gecko-dev/js/public/Value.h

1398 строки
41 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* JS::Value implementation. */
#ifndef js_Value_h
#define js_Value_h
#include "mozilla/Attributes.h"
#include "mozilla/Casting.h"
#include "mozilla/Compiler.h"
#include "mozilla/EndianUtils.h"
#include "mozilla/FloatingPoint.h"
#include "mozilla/Likely.h"
#include <limits> /* for std::numeric_limits */
#include "js-config.h"
#include "jstypes.h"
#include "js/GCAPI.h"
#include "js/RootingAPI.h"
#include "js/Utility.h"
namespace JS {
union Value;
}
/* JS::Value can store a full int32_t. */
#define JSVAL_INT_BITS 32
#define JSVAL_INT_MIN ((int32_t)0x80000000)
#define JSVAL_INT_MAX ((int32_t)0x7fffffff)
#if defined(JS_PUNBOX64)
# define JSVAL_TAG_SHIFT 47
#endif
// Use enums so that printing a JS::Value in the debugger shows nice
// symbolic type tags.
// Work around a GCC bug. See comment above #undef JS_ENUM_HEADER.
#if MOZ_IS_GCC
# define JS_ENUM_HEADER(id, type) enum id
# define JS_ENUM_FOOTER(id) __attribute__((packed))
#else
# define JS_ENUM_HEADER(id, type) enum id : type
# define JS_ENUM_FOOTER(id)
#endif
enum JSValueType : uint8_t {
JSVAL_TYPE_DOUBLE = 0x00,
JSVAL_TYPE_INT32 = 0x01,
JSVAL_TYPE_BOOLEAN = 0x02,
JSVAL_TYPE_UNDEFINED = 0x03,
JSVAL_TYPE_NULL = 0x04,
JSVAL_TYPE_MAGIC = 0x05,
JSVAL_TYPE_STRING = 0x06,
JSVAL_TYPE_SYMBOL = 0x07,
JSVAL_TYPE_PRIVATE_GCTHING = 0x08,
#ifdef ENABLE_BIGINT
JSVAL_TYPE_BIGINT = 0x09,
#endif
JSVAL_TYPE_OBJECT = 0x0c,
// These never appear in a jsval; they are only provided as an out-of-band
// value.
JSVAL_TYPE_UNKNOWN = 0x20,
JSVAL_TYPE_MISSING = 0x21
};
static_assert(sizeof(JSValueType) == 1,
"compiler typed enum support is apparently buggy");
#if defined(JS_NUNBOX32)
JS_ENUM_HEADER(JSValueTag, uint32_t){
JSVAL_TAG_CLEAR = 0xFFFFFF80,
JSVAL_TAG_INT32 = JSVAL_TAG_CLEAR | JSVAL_TYPE_INT32,
JSVAL_TAG_UNDEFINED = JSVAL_TAG_CLEAR | JSVAL_TYPE_UNDEFINED,
JSVAL_TAG_NULL = JSVAL_TAG_CLEAR | JSVAL_TYPE_NULL,
JSVAL_TAG_BOOLEAN = JSVAL_TAG_CLEAR | JSVAL_TYPE_BOOLEAN,
JSVAL_TAG_MAGIC = JSVAL_TAG_CLEAR | JSVAL_TYPE_MAGIC,
JSVAL_TAG_STRING = JSVAL_TAG_CLEAR | JSVAL_TYPE_STRING,
JSVAL_TAG_SYMBOL = JSVAL_TAG_CLEAR | JSVAL_TYPE_SYMBOL,
JSVAL_TAG_PRIVATE_GCTHING = JSVAL_TAG_CLEAR | JSVAL_TYPE_PRIVATE_GCTHING,
# ifdef ENABLE_BIGINT
JSVAL_TAG_BIGINT = JSVAL_TAG_CLEAR | JSVAL_TYPE_BIGINT,
# endif
JSVAL_TAG_OBJECT = JSVAL_TAG_CLEAR |
JSVAL_TYPE_OBJECT} JS_ENUM_FOOTER(JSValueTag);
static_assert(sizeof(JSValueTag) == sizeof(uint32_t),
"compiler typed enum support is apparently buggy");
#elif defined(JS_PUNBOX64)
JS_ENUM_HEADER(JSValueTag, uint32_t){
JSVAL_TAG_MAX_DOUBLE = 0x1FFF0,
JSVAL_TAG_INT32 = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_INT32,
JSVAL_TAG_UNDEFINED = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_UNDEFINED,
JSVAL_TAG_NULL = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_NULL,
JSVAL_TAG_BOOLEAN = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_BOOLEAN,
JSVAL_TAG_MAGIC = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_MAGIC,
JSVAL_TAG_STRING = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_STRING,
JSVAL_TAG_SYMBOL = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_SYMBOL,
JSVAL_TAG_PRIVATE_GCTHING = JSVAL_TAG_MAX_DOUBLE |
JSVAL_TYPE_PRIVATE_GCTHING,
# ifdef ENABLE_BIGINT
JSVAL_TAG_BIGINT = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_BIGINT,
# endif
JSVAL_TAG_OBJECT = JSVAL_TAG_MAX_DOUBLE |
JSVAL_TYPE_OBJECT} JS_ENUM_FOOTER(JSValueTag);
static_assert(sizeof(JSValueTag) == sizeof(uint32_t),
"compiler typed enum support is apparently buggy");
enum JSValueShiftedTag : uint64_t {
JSVAL_SHIFTED_TAG_MAX_DOUBLE =
((((uint64_t)JSVAL_TAG_MAX_DOUBLE) << JSVAL_TAG_SHIFT) | 0xFFFFFFFF),
JSVAL_SHIFTED_TAG_INT32 = (((uint64_t)JSVAL_TAG_INT32) << JSVAL_TAG_SHIFT),
JSVAL_SHIFTED_TAG_UNDEFINED =
(((uint64_t)JSVAL_TAG_UNDEFINED) << JSVAL_TAG_SHIFT),
JSVAL_SHIFTED_TAG_NULL = (((uint64_t)JSVAL_TAG_NULL) << JSVAL_TAG_SHIFT),
JSVAL_SHIFTED_TAG_BOOLEAN =
(((uint64_t)JSVAL_TAG_BOOLEAN) << JSVAL_TAG_SHIFT),
JSVAL_SHIFTED_TAG_MAGIC = (((uint64_t)JSVAL_TAG_MAGIC) << JSVAL_TAG_SHIFT),
JSVAL_SHIFTED_TAG_STRING = (((uint64_t)JSVAL_TAG_STRING) << JSVAL_TAG_SHIFT),
JSVAL_SHIFTED_TAG_SYMBOL = (((uint64_t)JSVAL_TAG_SYMBOL) << JSVAL_TAG_SHIFT),
JSVAL_SHIFTED_TAG_PRIVATE_GCTHING =
(((uint64_t)JSVAL_TAG_PRIVATE_GCTHING) << JSVAL_TAG_SHIFT),
# ifdef ENABLE_BIGINT
JSVAL_SHIFTED_TAG_BIGINT = (((uint64_t)JSVAL_TAG_BIGINT) << JSVAL_TAG_SHIFT),
# endif
JSVAL_SHIFTED_TAG_OBJECT = (((uint64_t)JSVAL_TAG_OBJECT) << JSVAL_TAG_SHIFT)
};
static_assert(sizeof(JSValueShiftedTag) == sizeof(uint64_t),
"compiler typed enum support is apparently buggy");
#endif
/*
* All our supported compilers implement C++11 |enum Foo : T| syntax, so don't
* expose these macros. (This macro exists *only* because gcc bug 51242
* <https://gcc.gnu.org/bugzilla/show_bug.cgi?id=51242> makes bit-fields of
* typed enums trigger a warning that can't be turned off. Don't expose it
* beyond this file!)
*/
#undef JS_ENUM_HEADER
#undef JS_ENUM_FOOTER
#if defined(JS_NUNBOX32)
# define JSVAL_TYPE_TO_TAG(type) ((JSValueTag)(JSVAL_TAG_CLEAR | (type)))
# define JSVAL_UPPER_EXCL_TAG_OF_PRIMITIVE_SET JSVAL_TAG_OBJECT
# define JSVAL_UPPER_INCL_TAG_OF_NUMBER_SET JSVAL_TAG_INT32
# define JSVAL_LOWER_INCL_TAG_OF_GCTHING_SET JSVAL_TAG_STRING
#elif defined(JS_PUNBOX64)
// This should only be used in toGCThing, see the 'Spectre mitigations' comment.
# define JSVAL_PAYLOAD_MASK_GCTHING 0x00007FFFFFFFFFFFLL
# define JSVAL_TAG_MASK 0xFFFF800000000000LL
# define JSVAL_TYPE_TO_TAG(type) ((JSValueTag)(JSVAL_TAG_MAX_DOUBLE | (type)))
# define JSVAL_TYPE_TO_SHIFTED_TAG(type) \
(((uint64_t)JSVAL_TYPE_TO_TAG(type)) << JSVAL_TAG_SHIFT)
# define JSVAL_UPPER_EXCL_TAG_OF_PRIMITIVE_SET JSVAL_TAG_OBJECT
# define JSVAL_UPPER_INCL_TAG_OF_NUMBER_SET JSVAL_TAG_INT32
# define JSVAL_LOWER_INCL_TAG_OF_GCTHING_SET JSVAL_TAG_STRING
# define JSVAL_UPPER_EXCL_SHIFTED_TAG_OF_PRIMITIVE_SET JSVAL_SHIFTED_TAG_OBJECT
# define JSVAL_UPPER_EXCL_SHIFTED_TAG_OF_NUMBER_SET JSVAL_SHIFTED_TAG_BOOLEAN
# define JSVAL_LOWER_INCL_SHIFTED_TAG_OF_GCTHING_SET JSVAL_SHIFTED_TAG_STRING
// JSVAL_TYPE_OBJECT and JSVAL_TYPE_NULL differ by one bit. We can use this to
// implement toObjectOrNull more efficiently.
# define JSVAL_OBJECT_OR_NULL_BIT (uint64_t(0x8) << JSVAL_TAG_SHIFT)
static_assert(
(JSVAL_SHIFTED_TAG_NULL ^ JSVAL_SHIFTED_TAG_OBJECT) ==
JSVAL_OBJECT_OR_NULL_BIT,
"JSVAL_OBJECT_OR_NULL_BIT must be consistent with object and null tags");
#endif /* JS_PUNBOX64 */
enum JSWhyMagic {
/** a hole in a native object's elements */
JS_ELEMENTS_HOLE,
/** there is not a pending iterator value */
JS_NO_ITER_VALUE,
/** exception value thrown when closing a generator */
JS_GENERATOR_CLOSING,
/** used in debug builds to catch tracing errors */
JS_ARG_POISON,
/** an empty subnode in the AST serializer */
JS_SERIALIZE_NO_NODE,
/** optimized-away 'arguments' value */
JS_OPTIMIZED_ARGUMENTS,
/** magic value passed to natives to indicate construction */
JS_IS_CONSTRUCTING,
/** see class js::HashableValue */
JS_HASH_KEY_EMPTY,
/** error while running Ion code */
JS_ION_ERROR,
/** missing recover instruction result */
JS_ION_BAILOUT,
/** optimized out slot */
JS_OPTIMIZED_OUT,
/** uninitialized lexical bindings that produce ReferenceError on touch. */
JS_UNINITIALIZED_LEXICAL,
/** standard constructors are not created for off-thread parsing. */
JS_OFF_THREAD_CONSTRUCTOR,
/** used in jit::TrySkipAwait */
JS_CANNOT_SKIP_AWAIT,
/** for local use */
JS_GENERIC_MAGIC,
JS_WHY_MAGIC_COUNT
};
namespace js {
static inline JS::Value PoisonedObjectValue(uintptr_t poison);
} // namespace js
namespace JS {
namespace detail {
constexpr int CanonicalizedNaNSignBit = 0;
constexpr uint64_t CanonicalizedNaNSignificand = 0x8000000000000ULL;
constexpr uint64_t CanonicalizedNaNBits =
mozilla::SpecificNaNBits<double, detail::CanonicalizedNaNSignBit,
detail::CanonicalizedNaNSignificand>::value;
} // namespace detail
/**
* Returns a generic quiet NaN value, with all payload bits set to zero.
*
* Among other properties, this NaN's bit pattern conforms to JS::Value's
* bit pattern restrictions.
*/
static MOZ_ALWAYS_INLINE double GenericNaN() {
return mozilla::SpecificNaN<double>(detail::CanonicalizedNaNSignBit,
detail::CanonicalizedNaNSignificand);
}
static inline double CanonicalizeNaN(double d) {
if (MOZ_UNLIKELY(mozilla::IsNaN(d))) {
return GenericNaN();
}
return d;
}
/**
* [SMDOC] JS::Value type
*
* JS::Value is the interface for a single JavaScript Engine value. A few
* general notes on JS::Value:
*
* - JS::Value has setX() and isX() members for X in
*
* { Int32, Double, String, Symbol, BigInt, Boolean, Undefined, Null,
* Object, Magic }
*
* JS::Value also contains toX() for each of the non-singleton types.
*
* - Magic is a singleton type whose payload contains either a JSWhyMagic
* "reason" for the magic value or a uint32_t value. By providing JSWhyMagic
* values when creating and checking for magic values, it is possible to
* assert, at runtime, that only magic values with the expected reason flow
* through a particular value. For example, if cx->exception has a magic
* value, the reason must be JS_GENERATOR_CLOSING.
*
* - The JS::Value operations are preferred. The JSVAL_* operations remain for
* compatibility; they may be removed at some point. These operations mostly
* provide similar functionality. But there are a few key differences. One
* is that JS::Value gives null a separate type.
* Also, to help prevent mistakenly boxing a nullable JSObject* as an object,
* Value::setObject takes a JSObject&. (Conversely, Value::toObject returns a
* JSObject&.) A convenience member Value::setObjectOrNull is provided.
*
* - Note that JS::Value is 8 bytes on 32 and 64-bit architectures. Thus, on
* 32-bit user code should avoid copying jsval/JS::Value as much as possible,
* preferring to pass by const Value&.
*
* Spectre mitigations
* ===================
* To mitigate Spectre attacks, we do the following:
*
* - On 64-bit platforms, when unboxing a Value, we XOR the bits with the
* expected type tag (instead of masking the payload bits). This guarantees
* that toString, toObject, toSymbol will return an invalid pointer (because
* some high bits will be set) when called on a Value with a different type
* tag.
*
* - On 32-bit platforms,when unboxing an object/string/symbol Value, we use a
* conditional move (not speculated) to zero the payload register if the type
* doesn't match.
*/
union alignas(8) Value {
private:
uint64_t asBits_;
double asDouble_;
#if defined(JS_PUNBOX64) && !defined(_WIN64)
// MSVC doesn't pack these correctly :-(
struct {
# if MOZ_LITTLE_ENDIAN
uint64_t payload47_ : 47;
JSValueTag tag_ : 17;
# else
JSValueTag tag_ : 17;
uint64_t payload47_ : 47;
# endif // MOZ_LITTLE_ENDIAN
} debugView_;
#endif // defined(JS_PUNBOX64) && !defined(_WIN64)
struct {
#if defined(JS_PUNBOX64)
# if MOZ_BIG_ENDIAN
uint32_t : 32; // padding
# endif // MOZ_BIG_ENDIAN
union {
int32_t i32_;
uint32_t u32_;
JSWhyMagic why_;
} payload_;
#elif defined(JS_NUNBOX32)
# if MOZ_BIG_ENDIAN
JSValueTag tag_;
# endif // MOZ_BIG_ENDIAN
union {
int32_t i32_;
uint32_t u32_;
uint32_t boo_; // Don't use |bool| -- it must be four bytes.
JSString* str_;
JS::Symbol* sym_;
# ifdef ENABLE_BIGINT
JS::BigInt* bi_;
# endif
JSObject* obj_;
js::gc::Cell* cell_;
void* ptr_;
JSWhyMagic why_;
} payload_;
# if MOZ_LITTLE_ENDIAN
JSValueTag tag_;
# endif // MOZ_LITTLE_ENDIAN
#endif // defined(JS_PUNBOX64)
} s_;
public:
constexpr Value() : asBits_(bitsFromTagAndPayload(JSVAL_TAG_UNDEFINED, 0)) {}
Value(const Value& v) = default;
private:
explicit constexpr Value(uint64_t asBits) : asBits_(asBits) {}
explicit constexpr Value(double d) : asDouble_(d) {}
static_assert(sizeof(JSValueType) == 1,
"type bits must fit in a single byte");
static_assert(sizeof(JSValueTag) == 4,
"32-bit Value's tag_ must have size 4 to complement the "
"payload union's size 4");
static_assert(sizeof(JSWhyMagic) <= 4,
"32-bit Value's JSWhyMagic payload field must not inflate "
"the payload beyond 4 bytes");
public:
#if defined(JS_NUNBOX32)
using PayloadType = uint32_t;
#elif defined(JS_PUNBOX64)
using PayloadType = uint64_t;
#endif
static constexpr uint64_t bitsFromTagAndPayload(JSValueTag tag,
PayloadType payload) {
#if defined(JS_NUNBOX32)
return (uint64_t(uint32_t(tag)) << 32) | payload;
#elif defined(JS_PUNBOX64)
return (uint64_t(uint32_t(tag)) << JSVAL_TAG_SHIFT) | payload;
#endif
}
static constexpr Value fromTagAndPayload(JSValueTag tag,
PayloadType payload) {
return fromRawBits(bitsFromTagAndPayload(tag, payload));
}
static constexpr Value fromRawBits(uint64_t asBits) { return Value(asBits); }
static constexpr Value fromInt32(int32_t i) {
return fromTagAndPayload(JSVAL_TAG_INT32, uint32_t(i));
}
static constexpr Value fromDouble(double d) { return Value(d); }
public:
/**
* Returns false if creating a NumberValue containing the given type would
* be lossy, true otherwise.
*/
template <typename T>
static bool isNumberRepresentable(const T t) {
return T(double(t)) == t;
}
/*** Mutators ***/
void setNull() { asBits_ = bitsFromTagAndPayload(JSVAL_TAG_NULL, 0); }
void setUndefined() {
asBits_ = bitsFromTagAndPayload(JSVAL_TAG_UNDEFINED, 0);
}
void setInt32(int32_t i) {
asBits_ = bitsFromTagAndPayload(JSVAL_TAG_INT32, uint32_t(i));
}
void setDouble(double d) {
// Don't assign to asDouble_ to fix a miscompilation with GCC 5.2.1 and
// 5.3.1. See bug 1312488.
*this = Value(d);
MOZ_ASSERT(isDouble());
}
void setNaN() { setDouble(GenericNaN()); }
void setString(JSString* str) {
MOZ_ASSERT(js::gc::IsCellPointerValid(str));
asBits_ = bitsFromTagAndPayload(JSVAL_TAG_STRING, PayloadType(str));
}
void setSymbol(JS::Symbol* sym) {
MOZ_ASSERT(js::gc::IsCellPointerValid(sym));
asBits_ = bitsFromTagAndPayload(JSVAL_TAG_SYMBOL, PayloadType(sym));
}
#ifdef ENABLE_BIGINT
void setBigInt(JS::BigInt* bi) {
MOZ_ASSERT(js::gc::IsCellPointerValid(bi));
asBits_ = bitsFromTagAndPayload(JSVAL_TAG_BIGINT, PayloadType(bi));
}
#endif
void setObject(JSObject& obj) {
MOZ_ASSERT(js::gc::IsCellPointerValid(&obj));
#if defined(JS_PUNBOX64)
// VisualStudio cannot contain parenthesized C++ style cast and shift
// inside decltype in template parameter:
// AssertionConditionType<decltype((uintptr_t(x) >> 1))>
// It throws syntax error.
MOZ_ASSERT((((uintptr_t)&obj) >> JSVAL_TAG_SHIFT) == 0);
#endif
setObjectNoCheck(&obj);
}
private:
void setObjectNoCheck(JSObject* obj) {
asBits_ = bitsFromTagAndPayload(JSVAL_TAG_OBJECT, PayloadType(obj));
}
friend inline Value js::PoisonedObjectValue(uintptr_t poison);
public:
void setBoolean(bool b) {
asBits_ = bitsFromTagAndPayload(JSVAL_TAG_BOOLEAN, uint32_t(b));
}
void setMagic(JSWhyMagic why) {
asBits_ = bitsFromTagAndPayload(JSVAL_TAG_MAGIC, uint32_t(why));
}
void setMagicUint32(uint32_t payload) {
asBits_ = bitsFromTagAndPayload(JSVAL_TAG_MAGIC, payload);
}
bool setNumber(uint32_t ui) {
if (ui > JSVAL_INT_MAX) {
setDouble((double)ui);
return false;
} else {
setInt32((int32_t)ui);
return true;
}
}
bool setNumber(double d) {
int32_t i;
if (mozilla::NumberIsInt32(d, &i)) {
setInt32(i);
return true;
}
setDouble(d);
return false;
}
void setObjectOrNull(JSObject* arg) {
if (arg) {
setObject(*arg);
} else {
setNull();
}
}
void swap(Value& rhs) {
uint64_t tmp = rhs.asBits_;
rhs.asBits_ = asBits_;
asBits_ = tmp;
}
private:
JSValueTag toTag() const {
#if defined(JS_NUNBOX32)
return s_.tag_;
#elif defined(JS_PUNBOX64)
return JSValueTag(asBits_ >> JSVAL_TAG_SHIFT);
#endif
}
public:
/*** JIT-only interfaces to interact with and create raw Values ***/
#if defined(JS_NUNBOX32)
PayloadType toNunboxPayload() const {
return static_cast<PayloadType>(s_.payload_.i32_);
}
JSValueTag toNunboxTag() const { return s_.tag_; }
#elif defined(JS_PUNBOX64)
const void* bitsAsPunboxPointer() const {
return reinterpret_cast<void*>(asBits_);
}
#endif
/*** Value type queries ***/
/*
* N.B. GCC, in some but not all cases, chooses to emit signed comparison
* of JSValueTag even though its underlying type has been forced to be
* uint32_t. Thus, all comparisons should explicitly cast operands to
* uint32_t.
*/
bool isUndefined() const {
#if defined(JS_NUNBOX32)
return toTag() == JSVAL_TAG_UNDEFINED;
#elif defined(JS_PUNBOX64)
return asBits_ == JSVAL_SHIFTED_TAG_UNDEFINED;
#endif
}
bool isNull() const {
#if defined(JS_NUNBOX32)
return toTag() == JSVAL_TAG_NULL;
#elif defined(JS_PUNBOX64)
return asBits_ == JSVAL_SHIFTED_TAG_NULL;
#endif
}
bool isNullOrUndefined() const { return isNull() || isUndefined(); }
bool isInt32() const { return toTag() == JSVAL_TAG_INT32; }
bool isInt32(int32_t i32) const {
return asBits_ == bitsFromTagAndPayload(JSVAL_TAG_INT32, uint32_t(i32));
}
bool isDouble() const {
#if defined(JS_NUNBOX32)
return uint32_t(toTag()) <= uint32_t(JSVAL_TAG_CLEAR);
#elif defined(JS_PUNBOX64)
return (asBits_ | mozilla::FloatingPoint<double>::kSignBit) <=
JSVAL_SHIFTED_TAG_MAX_DOUBLE;
#endif
}
bool isNumber() const {
#if defined(JS_NUNBOX32)
MOZ_ASSERT(toTag() != JSVAL_TAG_CLEAR);
return uint32_t(toTag()) <= uint32_t(JSVAL_UPPER_INCL_TAG_OF_NUMBER_SET);
#elif defined(JS_PUNBOX64)
return asBits_ < JSVAL_UPPER_EXCL_SHIFTED_TAG_OF_NUMBER_SET;
#endif
}
bool isString() const { return toTag() == JSVAL_TAG_STRING; }
bool isSymbol() const { return toTag() == JSVAL_TAG_SYMBOL; }
#ifdef ENABLE_BIGINT
bool isBigInt() const { return toTag() == JSVAL_TAG_BIGINT; }
#endif
bool isObject() const {
#if defined(JS_NUNBOX32)
return toTag() == JSVAL_TAG_OBJECT;
#elif defined(JS_PUNBOX64)
MOZ_ASSERT((asBits_ >> JSVAL_TAG_SHIFT) <= JSVAL_TAG_OBJECT);
return asBits_ >= JSVAL_SHIFTED_TAG_OBJECT;
#endif
}
bool isPrimitive() const {
#if defined(JS_NUNBOX32)
return uint32_t(toTag()) < uint32_t(JSVAL_UPPER_EXCL_TAG_OF_PRIMITIVE_SET);
#elif defined(JS_PUNBOX64)
return asBits_ < JSVAL_UPPER_EXCL_SHIFTED_TAG_OF_PRIMITIVE_SET;
#endif
}
bool isObjectOrNull() const { return isObject() || isNull(); }
bool isGCThing() const {
#if defined(JS_NUNBOX32)
/* gcc sometimes generates signed < without explicit casts. */
return uint32_t(toTag()) >= uint32_t(JSVAL_LOWER_INCL_TAG_OF_GCTHING_SET);
#elif defined(JS_PUNBOX64)
return asBits_ >= JSVAL_LOWER_INCL_SHIFTED_TAG_OF_GCTHING_SET;
#endif
}
bool isBoolean() const { return toTag() == JSVAL_TAG_BOOLEAN; }
bool isTrue() const {
return asBits_ == bitsFromTagAndPayload(JSVAL_TAG_BOOLEAN, uint32_t(true));
}
bool isFalse() const {
return asBits_ == bitsFromTagAndPayload(JSVAL_TAG_BOOLEAN, uint32_t(false));
}
bool isMagic() const { return toTag() == JSVAL_TAG_MAGIC; }
bool isMagic(JSWhyMagic why) const {
MOZ_ASSERT_IF(isMagic(), s_.payload_.why_ == why);
return isMagic();
}
JS::TraceKind traceKind() const {
MOZ_ASSERT(isGCThing());
static_assert((JSVAL_TAG_STRING & 0x03) == size_t(JS::TraceKind::String),
"Value type tags must correspond with JS::TraceKinds.");
static_assert((JSVAL_TAG_SYMBOL & 0x03) == size_t(JS::TraceKind::Symbol),
"Value type tags must correspond with JS::TraceKinds.");
static_assert((JSVAL_TAG_OBJECT & 0x03) == size_t(JS::TraceKind::Object),
"Value type tags must correspond with JS::TraceKinds.");
if (MOZ_UNLIKELY(isPrivateGCThing())) {
return JS::GCThingTraceKind(toGCThing());
}
#ifdef ENABLE_BIGINT
if (MOZ_UNLIKELY(isBigInt())) {
return JS::TraceKind::BigInt;
}
#endif
return JS::TraceKind(toTag() & 0x03);
}
JSWhyMagic whyMagic() const {
MOZ_ASSERT(isMagic());
return s_.payload_.why_;
}
uint32_t magicUint32() const {
MOZ_ASSERT(isMagic());
return s_.payload_.u32_;
}
/*** Comparison ***/
bool operator==(const Value& rhs) const { return asBits_ == rhs.asBits_; }
bool operator!=(const Value& rhs) const { return asBits_ != rhs.asBits_; }
friend inline bool SameType(const Value& lhs, const Value& rhs);
/*** Extract the value's typed payload ***/
int32_t toInt32() const {
MOZ_ASSERT(isInt32());
#if defined(JS_NUNBOX32)
return s_.payload_.i32_;
#elif defined(JS_PUNBOX64)
return int32_t(asBits_);
#endif
}
double toDouble() const {
MOZ_ASSERT(isDouble());
return asDouble_;
}
double toNumber() const {
MOZ_ASSERT(isNumber());
return isDouble() ? toDouble() : double(toInt32());
}
JSString* toString() const {
MOZ_ASSERT(isString());
#if defined(JS_NUNBOX32)
return s_.payload_.str_;
#elif defined(JS_PUNBOX64)
return reinterpret_cast<JSString*>(asBits_ ^ JSVAL_SHIFTED_TAG_STRING);
#endif
}
JS::Symbol* toSymbol() const {
MOZ_ASSERT(isSymbol());
#if defined(JS_NUNBOX32)
return s_.payload_.sym_;
#elif defined(JS_PUNBOX64)
return reinterpret_cast<JS::Symbol*>(asBits_ ^ JSVAL_SHIFTED_TAG_SYMBOL);
#endif
}
#ifdef ENABLE_BIGINT
JS::BigInt* toBigInt() const {
MOZ_ASSERT(isBigInt());
# if defined(JS_NUNBOX32)
return s_.payload_.bi_;
# elif defined(JS_PUNBOX64)
return reinterpret_cast<JS::BigInt*>(asBits_ ^ JSVAL_SHIFTED_TAG_BIGINT);
# endif
}
#endif
JSObject& toObject() const {
MOZ_ASSERT(isObject());
#if defined(JS_NUNBOX32)
return *s_.payload_.obj_;
#elif defined(JS_PUNBOX64)
uint64_t ptrBits = asBits_ ^ JSVAL_SHIFTED_TAG_OBJECT;
MOZ_ASSERT(ptrBits);
MOZ_ASSERT((ptrBits & 0x7) == 0);
return *reinterpret_cast<JSObject*>(ptrBits);
#endif
}
JSObject* toObjectOrNull() const {
MOZ_ASSERT(isObjectOrNull());
#if defined(JS_NUNBOX32)
return s_.payload_.obj_;
#elif defined(JS_PUNBOX64)
// Note: the 'Spectre mitigations' comment at the top of this class
// explains why we use XOR here and in other to* methods.
uint64_t ptrBits =
(asBits_ ^ JSVAL_SHIFTED_TAG_OBJECT) & ~JSVAL_OBJECT_OR_NULL_BIT;
MOZ_ASSERT((ptrBits & 0x7) == 0);
return reinterpret_cast<JSObject*>(ptrBits);
#endif
}
js::gc::Cell* toGCThing() const {
MOZ_ASSERT(isGCThing());
#if defined(JS_NUNBOX32)
return s_.payload_.cell_;
#elif defined(JS_PUNBOX64)
uint64_t ptrBits = asBits_ & JSVAL_PAYLOAD_MASK_GCTHING;
MOZ_ASSERT((ptrBits & 0x7) == 0);
return reinterpret_cast<js::gc::Cell*>(ptrBits);
#endif
}
GCCellPtr toGCCellPtr() const { return GCCellPtr(toGCThing(), traceKind()); }
bool toBoolean() const {
MOZ_ASSERT(isBoolean());
#if defined(JS_NUNBOX32)
return bool(s_.payload_.boo_);
#elif defined(JS_PUNBOX64)
return bool(int32_t(asBits_));
#endif
}
uint32_t payloadAsRawUint32() const {
MOZ_ASSERT(!isDouble());
return s_.payload_.u32_;
}
uint64_t asRawBits() const { return asBits_; }
JSValueType extractNonDoubleType() const {
uint32_t type = toTag() & 0xF;
MOZ_ASSERT(type > JSVAL_TYPE_DOUBLE);
return JSValueType(type);
}
/*
* Private API
*
* Private setters/getters allow the caller to read/write arbitrary types
* that fit in the 64-bit payload. It is the caller's responsibility, after
* storing to a value with setPrivateX to read only using getPrivateX.
* Privates values are given a type which ensures they are not marked.
*/
void setPrivate(void* ptr) {
MOZ_ASSERT((uintptr_t(ptr) & 1) == 0);
#if defined(JS_NUNBOX32)
s_.tag_ = JSValueTag(0);
s_.payload_.ptr_ = ptr;
#elif defined(JS_PUNBOX64)
asBits_ = uintptr_t(ptr) >> 1;
#endif
MOZ_ASSERT(isDouble());
}
void* toPrivate() const {
MOZ_ASSERT(isDouble());
#if defined(JS_NUNBOX32)
return s_.payload_.ptr_;
#elif defined(JS_PUNBOX64)
MOZ_ASSERT((asBits_ & 0x8000000000000000ULL) == 0);
return reinterpret_cast<void*>(asBits_ << 1);
#endif
}
void setPrivateUint32(uint32_t ui) {
MOZ_ASSERT(uint32_t(int32_t(ui)) == ui);
setInt32(int32_t(ui));
}
uint32_t toPrivateUint32() const { return uint32_t(toInt32()); }
/*
* Private GC Thing API
*
* Non-JSObject, JSString, and JS::Symbol cells may be put into the 64-bit
* payload as private GC things. Such Values are considered isGCThing(), and
* as such, automatically marked. Their traceKind() is gotten via their
* cells.
*/
void setPrivateGCThing(js::gc::Cell* cell) {
MOZ_ASSERT(JS::GCThingTraceKind(cell) != JS::TraceKind::String,
"Private GC thing Values must not be strings. Make a "
"StringValue instead.");
MOZ_ASSERT(JS::GCThingTraceKind(cell) != JS::TraceKind::Symbol,
"Private GC thing Values must not be symbols. Make a "
"SymbolValue instead.");
#ifdef ENABLE_BIGINT
MOZ_ASSERT(JS::GCThingTraceKind(cell) != JS::TraceKind::BigInt,
"Private GC thing Values must not be BigInts. Make a "
"BigIntValue instead.");
#endif
MOZ_ASSERT(JS::GCThingTraceKind(cell) != JS::TraceKind::Object,
"Private GC thing Values must not be objects. Make an "
"ObjectValue instead.");
MOZ_ASSERT(js::gc::IsCellPointerValid(cell));
#if defined(JS_PUNBOX64)
// VisualStudio cannot contain parenthesized C++ style cast and shift
// inside decltype in template parameter:
// AssertionConditionType<decltype((uintptr_t(x) >> 1))>
// It throws syntax error.
MOZ_ASSERT((((uintptr_t)cell) >> JSVAL_TAG_SHIFT) == 0);
#endif
asBits_ =
bitsFromTagAndPayload(JSVAL_TAG_PRIVATE_GCTHING, PayloadType(cell));
}
bool isPrivateGCThing() const { return toTag() == JSVAL_TAG_PRIVATE_GCTHING; }
} JS_HAZ_GC_POINTER MOZ_NON_PARAM;
static_assert(sizeof(Value) == 8,
"Value size must leave three tag bits, be a binary power, and "
"is ubiquitously depended upon everywhere");
inline bool IsOptimizedPlaceholderMagicValue(const Value& v) {
if (v.isMagic()) {
MOZ_ASSERT(v.whyMagic() == JS_OPTIMIZED_ARGUMENTS ||
v.whyMagic() == JS_OPTIMIZED_OUT);
return true;
}
return false;
}
static MOZ_ALWAYS_INLINE void ExposeValueToActiveJS(const Value& v) {
#ifdef DEBUG
Value tmp = v;
MOZ_ASSERT(!js::gc::EdgeNeedsSweepUnbarrieredSlow(&tmp));
#endif
if (v.isGCThing()) {
js::gc::ExposeGCThingToActiveJS(GCCellPtr(v));
}
}
/************************************************************************/
static inline MOZ_MAY_CALL_AFTER_MUST_RETURN Value NullValue() {
Value v;
v.setNull();
return v;
}
static inline constexpr Value UndefinedValue() { return Value(); }
static inline constexpr Value Int32Value(int32_t i32) {
return Value::fromInt32(i32);
}
static inline Value DoubleValue(double dbl) {
Value v;
v.setDouble(dbl);
return v;
}
static inline Value CanonicalizedDoubleValue(double d) {
return MOZ_UNLIKELY(mozilla::IsNaN(d))
? Value::fromRawBits(detail::CanonicalizedNaNBits)
: Value::fromDouble(d);
}
static inline bool IsCanonicalized(double d) {
if (mozilla::IsInfinite(d) || mozilla::IsFinite(d)) {
return true;
}
uint64_t bits;
mozilla::BitwiseCast<uint64_t>(d, &bits);
return (bits & ~mozilla::FloatingPoint<double>::kSignBit) ==
detail::CanonicalizedNaNBits;
}
static inline Value DoubleNaNValue() {
Value v;
v.setNaN();
return v;
}
static inline Value Float32Value(float f) {
Value v;
v.setDouble(f);
return v;
}
static inline Value StringValue(JSString* str) {
Value v;
v.setString(str);
return v;
}
static inline Value SymbolValue(JS::Symbol* sym) {
Value v;
v.setSymbol(sym);
return v;
}
#ifdef ENABLE_BIGINT
static inline Value BigIntValue(JS::BigInt* bi) {
Value v;
v.setBigInt(bi);
return v;
}
#endif
static inline Value BooleanValue(bool boo) {
Value v;
v.setBoolean(boo);
return v;
}
static inline Value TrueValue() {
Value v;
v.setBoolean(true);
return v;
}
static inline Value FalseValue() {
Value v;
v.setBoolean(false);
return v;
}
static inline Value ObjectValue(JSObject& obj) {
Value v;
v.setObject(obj);
return v;
}
static inline Value MagicValue(JSWhyMagic why) {
Value v;
v.setMagic(why);
return v;
}
static inline Value MagicValueUint32(uint32_t payload) {
Value v;
v.setMagicUint32(payload);
return v;
}
static inline Value NumberValue(float f) {
Value v;
v.setNumber(f);
return v;
}
static inline Value NumberValue(double dbl) {
Value v;
v.setNumber(dbl);
return v;
}
static inline Value NumberValue(int8_t i) { return Int32Value(i); }
static inline Value NumberValue(uint8_t i) { return Int32Value(i); }
static inline Value NumberValue(int16_t i) { return Int32Value(i); }
static inline Value NumberValue(uint16_t i) { return Int32Value(i); }
static inline Value NumberValue(int32_t i) { return Int32Value(i); }
static inline constexpr Value NumberValue(uint32_t i) {
return i <= JSVAL_INT_MAX ? Int32Value(int32_t(i))
: Value::fromDouble(double(i));
}
namespace detail {
template <bool Signed>
class MakeNumberValue {
public:
template <typename T>
static inline Value create(const T t) {
Value v;
if (JSVAL_INT_MIN <= t && t <= JSVAL_INT_MAX) {
v.setInt32(int32_t(t));
} else {
v.setDouble(double(t));
}
return v;
}
};
template <>
class MakeNumberValue<false> {
public:
template <typename T>
static inline Value create(const T t) {
Value v;
if (t <= JSVAL_INT_MAX) {
v.setInt32(int32_t(t));
} else {
v.setDouble(double(t));
}
return v;
}
};
} // namespace detail
template <typename T>
static inline Value NumberValue(const T t) {
MOZ_ASSERT(Value::isNumberRepresentable(t), "value creation would be lossy");
return detail::MakeNumberValue<std::numeric_limits<T>::is_signed>::create(t);
}
static inline Value ObjectOrNullValue(JSObject* obj) {
Value v;
v.setObjectOrNull(obj);
return v;
}
static inline Value PrivateValue(void* ptr) {
Value v;
v.setPrivate(ptr);
return v;
}
static inline Value PrivateUint32Value(uint32_t ui) {
Value v;
v.setPrivateUint32(ui);
return v;
}
static inline Value PrivateGCThingValue(js::gc::Cell* cell) {
Value v;
v.setPrivateGCThing(cell);
return v;
}
inline bool SameType(const Value& lhs, const Value& rhs) {
#if defined(JS_NUNBOX32)
JSValueTag ltag = lhs.toTag(), rtag = rhs.toTag();
return ltag == rtag || (ltag < JSVAL_TAG_CLEAR && rtag < JSVAL_TAG_CLEAR);
#elif defined(JS_PUNBOX64)
return (lhs.isDouble() && rhs.isDouble()) ||
(((lhs.asBits_ ^ rhs.asBits_) & 0xFFFF800000000000ULL) == 0);
#endif
}
} // namespace JS
/************************************************************************/
namespace JS {
JS_PUBLIC_API void HeapValuePostBarrier(Value* valuep, const Value& prev,
const Value& next);
template <>
struct GCPolicy<JS::Value> {
static void trace(JSTracer* trc, Value* v, const char* name) {
js::UnsafeTraceManuallyBarrieredEdge(trc, v, name);
}
static bool isTenured(const Value& thing) {
return !thing.isGCThing() || !IsInsideNursery(thing.toGCThing());
}
static bool isValid(const Value& value) {
return !value.isGCThing() || js::gc::IsCellPointerValid(value.toGCThing());
}
};
} // namespace JS
namespace js {
template <>
struct BarrierMethods<JS::Value> {
static gc::Cell* asGCThingOrNull(const JS::Value& v) {
return v.isGCThing() ? v.toGCThing() : nullptr;
}
static void postBarrier(JS::Value* v, const JS::Value& prev,
const JS::Value& next) {
JS::HeapValuePostBarrier(v, prev, next);
}
static void exposeToJS(const JS::Value& v) { JS::ExposeValueToActiveJS(v); }
};
template <class Wrapper>
class MutableValueOperations;
/**
* A class designed for CRTP use in implementing the non-mutating parts of the
* Value interface in Value-like classes. Wrapper must be a class inheriting
* ValueOperations<Wrapper> with a visible get() method returning a const
* reference to the Value abstracted by Wrapper.
*/
template <class Wrapper>
class WrappedPtrOperations<JS::Value, Wrapper> {
const JS::Value& value() const {
return static_cast<const Wrapper*>(this)->get();
}
public:
bool isUndefined() const { return value().isUndefined(); }
bool isNull() const { return value().isNull(); }
bool isBoolean() const { return value().isBoolean(); }
bool isTrue() const { return value().isTrue(); }
bool isFalse() const { return value().isFalse(); }
bool isNumber() const { return value().isNumber(); }
bool isInt32() const { return value().isInt32(); }
bool isInt32(int32_t i32) const { return value().isInt32(i32); }
bool isDouble() const { return value().isDouble(); }
bool isString() const { return value().isString(); }
bool isSymbol() const { return value().isSymbol(); }
#ifdef ENABLE_BIGINT
bool isBigInt() const { return value().isBigInt(); }
#endif
bool isObject() const { return value().isObject(); }
bool isMagic() const { return value().isMagic(); }
bool isMagic(JSWhyMagic why) const { return value().isMagic(why); }
bool isGCThing() const { return value().isGCThing(); }
bool isPrimitive() const { return value().isPrimitive(); }
bool isNullOrUndefined() const { return value().isNullOrUndefined(); }
bool isObjectOrNull() const { return value().isObjectOrNull(); }
bool toBoolean() const { return value().toBoolean(); }
double toNumber() const { return value().toNumber(); }
int32_t toInt32() const { return value().toInt32(); }
double toDouble() const { return value().toDouble(); }
JSString* toString() const { return value().toString(); }
JS::Symbol* toSymbol() const { return value().toSymbol(); }
#ifdef ENABLE_BIGINT
JS::BigInt* toBigInt() const { return value().toBigInt(); }
#endif
JSObject& toObject() const { return value().toObject(); }
JSObject* toObjectOrNull() const { return value().toObjectOrNull(); }
gc::Cell* toGCThing() const { return value().toGCThing(); }
JS::TraceKind traceKind() const { return value().traceKind(); }
void* toPrivate() const { return value().toPrivate(); }
uint32_t toPrivateUint32() const { return value().toPrivateUint32(); }
uint64_t asRawBits() const { return value().asRawBits(); }
JSValueType extractNonDoubleType() const {
return value().extractNonDoubleType();
}
JSWhyMagic whyMagic() const { return value().whyMagic(); }
uint32_t magicUint32() const { return value().magicUint32(); }
};
/**
* A class designed for CRTP use in implementing all the mutating parts of the
* Value interface in Value-like classes. Wrapper must be a class inheriting
* MutableWrappedPtrOperations<Wrapper> with visible get() methods returning
* const and non-const references to the Value abstracted by Wrapper.
*/
template <class Wrapper>
class MutableWrappedPtrOperations<JS::Value, Wrapper>
: public WrappedPtrOperations<JS::Value, Wrapper> {
JS::Value& value() { return static_cast<Wrapper*>(this)->get(); }
public:
void setNull() { value().setNull(); }
void setUndefined() { value().setUndefined(); }
void setInt32(int32_t i) { value().setInt32(i); }
void setDouble(double d) { value().setDouble(d); }
void setNaN() { setDouble(JS::GenericNaN()); }
void setBoolean(bool b) { value().setBoolean(b); }
void setMagic(JSWhyMagic why) { value().setMagic(why); }
bool setNumber(uint32_t ui) { return value().setNumber(ui); }
bool setNumber(double d) { return value().setNumber(d); }
void setString(JSString* str) { this->value().setString(str); }
void setSymbol(JS::Symbol* sym) { this->value().setSymbol(sym); }
#ifdef ENABLE_BIGINT
void setBigInt(JS::BigInt* bi) { this->value().setBigInt(bi); }
#endif
void setObject(JSObject& obj) { this->value().setObject(obj); }
void setObjectOrNull(JSObject* arg) { this->value().setObjectOrNull(arg); }
void setPrivate(void* ptr) { this->value().setPrivate(ptr); }
void setPrivateUint32(uint32_t ui) { this->value().setPrivateUint32(ui); }
void setPrivateGCThing(js::gc::Cell* cell) {
this->value().setPrivateGCThing(cell);
}
};
/*
* Augment the generic Heap<T> interface when T = Value with
* type-querying, value-extracting, and mutating operations.
*/
template <typename Wrapper>
class HeapBase<JS::Value, Wrapper>
: public WrappedPtrOperations<JS::Value, Wrapper> {
void setBarriered(const JS::Value& v) {
*static_cast<JS::Heap<JS::Value>*>(this) = v;
}
public:
void setNull() { setBarriered(JS::NullValue()); }
void setUndefined() { setBarriered(JS::UndefinedValue()); }
void setInt32(int32_t i) { setBarriered(JS::Int32Value(i)); }
void setDouble(double d) { setBarriered(JS::DoubleValue(d)); }
void setNaN() { setDouble(JS::GenericNaN()); }
void setBoolean(bool b) { setBarriered(JS::BooleanValue(b)); }
void setMagic(JSWhyMagic why) { setBarriered(JS::MagicValue(why)); }
void setString(JSString* str) { setBarriered(JS::StringValue(str)); }
void setSymbol(JS::Symbol* sym) { setBarriered(JS::SymbolValue(sym)); }
#ifdef ENABLE_BIGINT
void setBigInt(JS::BigInt* bi) { setBarriered(JS::BigIntValue(bi)); }
#endif
void setObject(JSObject& obj) { setBarriered(JS::ObjectValue(obj)); }
void setPrivateGCThing(js::gc::Cell* cell) {
setBarriered(JS::PrivateGCThingValue(cell));
}
bool setNumber(uint32_t ui) {
if (ui > JSVAL_INT_MAX) {
setDouble((double)ui);
return false;
} else {
setInt32((int32_t)ui);
return true;
}
}
bool setNumber(double d) {
int32_t i;
if (mozilla::NumberIsInt32(d, &i)) {
setInt32(i);
return true;
}
setDouble(d);
return false;
}
void setObjectOrNull(JSObject* arg) {
if (arg) {
setObject(*arg);
} else {
setNull();
}
}
};
/*
* If the Value is a GC pointer type, convert to that type and call |f| with
* the pointer. If the Value is not a GC type, calls F::defaultValue.
*/
template <typename F, typename... Args>
auto DispatchTyped(F f, const JS::Value& val, Args&&... args)
-> decltype(f(static_cast<JSObject*>(nullptr),
std::forward<Args>(args)...)) {
if (val.isString()) {
JSString* str = val.toString();
MOZ_ASSERT(gc::IsCellPointerValid(str));
return f(str, std::forward<Args>(args)...);
}
if (val.isObject()) {
JSObject* obj = &val.toObject();
MOZ_ASSERT(gc::IsCellPointerValid(obj));
return f(obj, std::forward<Args>(args)...);
}
if (val.isSymbol()) {
JS::Symbol* sym = val.toSymbol();
MOZ_ASSERT(gc::IsCellPointerValid(sym));
return f(sym, std::forward<Args>(args)...);
}
#ifdef ENABLE_BIGINT
if (val.isBigInt()) {
JS::BigInt* bi = val.toBigInt();
MOZ_ASSERT(gc::IsCellPointerValid(bi));
return f(bi, std::forward<Args>(args)...);
}
#endif
if (MOZ_UNLIKELY(val.isPrivateGCThing())) {
MOZ_ASSERT(gc::IsCellPointerValid(val.toGCThing()));
return DispatchTyped(f, val.toGCCellPtr(), std::forward<Args>(args)...);
}
MOZ_ASSERT(!val.isGCThing());
return F::defaultValue(val);
}
template <class S>
struct VoidDefaultAdaptor {
static void defaultValue(const S&) {}
};
template <class S>
struct IdentityDefaultAdaptor {
static S defaultValue(const S& v) { return v; }
};
template <class S, bool v>
struct BoolDefaultAdaptor {
static bool defaultValue(const S&) { return v; }
};
static inline JS::Value PoisonedObjectValue(uintptr_t poison) {
JS::Value v;
v.setObjectNoCheck(reinterpret_cast<JSObject*>(poison));
return v;
}
} // namespace js
#ifdef DEBUG
namespace JS {
MOZ_ALWAYS_INLINE void AssertValueIsNotGray(const Value& value) {
if (value.isGCThing()) {
AssertCellIsNotGray(value.toGCThing());
}
}
MOZ_ALWAYS_INLINE void AssertValueIsNotGray(const Heap<Value>& value) {
AssertValueIsNotGray(value.unbarrieredGet());
}
} // namespace JS
#endif
/************************************************************************/
namespace JS {
extern JS_PUBLIC_DATA const HandleValue NullHandleValue;
extern JS_PUBLIC_DATA const HandleValue UndefinedHandleValue;
extern JS_PUBLIC_DATA const HandleValue TrueHandleValue;
extern JS_PUBLIC_DATA const HandleValue FalseHandleValue;
} // namespace JS
#endif /* js_Value_h */