffer_64(src_argb_a);
|
|
free_aligned_buffer_64(src_argb_b);
|
|
free_aligned_buffer_64(dst_argb_c);
|
|
free_aligned_buffer_64(dst_argb_opt);
|
|
return max_diff;
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBSubtract_Any) {
|
|
int max_diff = TestSubtract(benchmark_width_ - 1, benchmark_height_,
|
|
benchmark_iterations_, +1, 0);
|
|
EXPECT_LE(max_diff, 1);
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBSubtract_Unaligned) {
|
|
int max_diff = TestSubtract(benchmark_width_, benchmark_height_,
|
|
benchmark_iterations_, +1, 1);
|
|
EXPECT_LE(max_diff, 1);
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBSubtract_Invert) {
|
|
int max_diff = TestSubtract(benchmark_width_, benchmark_height_,
|
|
benchmark_iterations_, -1, 0);
|
|
EXPECT_LE(max_diff, 1);
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBSubtract_Opt) {
|
|
int max_diff = TestSubtract(benchmark_width_, benchmark_height_,
|
|
benchmark_iterations_, +1, 0);
|
|
EXPECT_LE(max_diff, 1);
|
|
}
|
|
|
|
static int TestSobel(int width, int height, int benchmark_iterations,
|
|
int invert, int off) {
|
|
if (width < 1) {
|
|
width = 1;
|
|
}
|
|
const int kBpp = 4;
|
|
const int kStride = (width * kBpp + 15) & ~15;
|
|
align_buffer_64(src_argb_a, kStride * height + off);
|
|
align_buffer_64(dst_argb_c, kStride * height);
|
|
align_buffer_64(dst_argb_opt, kStride * height);
|
|
memset(src_argb_a, 0, kStride * height + off);
|
|
srandom(time(NULL));
|
|
for (int i = 0; i < kStride * height; ++i) {
|
|
src_argb_a[i + off] = (random() & 0xff);
|
|
}
|
|
memset(dst_argb_c, 0, kStride * height);
|
|
memset(dst_argb_opt, 0, kStride * height);
|
|
|
|
MaskCpuFlags(0);
|
|
ARGBSobel(src_argb_a + off, kStride,
|
|
dst_argb_c, kStride,
|
|
width, invert * height);
|
|
MaskCpuFlags(-1);
|
|
for (int i = 0; i < benchmark_iterations; ++i) {
|
|
ARGBSobel(src_argb_a + off, kStride,
|
|
dst_argb_opt, kStride,
|
|
width, invert * height);
|
|
}
|
|
int max_diff = 0;
|
|
for (int i = 0; i < kStride * height; ++i) {
|
|
int abs_diff =
|
|
abs(static_cast<int>(dst_argb_c[i]) -
|
|
static_cast<int>(dst_argb_opt[i]));
|
|
if (abs_diff > max_diff) {
|
|
max_diff = abs_diff;
|
|
}
|
|
}
|
|
free_aligned_buffer_64(src_argb_a);
|
|
free_aligned_buffer_64(dst_argb_c);
|
|
free_aligned_buffer_64(dst_argb_opt);
|
|
return max_diff;
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBSobel_Any) {
|
|
int max_diff = TestSobel(benchmark_width_ - 1, benchmark_height_,
|
|
benchmark_iterations_, +1, 0);
|
|
EXPECT_EQ(0, max_diff);
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBSobel_Unaligned) {
|
|
int max_diff = TestSobel(benchmark_width_, benchmark_height_,
|
|
benchmark_iterations_, +1, 1);
|
|
EXPECT_EQ(0, max_diff);
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBSobel_Invert) {
|
|
int max_diff = TestSobel(benchmark_width_, benchmark_height_,
|
|
benchmark_iterations_, -1, 0);
|
|
EXPECT_EQ(0, max_diff);
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBSobel_Opt) {
|
|
int max_diff = TestSobel(benchmark_width_, benchmark_height_,
|
|
benchmark_iterations_, +1, 0);
|
|
EXPECT_EQ(0, max_diff);
|
|
}
|
|
|
|
static int TestSobelToPlane(int width, int height, int benchmark_iterations,
|
|
int invert, int off) {
|
|
if (width < 1) {
|
|
width = 1;
|
|
}
|
|
const int kSrcBpp = 4;
|
|
const int kDstBpp = 1;
|
|
const int kSrcStride = (width * kSrcBpp + 15) & ~15;
|
|
const int kDstStride = (width * kDstBpp + 15) & ~15;
|
|
align_buffer_64(src_argb_a, kSrcStride * height + off);
|
|
align_buffer_64(dst_argb_c, kDstStride * height);
|
|
align_buffer_64(dst_argb_opt, kDstStride * height);
|
|
memset(src_argb_a, 0, kSrcStride * height + off);
|
|
srandom(time(NULL));
|
|
for (int i = 0; i < kSrcStride * height; ++i) {
|
|
src_argb_a[i + off] = (random() & 0xff);
|
|
}
|
|
memset(dst_argb_c, 0, kDstStride * height);
|
|
memset(dst_argb_opt, 0, kDstStride * height);
|
|
|
|
MaskCpuFlags(0);
|
|
ARGBSobelToPlane(src_argb_a + off, kSrcStride,
|
|
dst_argb_c, kDstStride,
|
|
width, invert * height);
|
|
MaskCpuFlags(-1);
|
|
for (int i = 0; i < benchmark_iterations; ++i) {
|
|
ARGBSobelToPlane(src_argb_a + off, kSrcStride,
|
|
dst_argb_opt, kDstStride,
|
|
width, invert * height);
|
|
}
|
|
int max_diff = 0;
|
|
for (int i = 0; i < kDstStride * height; ++i) {
|
|
int abs_diff =
|
|
abs(static_cast<int>(dst_argb_c[i]) -
|
|
static_cast<int>(dst_argb_opt[i]));
|
|
if (abs_diff > max_diff) {
|
|
max_diff = abs_diff;
|
|
}
|
|
}
|
|
free_aligned_buffer_64(src_argb_a);
|
|
free_aligned_buffer_64(dst_argb_c);
|
|
free_aligned_buffer_64(dst_argb_opt);
|
|
return max_diff;
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBSobelToPlane_Any) {
|
|
int max_diff = TestSobelToPlane(benchmark_width_ - 1, benchmark_height_,
|
|
benchmark_iterations_, +1, 0);
|
|
EXPECT_EQ(0, max_diff);
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBSobelToPlane_Unaligned) {
|
|
int max_diff = TestSobelToPlane(benchmark_width_, benchmark_height_,
|
|
benchmark_iterations_, +1, 1);
|
|
EXPECT_EQ(0, max_diff);
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBSobelToPlane_Invert) {
|
|
int max_diff = TestSobelToPlane(benchmark_width_, benchmark_height_,
|
|
benchmark_iterations_, -1, 0);
|
|
EXPECT_EQ(0, max_diff);
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBSobelToPlane_Opt) {
|
|
int max_diff = TestSobelToPlane(benchmark_width_, benchmark_height_,
|
|
benchmark_iterations_, +1, 0);
|
|
EXPECT_EQ(0, max_diff);
|
|
}
|
|
|
|
static int TestSobelXY(int width, int height, int benchmark_iterations,
|
|
int invert, int off) {
|
|
if (width < 1) {
|
|
width = 1;
|
|
}
|
|
const int kBpp = 4;
|
|
const int kStride = (width * kBpp + 15) & ~15;
|
|
align_buffer_64(src_argb_a, kStride * height + off);
|
|
align_buffer_64(dst_argb_c, kStride * height);
|
|
align_buffer_64(dst_argb_opt, kStride * height);
|
|
memset(src_argb_a, 0, kStride * height + off);
|
|
srandom(time(NULL));
|
|
for (int i = 0; i < kStride * height; ++i) {
|
|
src_argb_a[i + off] = (random() & 0xff);
|
|
}
|
|
memset(dst_argb_c, 0, kStride * height);
|
|
memset(dst_argb_opt, 0, kStride * height);
|
|
|
|
MaskCpuFlags(0);
|
|
ARGBSobelXY(src_argb_a + off, kStride,
|
|
dst_argb_c, kStride,
|
|
width, invert * height);
|
|
MaskCpuFlags(-1);
|
|
for (int i = 0; i < benchmark_iterations; ++i) {
|
|
ARGBSobelXY(src_argb_a + off, kStride,
|
|
dst_argb_opt, kStride,
|
|
width, invert * height);
|
|
}
|
|
int max_diff = 0;
|
|
for (int i = 0; i < kStride * height; ++i) {
|
|
int abs_diff =
|
|
abs(static_cast<int>(dst_argb_c[i]) -
|
|
static_cast<int>(dst_argb_opt[i]));
|
|
if (abs_diff > max_diff) {
|
|
max_diff = abs_diff;
|
|
}
|
|
}
|
|
free_aligned_buffer_64(src_argb_a);
|
|
free_aligned_buffer_64(dst_argb_c);
|
|
free_aligned_buffer_64(dst_argb_opt);
|
|
return max_diff;
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBSobelXY_Any) {
|
|
int max_diff = TestSobelXY(benchmark_width_ - 1, benchmark_height_,
|
|
benchmark_iterations_, +1, 0);
|
|
EXPECT_EQ(0, max_diff);
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBSobelXY_Unaligned) {
|
|
int max_diff = TestSobelXY(benchmark_width_, benchmark_height_,
|
|
benchmark_iterations_, +1, 1);
|
|
EXPECT_EQ(0, max_diff);
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBSobelXY_Invert) {
|
|
int max_diff = TestSobelXY(benchmark_width_, benchmark_height_,
|
|
benchmark_iterations_, -1, 0);
|
|
EXPECT_EQ(0, max_diff);
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBSobelXY_Opt) {
|
|
int max_diff = TestSobelXY(benchmark_width_, benchmark_height_,
|
|
benchmark_iterations_, +1, 0);
|
|
EXPECT_EQ(0, max_diff);
|
|
}
|
|
|
|
static int TestBlur(int width, int height, int benchmark_iterations,
|
|
int invert, int off, int radius) {
|
|
if (width < 1) {
|
|
width = 1;
|
|
}
|
|
const int kBpp = 4;
|
|
const int kStride = (width * kBpp + 15) & ~15;
|
|
align_buffer_64(src_argb_a, kStride * height + off);
|
|
align_buffer_64(dst_cumsum, width * height * 16);
|
|
align_buffer_64(dst_argb_c, kStride * height);
|
|
align_buffer_64(dst_argb_opt, kStride * height);
|
|
srandom(time(NULL));
|
|
for (int i = 0; i < kStride * height; ++i) {
|
|
src_argb_a[i + off] = (random() & 0xff);
|
|
}
|
|
memset(dst_cumsum, 0, width * height * 16);
|
|
memset(dst_argb_c, 0, kStride * height);
|
|
memset(dst_argb_opt, 0, kStride * height);
|
|
|
|
MaskCpuFlags(0);
|
|
ARGBBlur(src_argb_a + off, kStride,
|
|
dst_argb_c, kStride,
|
|
reinterpret_cast<int32*>(dst_cumsum), width * 4,
|
|
width, invert * height, radius);
|
|
MaskCpuFlags(-1);
|
|
for (int i = 0; i < benchmark_iterations; ++i) {
|
|
ARGBBlur(src_argb_a + off, kStride,
|
|
dst_argb_opt, kStride,
|
|
reinterpret_cast<int32*>(dst_cumsum), width * 4,
|
|
width, invert * height, radius);
|
|
}
|
|
int max_diff = 0;
|
|
for (int i = 0; i < kStride * height; ++i) {
|
|
int abs_diff =
|
|
abs(static_cast<int>(dst_argb_c[i]) -
|
|
static_cast<int>(dst_argb_opt[i]));
|
|
if (abs_diff > max_diff) {
|
|
max_diff = abs_diff;
|
|
}
|
|
}
|
|
free_aligned_buffer_64(src_argb_a);
|
|
free_aligned_buffer_64(dst_cumsum);
|
|
free_aligned_buffer_64(dst_argb_c);
|
|
free_aligned_buffer_64(dst_argb_opt);
|
|
return max_diff;
|
|
}
|
|
|
|
static const int kBlurSize = 55;
|
|
TEST_F(libyuvTest, ARGBBlur_Any) {
|
|
int max_diff = TestBlur(benchmark_width_ - 1, benchmark_height_,
|
|
benchmark_iterations_, +1, 0, kBlurSize);
|
|
EXPECT_LE(max_diff, 1);
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBBlur_Unaligned) {
|
|
int max_diff = TestBlur(benchmark_width_, benchmark_height_,
|
|
benchmark_iterations_, +1, 1, kBlurSize);
|
|
EXPECT_LE(max_diff, 1);
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBBlur_Invert) {
|
|
int max_diff = TestBlur(benchmark_width_, benchmark_height_,
|
|
benchmark_iterations_, -1, 0, kBlurSize);
|
|
EXPECT_LE(max_diff, 1);
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBBlur_Opt) {
|
|
int max_diff = TestBlur(benchmark_width_, benchmark_height_,
|
|
benchmark_iterations_, +1, 0, kBlurSize);
|
|
EXPECT_LE(max_diff, 1);
|
|
}
|
|
|
|
static const int kBlurSmallSize = 5;
|
|
TEST_F(libyuvTest, ARGBBlurSmall_Any) {
|
|
int max_diff = TestBlur(benchmark_width_ - 1, benchmark_height_,
|
|
benchmark_iterations_, +1, 0, kBlurSmallSize);
|
|
EXPECT_LE(max_diff, 1);
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBBlurSmall_Unaligned) {
|
|
int max_diff = TestBlur(benchmark_width_, benchmark_height_,
|
|
benchmark_iterations_, +1, 1, kBlurSmallSize);
|
|
EXPECT_LE(max_diff, 1);
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBBlurSmall_Invert) {
|
|
int max_diff = TestBlur(benchmark_width_, benchmark_height_,
|
|
benchmark_iterations_, -1, 0, kBlurSmallSize);
|
|
EXPECT_LE(max_diff, 1);
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBBlurSmall_Opt) {
|
|
int max_diff = TestBlur(benchmark_width_, benchmark_height_,
|
|
benchmark_iterations_, +1, 0, kBlurSmallSize);
|
|
EXPECT_LE(max_diff, 1);
|
|
}
|
|
|
|
TEST_F(libyuvTest, TestARGBPolynomial) {
|
|
SIMD_ALIGNED(uint8 orig_pixels[1280][4]);
|
|
SIMD_ALIGNED(uint8 dst_pixels_opt[1280][4]);
|
|
SIMD_ALIGNED(uint8 dst_pixels_c[1280][4]);
|
|
memset(orig_pixels, 0, sizeof(orig_pixels));
|
|
|
|
SIMD_ALIGNED(static const float kWarmifyPolynomial[16]) = {
|
|
0.94230f, -3.03300f, -2.92500f, 0.f, // C0
|
|
0.584500f, 1.112000f, 1.535000f, 1.f, // C1 x
|
|
0.001313f, -0.002503f, -0.004496f, 0.f, // C2 x * x
|
|
0.0f, 0.000006965f, 0.000008781f, 0.f, // C3 x * x * x
|
|
};
|
|
|
|
// Test blue
|
|
orig_pixels[0][0] = 255u;
|
|
orig_pixels[0][1] = 0u;
|
|
orig_pixels[0][2] = 0u;
|
|
orig_pixels[0][3] = 128u;
|
|
// Test green
|
|
orig_pixels[1][0] = 0u;
|
|
orig_pixels[1][1] = 255u;
|
|
orig_pixels[1][2] = 0u;
|
|
orig_pixels[1][3] = 0u;
|
|
// Test red
|
|
orig_pixels[2][0] = 0u;
|
|
orig_pixels[2][1] = 0u;
|
|
orig_pixels[2][2] = 255u;
|
|
orig_pixels[2][3] = 255u;
|
|
// Test white
|
|
orig_pixels[3][0] = 255u;
|
|
orig_pixels[3][1] = 255u;
|
|
orig_pixels[3][2] = 255u;
|
|
orig_pixels[3][3] = 255u;
|
|
// Test color
|
|
orig_pixels[4][0] = 16u;
|
|
orig_pixels[4][1] = 64u;
|
|
orig_pixels[4][2] = 192u;
|
|
orig_pixels[4][3] = 224u;
|
|
// Do 16 to test asm version.
|
|
ARGBPolynomial(&orig_pixels[0][0], 0, &dst_pixels_opt[0][0], 0,
|
|
&kWarmifyPolynomial[0], 16, 1);
|
|
EXPECT_EQ(235u, dst_pixels_opt[0][0]);
|
|
EXPECT_EQ(0u, dst_pixels_opt[0][1]);
|
|
EXPECT_EQ(0u, dst_pixels_opt[0][2]);
|
|
EXPECT_EQ(128u, dst_pixels_opt[0][3]);
|
|
EXPECT_EQ(0u, dst_pixels_opt[1][0]);
|
|
EXPECT_EQ(233u, dst_pixels_opt[1][1]);
|
|
EXPECT_EQ(0u, dst_pixels_opt[1][2]);
|
|
EXPECT_EQ(0u, dst_pixels_opt[1][3]);
|
|
EXPECT_EQ(0u, dst_pixels_opt[2][0]);
|
|
EXPECT_EQ(0u, dst_pixels_opt[2][1]);
|
|
EXPECT_EQ(241u, dst_pixels_opt[2][2]);
|
|
EXPECT_EQ(255u, dst_pixels_opt[2][3]);
|
|
EXPECT_EQ(235u, dst_pixels_opt[3][0]);
|
|
EXPECT_EQ(233u, dst_pixels_opt[3][1]);
|
|
EXPECT_EQ(241u, dst_pixels_opt[3][2]);
|
|
EXPECT_EQ(255u, dst_pixels_opt[3][3]);
|
|
EXPECT_EQ(10u, dst_pixels_opt[4][0]);
|
|
EXPECT_EQ(59u, dst_pixels_opt[4][1]);
|
|
EXPECT_EQ(188u, dst_pixels_opt[4][2]);
|
|
EXPECT_EQ(224u, dst_pixels_opt[4][3]);
|
|
|
|
for (int i = 0; i < 1280; ++i) {
|
|
orig_pixels[i][0] = i;
|
|
orig_pixels[i][1] = i / 2;
|
|
orig_pixels[i][2] = i / 3;
|
|
orig_pixels[i][3] = i;
|
|
}
|
|
|
|
MaskCpuFlags(0);
|
|
ARGBPolynomial(&orig_pixels[0][0], 0, &dst_pixels_c[0][0], 0,
|
|
&kWarmifyPolynomial[0], 1280, 1);
|
|
MaskCpuFlags(-1);
|
|
|
|
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
|
|
ARGBPolynomial(&orig_pixels[0][0], 0, &dst_pixels_opt[0][0], 0,
|
|
&kWarmifyPolynomial[0], 1280, 1);
|
|
}
|
|
|
|
for (int i = 0; i < 1280; ++i) {
|
|
EXPECT_EQ(dst_pixels_c[i][0], dst_pixels_opt[i][0]);
|
|
EXPECT_EQ(dst_pixels_c[i][1], dst_pixels_opt[i][1]);
|
|
EXPECT_EQ(dst_pixels_c[i][2], dst_pixels_opt[i][2]);
|
|
EXPECT_EQ(dst_pixels_c[i][3], dst_pixels_opt[i][3]);
|
|
}
|
|
}
|
|
|
|
TEST_F(libyuvTest, TestARGBLumaColorTable) {
|
|
SIMD_ALIGNED(uint8 orig_pixels[1280][4]);
|
|
SIMD_ALIGNED(uint8 dst_pixels_opt[1280][4]);
|
|
SIMD_ALIGNED(uint8 dst_pixels_c[1280][4]);
|
|
memset(orig_pixels, 0, sizeof(orig_pixels));
|
|
|
|
align_buffer_64(lumacolortable, 32768);
|
|
int v = 0;
|
|
for (int i = 0; i < 32768; ++i) {
|
|
lumacolortable[i] = v;
|
|
v += 3;
|
|
}
|
|
// Test blue
|
|
orig_pixels[0][0] = 255u;
|
|
orig_pixels[0][1] = 0u;
|
|
orig_pixels[0][2] = 0u;
|
|
orig_pixels[0][3] = 128u;
|
|
// Test green
|
|
orig_pixels[1][0] = 0u;
|
|
orig_pixels[1][1] = 255u;
|
|
orig_pixels[1][2] = 0u;
|
|
orig_pixels[1][3] = 0u;
|
|
// Test red
|
|
orig_pixels[2][0] = 0u;
|
|
orig_pixels[2][1] = 0u;
|
|
orig_pixels[2][2] = 255u;
|
|
orig_pixels[2][3] = 255u;
|
|
// Test color
|
|
orig_pixels[3][0] = 16u;
|
|
orig_pixels[3][1] = 64u;
|
|
orig_pixels[3][2] = 192u;
|
|
orig_pixels[3][3] = 224u;
|
|
// Do 16 to test asm version.
|
|
ARGBLumaColorTable(&orig_pixels[0][0], 0, &dst_pixels_opt[0][0], 0,
|
|
&lumacolortable[0], 16, 1);
|
|
EXPECT_EQ(253u, dst_pixels_opt[0][0]);
|
|
EXPECT_EQ(0u, dst_pixels_opt[0][1]);
|
|
EXPECT_EQ(0u, dst_pixels_opt[0][2]);
|
|
EXPECT_EQ(128u, dst_pixels_opt[0][3]);
|
|
EXPECT_EQ(0u, dst_pixels_opt[1][0]);
|
|
EXPECT_EQ(253u, dst_pixels_opt[1][1]);
|
|
EXPECT_EQ(0u, dst_pixels_opt[1][2]);
|
|
EXPECT_EQ(0u, dst_pixels_opt[1][3]);
|
|
EXPECT_EQ(0u, dst_pixels_opt[2][0]);
|
|
EXPECT_EQ(0u, dst_pixels_opt[2][1]);
|
|
EXPECT_EQ(253u, dst_pixels_opt[2][2]);
|
|
EXPECT_EQ(255u, dst_pixels_opt[2][3]);
|
|
EXPECT_EQ(48u, dst_pixels_opt[3][0]);
|
|
EXPECT_EQ(192u, dst_pixels_opt[3][1]);
|
|
EXPECT_EQ(64u, dst_pixels_opt[3][2]);
|
|
EXPECT_EQ(224u, dst_pixels_opt[3][3]);
|
|
|
|
for (int i = 0; i < 1280; ++i) {
|
|
orig_pixels[i][0] = i;
|
|
orig_pixels[i][1] = i / 2;
|
|
orig_pixels[i][2] = i / 3;
|
|
orig_pixels[i][3] = i;
|
|
}
|
|
|
|
MaskCpuFlags(0);
|
|
ARGBLumaColorTable(&orig_pixels[0][0], 0, &dst_pixels_c[0][0], 0,
|
|
lumacolortable, 1280, 1);
|
|
MaskCpuFlags(-1);
|
|
|
|
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
|
|
ARGBLumaColorTable(&orig_pixels[0][0], 0, &dst_pixels_opt[0][0], 0,
|
|
lumacolortable, 1280, 1);
|
|
}
|
|
for (int i = 0; i < 1280; ++i) {
|
|
EXPECT_EQ(dst_pixels_c[i][0], dst_pixels_opt[i][0]);
|
|
EXPECT_EQ(dst_pixels_c[i][1], dst_pixels_opt[i][1]);
|
|
EXPECT_EQ(dst_pixels_c[i][2], dst_pixels_opt[i][2]);
|
|
EXPECT_EQ(dst_pixels_c[i][3], dst_pixels_opt[i][3]);
|
|
}
|
|
|
|
free_aligned_buffer_64(lumacolortable);
|
|
}
|
|
|
|
TEST_F(libyuvTest, TestARGBCopyAlpha) {
|
|
const int kSize = benchmark_width_ * benchmark_height_ * 4;
|
|
align_buffer_64(orig_pixels, kSize);
|
|
align_buffer_64(dst_pixels_opt, kSize);
|
|
align_buffer_64(dst_pixels_c, kSize);
|
|
|
|
MemRandomize(orig_pixels, kSize);
|
|
MemRandomize(dst_pixels_opt, kSize);
|
|
memcpy(dst_pixels_c, dst_pixels_opt, kSize);
|
|
|
|
MaskCpuFlags(0);
|
|
ARGBCopyAlpha(orig_pixels, benchmark_width_ * 4,
|
|
dst_pixels_c, benchmark_width_ * 4,
|
|
benchmark_width_, benchmark_height_);
|
|
MaskCpuFlags(-1);
|
|
|
|
for (int i = 0; i < benchmark_iterations_; ++i) {
|
|
ARGBCopyAlpha(orig_pixels, benchmark_width_ * 4,
|
|
dst_pixels_opt, benchmark_width_ * 4,
|
|
benchmark_width_, benchmark_height_);
|
|
}
|
|
for (int i = 0; i < kSize; ++i) {
|
|
EXPECT_EQ(dst_pixels_c[i], dst_pixels_opt[i]);
|
|
}
|
|
|
|
free_aligned_buffer_64(dst_pixels_c);
|
|
free_aligned_buffer_64(dst_pixels_opt);
|
|
free_aligned_buffer_64(orig_pixels);
|
|
}
|
|
|
|
TEST_F(libyuvTest, TestARGBCopyYToAlpha) {
|
|
const int kPixels = benchmark_width_ * benchmark_height_;
|
|
align_buffer_64(orig_pixels, kPixels);
|
|
align_buffer_64(dst_pixels_opt, kPixels * 4);
|
|
align_buffer_64(dst_pixels_c, kPixels * 4);
|
|
|
|
MemRandomize(orig_pixels, kPixels);
|
|
MemRandomize(dst_pixels_opt, kPixels * 4);
|
|
memcpy(dst_pixels_c, dst_pixels_opt, kPixels * 4);
|
|
|
|
MaskCpuFlags(0);
|
|
ARGBCopyYToAlpha(orig_pixels, benchmark_width_,
|
|
dst_pixels_c, benchmark_width_ * 4,
|
|
benchmark_width_, benchmark_height_);
|
|
MaskCpuFlags(-1);
|
|
|
|
for (int i = 0; i < benchmark_iterations_; ++i) {
|
|
ARGBCopyYToAlpha(orig_pixels, benchmark_width_,
|
|
dst_pixels_opt, benchmark_width_ * 4,
|
|
benchmark_width_, benchmark_height_);
|
|
}
|
|
for (int i = 0; i < kPixels * 4; ++i) {
|
|
EXPECT_EQ(dst_pixels_c[i], dst_pixels_opt[i]);
|
|
}
|
|
|
|
free_aligned_buffer_64(dst_pixels_c);
|
|
free_aligned_buffer_64(dst_pixels_opt);
|
|
free_aligned_buffer_64(orig_pixels);
|
|
}
|
|
|
|
} // namespace libyuv
|