gecko-dev/python/PyECC/ecc/ecdsa.py

154 строки
4.3 KiB
Python

#
# Elliptic Curve Digital Signature Algorithm (ECDSA)
#
# COPYRIGHT (c) 2010 by Toni Mattis <solaris@live.de>
#
from elliptic import inv, mulf, mulp, muladdp, element
from curves import get_curve, implemented_keys
from os import urandom
import hashlib
def randkey(bits, n):
'''Generate a random number (mod n) having the specified bit length'''
rb = urandom(bits / 8 + 8) # + 64 bits as recommended in FIPS 186-3
c = 0
for r in rb:
c = (c << 8) | ord(r)
return (c % (n - 1)) + 1
def keypair(bits):
'''Generate a new keypair (qk, dk) with dk = private and qk = public key'''
try:
bits, cn, n, cp, cq, g = get_curve(bits)
except KeyError:
raise ValueError, "Key size %s not implemented" % bits
if n > 0:
d = randkey(bits, n)
q = mulp(cp, cq, cn, g, d)
return (bits, q), (bits, d)
else:
raise ValueError, "Key size %s not suitable for signing" % bits
def supported_keys():
'''Return a list of all key sizes implemented for signing'''
return implemented_keys(True)
def validate_public_key(qk):
'''Check whether public key qk is valid'''
bits, q = qk
x, y = q
bits, cn, n, cp, cq, g = get_curve(bits)
return q and 0 < x < cn and 0 < y < cn and \
element(q, cp, cq, cn) and (mulp(cp, cq, cn, q, n) == None)
def validate_private_key(dk):
'''Check whether private key dk is valid'''
bits, d = dk
bits, cn, n, cp, cq, g = get_curve(bits)
return 0 < d < cn
def match_keys(qk, dk):
'''Check whether dk is the private key belonging to qk'''
bits, d = dk
bitz, q = qk
if bits == bitz:
bits, cn, n, cp, cq, g = get_curve(bits)
return mulp(cp, cq, cn, g, d) == q
else:
return False
def truncate(h, hmax):
'''Truncate a hash to the bit size of hmax'''
while h > hmax:
h >>= 1
return h
def sign(h, dk):
'''Sign the numeric value h using private key dk'''
bits, d = dk
bits, cn, n, cp, cq, g = get_curve(bits)
h = truncate(h, cn)
r = s = 0
while r == 0 or s == 0:
k = randkey(bits, cn)
kinv = inv(k, n)
kg = mulp(cp, cq, cn, g, k)
r = kg[0] % n
if r == 0:
continue
s = (kinv * (h + r * d)) % n
return r, s
def verify(h, sig, qk):
'''Verify that 'sig' is a valid signature of h using public key qk'''
bits, q = qk
try:
bits, cn, n, cp, cq, g = get_curve(bits)
except KeyError:
return False
h = truncate(h, cn)
r, s = sig
if 0 < r < n and 0 < s < n:
w = inv(s, n)
u1 = (h * w) % n
u2 = (r * w) % n
x, y = muladdp(cp, cq, cn, g, u1, q, u2)
return r % n == x % n
return False
def hash_sign(s, dk, hashfunc = 'sha256'):
h = int(hashlib.new(hashfunc, s).hexdigest(), 16)
return (hashfunc,) + sign(h, dk)
def hash_verify(s, sig, qk):
h = int(hashlib.new(sig[0], s).hexdigest(), 16)
return verify(h, sig[1:], qk)
if __name__ == "__main__":
import time
testh1 = 0x0123456789ABCDEF
testh2 = 0x0123456789ABCDEE
for k in supported_keys():
qk, dk = keypair(k)
s1 = sign(testh1, dk)
s2 = sign(testh1, (dk[0], dk[1] ^ 1))
s3 = (s1[0], s1[1] ^ 1)
qk2 = (qk[0], (qk[1][0] ^ 1, qk[1][1]))
assert verify(testh1, s1, qk) # everything ok -> must succeed
assert not verify(testh2, s1, qk) # modified hash -> must fail
assert not verify(testh1, s2, qk) # different priv. key -> must fail
assert not verify(testh1, s3, qk) # modified signature -> must fail
assert not verify(testh1, s1, qk2) # different publ. key -> must fail
def test_perf(bits, rounds = 50):
'''-> (key generations, signatures, verifications) / second'''
h = 0x0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
d = get_curve(bits)
t = time.time()
for i in xrange(rounds):
qk, dk = keypair(bits)
tgen = time.time() - t
t = time.time()
for i in xrange(rounds):
s = sign(0, dk)
tsign = time.time() - t
t = time.time()
for i in xrange(rounds):
verify(0, s, qk)
tver = time.time() - t
return rounds / tgen, rounds / tsign, rounds / tver