gecko-dev/dom/base/nsDocumentEncoder.cpp

1828 строки
59 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/*
* Object that can be used to serialize selections, ranges, or nodes
* to strings in a gazillion different ways.
*/
#include "nsIDocumentEncoder.h"
#include <utility>
#include "nscore.h"
#include "nsIFactory.h"
#include "nsISupports.h"
#include "mozilla/dom/Document.h"
#include "nsCOMPtr.h"
#include "nsIContentSerializer.h"
#include "mozilla/Encoding.h"
#include "nsIOutputStream.h"
#include "nsRange.h"
#include "nsGkAtoms.h"
#include "nsHTMLDocument.h"
#include "nsIContent.h"
#include "nsIScriptContext.h"
#include "nsIScriptGlobalObject.h"
#include "nsIScriptSecurityManager.h"
#include "mozilla/dom/Selection.h"
#include "nsITransferable.h" // for kUnicodeMime
#include "nsContentUtils.h"
#include "nsElementTable.h"
#include "nsNodeUtils.h"
#include "nsUnicharUtils.h"
#include "nsReadableUtils.h"
#include "nsTArray.h"
#include "nsIFrame.h"
#include "nsStringBuffer.h"
#include "mozilla/dom/Comment.h"
#include "mozilla/dom/DocumentType.h"
#include "mozilla/dom/Element.h"
#include "mozilla/dom/ProcessingInstruction.h"
#include "mozilla/dom/ShadowRoot.h"
#include "mozilla/dom/Text.h"
#include "nsLayoutUtils.h"
#include "mozilla/Maybe.h"
#include "mozilla/ScopeExit.h"
using namespace mozilla;
using namespace mozilla::dom;
enum nsRangeIterationDirection { kDirectionOut = -1, kDirectionIn = 1 };
class TextStreamer {
public:
/**
* @param aStream Will be kept alive by the TextStreamer.
* @param aUnicodeEncoder Needs to be non-nullptr.
*/
TextStreamer(nsIOutputStream& aStream, UniquePtr<Encoder> aUnicodeEncoder,
bool aIsPlainText);
/**
* @param aString Will be truncated if aString is written to stream.
*/
nsresult FlushIfStringLongEnough(nsAString& aString);
/**
* @param aString Will be truncated.
*/
nsresult ForceFlush(nsAString& aString);
private:
const static uint32_t kMaxLengthBeforeFlush = 1024;
const static uint32_t kEncoderBufferSizeInBytes = 4096;
nsresult EncodeAndWrite(const nsAString& aString);
nsresult EncodeAndWriteAndTruncate(nsAString& aString);
const nsCOMPtr<nsIOutputStream> mStream;
const UniquePtr<Encoder> mUnicodeEncoder;
const bool mIsPlainText;
};
TextStreamer::TextStreamer(nsIOutputStream& aStream,
UniquePtr<Encoder> aUnicodeEncoder,
bool aIsPlainText)
: mStream{&aStream},
mUnicodeEncoder(std::move(aUnicodeEncoder)),
mIsPlainText(aIsPlainText) {
MOZ_ASSERT(mUnicodeEncoder);
}
nsresult TextStreamer::FlushIfStringLongEnough(nsAString& aString) {
nsresult rv = NS_OK;
if (aString.Length() > kMaxLengthBeforeFlush) {
rv = EncodeAndWriteAndTruncate(aString);
}
return rv;
}
nsresult TextStreamer::ForceFlush(nsAString& aString) {
return EncodeAndWriteAndTruncate(aString);
}
nsresult TextStreamer::EncodeAndWrite(const nsAString& aString) {
if (aString.IsEmpty()) {
return NS_OK;
}
uint8_t buffer[kEncoderBufferSizeInBytes];
auto src = MakeSpan(aString);
auto bufferSpan = MakeSpan(buffer);
// Reserve space for terminator
auto dst = bufferSpan.To(bufferSpan.Length() - 1);
for (;;) {
uint32_t result;
size_t read;
size_t written;
bool hadErrors;
if (mIsPlainText) {
Tie(result, read, written) =
mUnicodeEncoder->EncodeFromUTF16WithoutReplacement(src, dst, false);
if (result != kInputEmpty && result != kOutputFull) {
// There's always room for one byte in the case of
// an unmappable character, because otherwise
// we'd have gotten `kOutputFull`.
dst[written++] = '?';
}
} else {
Tie(result, read, written, hadErrors) =
mUnicodeEncoder->EncodeFromUTF16(src, dst, false);
}
Unused << hadErrors;
src = src.From(read);
// Sadly, we still have test cases that implement nsIOutputStream in JS, so
// the buffer needs to be zero-terminated for XPConnect to do its thing.
// See bug 170416.
bufferSpan[written] = 0;
uint32_t streamWritten;
nsresult rv = mStream->Write(reinterpret_cast<char*>(dst.Elements()),
written, &streamWritten);
if (NS_FAILED(rv)) {
return rv;
}
if (result == kInputEmpty) {
return NS_OK;
}
}
}
nsresult TextStreamer::EncodeAndWriteAndTruncate(nsAString& aString) {
const nsresult rv = EncodeAndWrite(aString);
aString.Truncate();
return rv;
}
/**
* The scope may be limited to either a selection, range, or node.
*/
class EncodingScope {
public:
/**
* @return true, iff the scope is limited to a selection, range or node.
*/
bool IsLimited() const;
RefPtr<Selection> mSelection;
RefPtr<nsRange> mRange;
nsCOMPtr<nsINode> mNode;
bool mNodeIsContainer = false;
};
bool EncodingScope::IsLimited() const { return mSelection || mRange || mNode; }
struct RangeBoundaryPathsAndOffsets {
using ContainerPath = AutoTArray<nsIContent*, 8>;
using ContainerOffsets = AutoTArray<int32_t, 8>;
// The first node is the range's boundary node, the following ones the
// ancestors.
ContainerPath mStartContainerPath;
// The first offset represents where at the boundary node the range starts.
// Each other offset is the index of the child relative to its parent.
ContainerOffsets mStartContainerOffsets;
// The first node is the range's boundary node, the following one the
// ancestors.
ContainerPath mEndContainerPath;
// The first offset represents where at the boundary node the range ends.
// Each other offset is the index of the child relative to its parent.
ContainerOffsets mEndContainerOffsets;
};
struct ContextInfoDepth {
uint32_t mStart = 0;
uint32_t mEnd = 0;
};
class nsDocumentEncoder : public nsIDocumentEncoder {
public:
nsDocumentEncoder();
NS_DECL_CYCLE_COLLECTING_ISUPPORTS
NS_DECL_CYCLE_COLLECTION_CLASS(nsDocumentEncoder)
NS_DECL_NSIDOCUMENTENCODER
protected:
virtual ~nsDocumentEncoder();
void Initialize(bool aClearCachedSerializer = true);
/**
* @param aMaxLength As described at
* `nsIDocumentEncodder.encodeToStringWithMaxLength`.
*/
nsresult SerializeDependingOnScope(nsAString& aOutput, uint32_t aMaxLength);
nsresult SerializeSelection(nsAString& aOutput);
nsresult SerializeNode(nsAString& aOutput);
/**
* @param aMaxLength As described at
* `nsIDocumentEncodder.encodeToStringWithMaxLength`.
*/
nsresult SerializeWholeDocument(nsAString& aOutput, uint32_t aMaxLength);
nsresult SerializeNodeStart(nsINode& aOriginalNode, int32_t aStartOffset,
int32_t aEndOffset, nsAString& aStr,
nsINode* aFixupNode = nullptr);
nsresult SerializeToStringRecursive(nsINode* aNode, nsAString& aStr,
bool aDontSerializeRoot,
uint32_t aMaxLength = 0);
nsresult SerializeNodeEnd(nsINode& aNode, nsAString& aStr);
// This serializes the content of aNode.
nsresult SerializeToStringIterative(nsINode* aNode, nsAString& aStr);
nsresult SerializeRangeToString(nsRange* aRange, nsAString& aOutputString);
nsresult SerializeRangeNodes(nsRange* aRange, nsINode* aNode,
nsAString& aString, int32_t aDepth);
nsresult SerializeRangeContextStart(const nsTArray<nsINode*>& aAncestorArray,
nsAString& aString);
nsresult SerializeRangeContextEnd(nsAString& aString);
virtual int32_t GetImmediateContextCount(
const nsTArray<nsINode*>& aAncestorArray) {
return -1;
}
bool IsInvisibleNodeAndShouldBeSkipped(nsINode& aNode) const {
if (mFlags & SkipInvisibleContent) {
// Treat the visibility of the ShadowRoot as if it were
// the host content.
//
// FIXME(emilio): I suspect instead of this a bunch of the GetParent()
// calls here should be doing GetFlattenedTreeParent, then this condition
// should be unreachable...
nsINode* node{&aNode};
if (ShadowRoot* shadowRoot = ShadowRoot::FromNode(node)) {
node = shadowRoot->GetHost();
}
if (node->IsContent()) {
nsIFrame* frame = node->AsContent()->GetPrimaryFrame();
if (!frame) {
if (node->IsElement() && node->AsElement()->IsDisplayContents()) {
return false;
}
if (node->IsText()) {
// We have already checked that our parent is visible.
//
// FIXME(emilio): Text not assigned to a <slot> in Shadow DOM should
// probably return false...
return false;
}
if (node->IsHTMLElement(nsGkAtoms::rp)) {
// Ruby parentheses are part of ruby structure, hence
// shouldn't be stripped out even if it is not displayed.
return false;
}
return true;
}
bool isVisible = frame->StyleVisibility()->IsVisible();
if (!isVisible && node->IsText()) {
return true;
}
}
}
return false;
}
virtual bool IncludeInContext(nsINode* aNode);
void ReleaseDocumentReferenceAndInitialize(bool aClearCachedSerializer);
class MOZ_STACK_CLASS AutoReleaseDocumentIfNeeded final {
public:
explicit AutoReleaseDocumentIfNeeded(nsDocumentEncoder* aEncoder)
: mEncoder(aEncoder) {}
~AutoReleaseDocumentIfNeeded() {
if (mEncoder->mFlags & RequiresReinitAfterOutput) {
const bool clearCachedSerializer = false;
mEncoder->ReleaseDocumentReferenceAndInitialize(clearCachedSerializer);
}
}
private:
nsDocumentEncoder* mEncoder;
};
nsCOMPtr<Document> mDocument;
EncodingScope mEncodingScope;
nsCOMPtr<nsIContentSerializer> mSerializer;
Maybe<TextStreamer> mTextStreamer;
nsCOMPtr<nsINode> mCommonAncestorOfRange;
nsCOMPtr<nsIDocumentEncoderNodeFixup> mNodeFixup;
nsString mMimeType;
const Encoding* mEncoding;
uint32_t mFlags;
uint32_t mWrapColumn;
ContextInfoDepth mContextInfoDepth;
int32_t mStartRootIndex;
int32_t mEndRootIndex;
AutoTArray<nsINode*, 8> mCommonAncestors;
RangeBoundaryPathsAndOffsets mRangeBoundaryPathsAndOffsets;
AutoTArray<AutoTArray<nsINode*, 8>, 8> mRangeContexts;
// Whether the serializer cares about being notified to scan elements to
// keep track of whether they are preformatted. This stores the out
// argument of nsIContentSerializer::Init().
bool mNeedsPreformatScanning;
bool mHaltRangeHint;
// Used when context has already been serialized for
// table cell selections (where parent is <tr>)
bool mDisableContextSerialize;
bool mIsCopying; // Set to true only while copying
nsStringBuffer* mCachedBuffer;
};
NS_IMPL_CYCLE_COLLECTING_ADDREF(nsDocumentEncoder)
NS_IMPL_CYCLE_COLLECTING_RELEASE_WITH_LAST_RELEASE(
nsDocumentEncoder, ReleaseDocumentReferenceAndInitialize(true))
NS_INTERFACE_MAP_BEGIN_CYCLE_COLLECTION(nsDocumentEncoder)
NS_INTERFACE_MAP_ENTRY(nsIDocumentEncoder)
NS_INTERFACE_MAP_ENTRY(nsISupports)
NS_INTERFACE_MAP_END
NS_IMPL_CYCLE_COLLECTION(nsDocumentEncoder, mDocument,
mEncodingScope.mSelection, mEncodingScope.mRange,
mEncodingScope.mNode, mSerializer,
mCommonAncestorOfRange)
nsDocumentEncoder::nsDocumentEncoder()
: mEncoding(nullptr), mIsCopying(false), mCachedBuffer(nullptr) {
Initialize();
mMimeType.AssignLiteral("text/plain");
}
void nsDocumentEncoder::Initialize(bool aClearCachedSerializer) {
mFlags = 0;
mWrapColumn = 72;
mContextInfoDepth = {};
mStartRootIndex = 0;
mEndRootIndex = 0;
mNeedsPreformatScanning = false;
mHaltRangeHint = false;
mDisableContextSerialize = false;
mEncodingScope = {};
mCommonAncestorOfRange = nullptr;
mNodeFixup = nullptr;
mRangeBoundaryPathsAndOffsets = {};
if (aClearCachedSerializer) {
mSerializer = nullptr;
}
}
static bool ParentIsTR(nsIContent* aContent) {
mozilla::dom::Element* parent = aContent->GetParentElement();
if (!parent) {
return false;
}
return parent->IsHTMLElement(nsGkAtoms::tr);
}
nsresult nsDocumentEncoder::SerializeDependingOnScope(nsAString& aOutput,
uint32_t aMaxLength) {
nsresult rv = NS_OK;
if (mEncodingScope.mSelection) {
rv = SerializeSelection(aOutput);
} else if (nsRange* range = mEncodingScope.mRange) {
rv = SerializeRangeToString(range, aOutput);
} else if (mEncodingScope.mNode) {
rv = SerializeNode(aOutput);
} else {
rv = SerializeWholeDocument(aOutput, aMaxLength);
}
mEncodingScope = {};
return rv;
}
nsresult nsDocumentEncoder::SerializeSelection(nsAString& aOutput) {
NS_ENSURE_TRUE(mEncodingScope.mSelection, NS_ERROR_FAILURE);
nsresult rv = NS_OK;
Selection* selection = mEncodingScope.mSelection;
uint32_t count = selection->RangeCount();
nsCOMPtr<nsINode> node;
nsCOMPtr<nsINode> prevNode;
uint32_t firstRangeStartDepth = 0;
for (uint32_t i = 0; i < count; ++i) {
RefPtr<nsRange> range = selection->GetRangeAt(i);
// Bug 236546: newlines not added when copying table cells into clipboard
// Each selected cell shows up as a range containing a row with a single
// cell get the row, compare it to previous row and emit </tr><tr> as
// needed Bug 137450: Problem copying/pasting a table from a web page to
// Excel. Each separate block of <tr></tr> produced above will be wrapped
// by the immediate context. This assumes that you can't select cells that
// are multiple selections from two tables simultaneously.
node = range->GetStartContainer();
NS_ENSURE_TRUE(node, NS_ERROR_FAILURE);
if (node != prevNode) {
if (prevNode) {
rv = SerializeNodeEnd(*prevNode, aOutput);
NS_ENSURE_SUCCESS(rv, rv);
}
nsCOMPtr<nsIContent> content = do_QueryInterface(node);
if (content && content->IsHTMLElement(nsGkAtoms::tr) &&
!ParentIsTR(content)) {
if (!prevNode) {
// Went from a non-<tr> to a <tr>
mCommonAncestors.Clear();
nsContentUtils::GetAncestors(node->GetParentNode(), mCommonAncestors);
rv = SerializeRangeContextStart(mCommonAncestors, aOutput);
NS_ENSURE_SUCCESS(rv, rv);
// Don't let SerializeRangeToString serialize the context again
mDisableContextSerialize = true;
}
rv = SerializeNodeStart(*node, 0, -1, aOutput);
NS_ENSURE_SUCCESS(rv, rv);
prevNode = node;
} else if (prevNode) {
// Went from a <tr> to a non-<tr>
mDisableContextSerialize = false;
rv = SerializeRangeContextEnd(aOutput);
NS_ENSURE_SUCCESS(rv, rv);
prevNode = nullptr;
}
}
rv = SerializeRangeToString(range, aOutput);
NS_ENSURE_SUCCESS(rv, rv);
if (i == 0) {
firstRangeStartDepth = mContextInfoDepth.mStart;
}
}
mContextInfoDepth.mStart = firstRangeStartDepth;
if (prevNode) {
rv = SerializeNodeEnd(*prevNode, aOutput);
NS_ENSURE_SUCCESS(rv, rv);
mDisableContextSerialize = false;
rv = SerializeRangeContextEnd(aOutput);
NS_ENSURE_SUCCESS(rv, rv);
}
// Just to be safe
mDisableContextSerialize = false;
return rv;
}
nsresult nsDocumentEncoder::SerializeNode(nsAString& aOutput) {
NS_ENSURE_TRUE(mEncodingScope.mNode, NS_ERROR_FAILURE);
nsresult rv = NS_OK;
nsINode* node = mEncodingScope.mNode;
const bool nodeIsContainer = mEncodingScope.mNodeIsContainer;
if (!mNodeFixup && !(mFlags & SkipInvisibleContent) && !mTextStreamer &&
nodeIsContainer) {
rv = SerializeToStringIterative(node, aOutput);
} else {
rv = SerializeToStringRecursive(node, aOutput, nodeIsContainer);
}
return rv;
}
nsresult nsDocumentEncoder::SerializeWholeDocument(nsAString& aOutput,
uint32_t aMaxLength) {
NS_ENSURE_FALSE(mEncodingScope.mSelection, NS_ERROR_FAILURE);
NS_ENSURE_FALSE(mEncodingScope.mRange, NS_ERROR_FAILURE);
NS_ENSURE_FALSE(mEncodingScope.mNode, NS_ERROR_FAILURE);
nsresult rv = mSerializer->AppendDocumentStart(mDocument, aOutput);
NS_ENSURE_SUCCESS(rv, rv);
rv = SerializeToStringRecursive(mDocument, aOutput, false, aMaxLength);
return rv;
}
nsDocumentEncoder::~nsDocumentEncoder() {
if (mCachedBuffer) {
mCachedBuffer->Release();
}
}
NS_IMETHODIMP
nsDocumentEncoder::Init(Document* aDocument, const nsAString& aMimeType,
uint32_t aFlags) {
return NativeInit(aDocument, aMimeType, aFlags);
}
NS_IMETHODIMP
nsDocumentEncoder::NativeInit(Document* aDocument, const nsAString& aMimeType,
uint32_t aFlags) {
if (!aDocument) return NS_ERROR_INVALID_ARG;
Initialize(!mMimeType.Equals(aMimeType));
mDocument = aDocument;
mMimeType = aMimeType;
mFlags = aFlags;
mIsCopying = false;
return NS_OK;
}
NS_IMETHODIMP
nsDocumentEncoder::SetWrapColumn(uint32_t aWC) {
mWrapColumn = aWC;
return NS_OK;
}
NS_IMETHODIMP
nsDocumentEncoder::SetSelection(Selection* aSelection) {
mEncodingScope.mSelection = aSelection;
return NS_OK;
}
NS_IMETHODIMP
nsDocumentEncoder::SetRange(nsRange* aRange) {
mEncodingScope.mRange = aRange;
return NS_OK;
}
NS_IMETHODIMP
nsDocumentEncoder::SetNode(nsINode* aNode) {
mEncodingScope.mNodeIsContainer = false;
mEncodingScope.mNode = aNode;
return NS_OK;
}
NS_IMETHODIMP
nsDocumentEncoder::SetContainerNode(nsINode* aContainer) {
mEncodingScope.mNodeIsContainer = true;
mEncodingScope.mNode = aContainer;
return NS_OK;
}
NS_IMETHODIMP
nsDocumentEncoder::SetCharset(const nsACString& aCharset) {
const Encoding* encoding = Encoding::ForLabel(aCharset);
if (!encoding) {
return NS_ERROR_UCONV_NOCONV;
}
mEncoding = encoding->OutputEncoding();
return NS_OK;
}
NS_IMETHODIMP
nsDocumentEncoder::GetMimeType(nsAString& aMimeType) {
aMimeType = mMimeType;
return NS_OK;
}
bool nsDocumentEncoder::IncludeInContext(nsINode* aNode) { return false; }
class FixupNodeDeterminer {
public:
FixupNodeDeterminer(nsIDocumentEncoderNodeFixup* aNodeFixup,
nsINode* aFixupNode, nsINode& aOriginalNode)
: mIsSerializationOfFixupChildrenNeeded{false},
mNodeFixup(aNodeFixup),
mOriginalNode(aOriginalNode) {
if (mNodeFixup) {
if (aFixupNode) {
mFixupNode = aFixupNode;
} else {
mNodeFixup->FixupNode(&mOriginalNode,
&mIsSerializationOfFixupChildrenNeeded,
getter_AddRefs(mFixupNode));
}
}
}
bool IsSerializationOfFixupChildrenNeeded() const {
return mIsSerializationOfFixupChildrenNeeded;
}
/**
* @return The fixup node, if available, otherwise the original node. The
* former is kept alive by this object.
*/
nsINode& GetFixupNodeFallBackToOriginalNode() const {
return mFixupNode ? *mFixupNode : mOriginalNode;
}
private:
bool mIsSerializationOfFixupChildrenNeeded;
nsIDocumentEncoderNodeFixup* mNodeFixup;
nsCOMPtr<nsINode> mFixupNode;
nsINode& mOriginalNode;
};
nsresult nsDocumentEncoder::SerializeNodeStart(nsINode& aOriginalNode,
int32_t aStartOffset,
int32_t aEndOffset,
nsAString& aStr,
nsINode* aFixupNode) {
if (mNeedsPreformatScanning) {
if (aOriginalNode.IsElement()) {
mSerializer->ScanElementForPreformat(aOriginalNode.AsElement());
} else if (aOriginalNode.IsText()) {
const nsCOMPtr<nsINode> parent = aOriginalNode.GetParent();
if (parent && parent->IsElement()) {
mSerializer->ScanElementForPreformat(parent->AsElement());
}
}
}
if (IsInvisibleNodeAndShouldBeSkipped(aOriginalNode)) {
return NS_OK;
}
FixupNodeDeterminer fixupNodeDeterminer{mNodeFixup, aFixupNode,
aOriginalNode};
nsINode* node = &fixupNodeDeterminer.GetFixupNodeFallBackToOriginalNode();
nsresult rv = NS_OK;
if (node->IsElement()) {
if ((mFlags & (nsIDocumentEncoder::OutputPreformatted |
nsIDocumentEncoder::OutputDropInvisibleBreak)) &&
nsLayoutUtils::IsInvisibleBreak(node)) {
return rv;
}
Element* originalElement = aOriginalNode.AsElement();
rv = mSerializer->AppendElementStart(node->AsElement(), originalElement,
aStr);
return rv;
}
switch (node->NodeType()) {
case nsINode::TEXT_NODE: {
rv = mSerializer->AppendText(static_cast<nsIContent*>(node), aStartOffset,
aEndOffset, aStr);
break;
}
case nsINode::CDATA_SECTION_NODE: {
rv = mSerializer->AppendCDATASection(static_cast<nsIContent*>(node),
aStartOffset, aEndOffset, aStr);
break;
}
case nsINode::PROCESSING_INSTRUCTION_NODE: {
rv = mSerializer->AppendProcessingInstruction(
static_cast<ProcessingInstruction*>(node), aStartOffset, aEndOffset,
aStr);
break;
}
case nsINode::COMMENT_NODE: {
rv = mSerializer->AppendComment(static_cast<Comment*>(node), aStartOffset,
aEndOffset, aStr);
break;
}
case nsINode::DOCUMENT_TYPE_NODE: {
rv = mSerializer->AppendDoctype(static_cast<DocumentType*>(node), aStr);
break;
}
}
return rv;
}
nsresult nsDocumentEncoder::SerializeNodeEnd(nsINode& aNode, nsAString& aStr) {
if (mNeedsPreformatScanning) {
if (aNode.IsElement()) {
mSerializer->ForgetElementForPreformat(aNode.AsElement());
} else if (aNode.IsText()) {
const nsCOMPtr<nsINode> parent = aNode.GetParent();
if (parent && parent->IsElement()) {
mSerializer->ForgetElementForPreformat(parent->AsElement());
}
}
}
if (IsInvisibleNodeAndShouldBeSkipped(aNode)) {
return NS_OK;
}
nsresult rv = NS_OK;
if (aNode.IsElement()) {
rv = mSerializer->AppendElementEnd(aNode.AsElement(), aStr);
}
return rv;
}
nsresult nsDocumentEncoder::SerializeToStringRecursive(nsINode* aNode,
nsAString& aStr,
bool aDontSerializeRoot,
uint32_t aMaxLength) {
if (aMaxLength > 0 && aStr.Length() >= aMaxLength) {
return NS_OK;
}
NS_ENSURE_TRUE(aNode, NS_ERROR_NULL_POINTER);
if (IsInvisibleNodeAndShouldBeSkipped(*aNode)) {
return NS_OK;
}
FixupNodeDeterminer fixupNodeDeterminer{mNodeFixup, nullptr, *aNode};
nsINode* maybeFixedNode =
&fixupNodeDeterminer.GetFixupNodeFallBackToOriginalNode();
if ((mFlags & SkipInvisibleContent) &&
!(mFlags & OutputNonTextContentAsPlaceholder)) {
if (aNode->IsContent()) {
if (nsIFrame* frame = aNode->AsContent()->GetPrimaryFrame()) {
if (!frame->IsSelectable(nullptr)) {
aDontSerializeRoot = true;
}
}
}
}
nsresult rv = NS_OK;
if (!aDontSerializeRoot) {
int32_t endOffset = -1;
if (aMaxLength > 0) {
MOZ_ASSERT(aMaxLength >= aStr.Length());
endOffset = aMaxLength - aStr.Length();
}
rv = SerializeNodeStart(*aNode, 0, endOffset, aStr, maybeFixedNode);
NS_ENSURE_SUCCESS(rv, rv);
}
nsINode* node = fixupNodeDeterminer.IsSerializationOfFixupChildrenNeeded()
? maybeFixedNode
: aNode;
for (nsINode* child = nsNodeUtils::GetFirstChildOfTemplateOrNode(node); child;
child = child->GetNextSibling()) {
rv = SerializeToStringRecursive(child, aStr, false, aMaxLength);
NS_ENSURE_SUCCESS(rv, rv);
}
if (!aDontSerializeRoot) {
rv = SerializeNodeEnd(*maybeFixedNode, aStr);
NS_ENSURE_SUCCESS(rv, rv);
}
if (mTextStreamer) {
rv = mTextStreamer->FlushIfStringLongEnough(aStr);
}
return rv;
}
nsresult nsDocumentEncoder::SerializeToStringIterative(nsINode* aNode,
nsAString& aStr) {
nsresult rv;
nsINode* node = nsNodeUtils::GetFirstChildOfTemplateOrNode(aNode);
while (node) {
nsINode* current = node;
rv = SerializeNodeStart(*current, 0, -1, aStr, current);
NS_ENSURE_SUCCESS(rv, rv);
node = nsNodeUtils::GetFirstChildOfTemplateOrNode(current);
while (!node && current && current != aNode) {
rv = SerializeNodeEnd(*current, aStr);
NS_ENSURE_SUCCESS(rv, rv);
// Check if we have siblings.
node = current->GetNextSibling();
if (!node) {
// Perhaps parent node has siblings.
current = current->GetParentNode();
// Handle template element. If the parent is a template's content,
// then adjust the parent to be the template element.
if (current && current != aNode && current->IsDocumentFragment()) {
nsIContent* host = current->AsDocumentFragment()->GetHost();
if (host && host->IsHTMLElement(nsGkAtoms::_template)) {
current = host;
}
}
}
}
}
return NS_OK;
}
static bool IsTextNode(nsINode* aNode) { return aNode && aNode->IsText(); }
nsresult nsDocumentEncoder::SerializeRangeNodes(nsRange* const aRange,
nsINode* const aNode,
nsAString& aString,
const int32_t aDepth) {
nsCOMPtr<nsIContent> content = do_QueryInterface(aNode);
NS_ENSURE_TRUE(content, NS_ERROR_FAILURE);
if (IsInvisibleNodeAndShouldBeSkipped(*aNode)) {
return NS_OK;
}
nsresult rv = NS_OK;
// get start and end nodes for this recursion level
nsCOMPtr<nsIContent> startNode, endNode;
{
auto& startContainerPath =
mRangeBoundaryPathsAndOffsets.mStartContainerPath;
auto& endContainerPath = mRangeBoundaryPathsAndOffsets.mEndContainerPath;
int32_t start = mStartRootIndex - aDepth;
if (start >= 0 && (uint32_t)start <= startContainerPath.Length()) {
startNode = startContainerPath[start];
}
int32_t end = mEndRootIndex - aDepth;
if (end >= 0 && (uint32_t)end <= endContainerPath.Length()) {
endNode = endContainerPath[end];
}
}
if (startNode != content && endNode != content) {
// node is completely contained in range. Serialize the whole subtree
// rooted by this node.
rv = SerializeToStringRecursive(aNode, aString, false);
NS_ENSURE_SUCCESS(rv, rv);
} else {
// due to implementation it is impossible for text node to be both start and
// end of range. We would have handled that case without getting here.
// XXXsmaug What does this all mean?
if (IsTextNode(aNode)) {
if (startNode == content) {
int32_t startOffset = aRange->StartOffset();
rv = SerializeNodeStart(*aNode, startOffset, -1, aString);
NS_ENSURE_SUCCESS(rv, rv);
} else {
int32_t endOffset = aRange->EndOffset();
rv = SerializeNodeStart(*aNode, 0, endOffset, aString);
NS_ENSURE_SUCCESS(rv, rv);
}
rv = SerializeNodeEnd(*aNode, aString);
NS_ENSURE_SUCCESS(rv, rv);
} else {
if (aNode != mCommonAncestorOfRange) {
if (IncludeInContext(aNode)) {
// halt the incrementing of mContextInfoDepth. This is
// so paste client will include this node in paste.
mHaltRangeHint = true;
}
if ((startNode == content) && !mHaltRangeHint) {
++mContextInfoDepth.mStart;
}
if ((endNode == content) && !mHaltRangeHint) {
++mContextInfoDepth.mEnd;
}
// serialize the start of this node
rv = SerializeNodeStart(*aNode, 0, -1, aString);
NS_ENSURE_SUCCESS(rv, rv);
}
const auto& startContainerOffsets =
mRangeBoundaryPathsAndOffsets.mStartContainerOffsets;
const auto& endContainerOffsets =
mRangeBoundaryPathsAndOffsets.mEndContainerOffsets;
// do some calculations that will tell us which children of this
// node are in the range.
int32_t startOffset = 0, endOffset = -1;
if (startNode == content && mStartRootIndex >= aDepth) {
startOffset = startContainerOffsets[mStartRootIndex - aDepth];
}
if (endNode == content && mEndRootIndex >= aDepth) {
endOffset = endContainerOffsets[mEndRootIndex - aDepth];
}
// generated content will cause offset values of -1 to be returned.
uint32_t childCount = content->GetChildCount();
if (startOffset == -1) startOffset = 0;
if (endOffset == -1)
endOffset = childCount;
else {
// if we are at the "tip" of the selection, endOffset is fine.
// otherwise, we need to add one. This is because of the semantics
// of the offset list created by GetAncestorsAndOffsets(). The
// intermediate points on the list use the endOffset of the
// location of the ancestor, rather than just past it. So we need
// to add one here in order to include it in the children we serialize.
if (aNode != aRange->GetEndContainer()) {
endOffset++;
}
}
if (endOffset) {
// serialize the children of this node that are in the range
nsIContent* childAsNode = content->GetFirstChild();
int32_t j = 0;
for (; j < startOffset && childAsNode; ++j) {
childAsNode = childAsNode->GetNextSibling();
}
NS_ENSURE_TRUE(!!childAsNode, NS_ERROR_FAILURE);
MOZ_ASSERT(j == startOffset);
for (; childAsNode && j < endOffset; ++j) {
if ((j == startOffset) || (j == endOffset - 1)) {
rv = SerializeRangeNodes(aRange, childAsNode, aString, aDepth + 1);
} else {
rv = SerializeToStringRecursive(childAsNode, aString, false);
}
NS_ENSURE_SUCCESS(rv, rv);
childAsNode = childAsNode->GetNextSibling();
}
}
// serialize the end of this node
if (aNode != mCommonAncestorOfRange) {
rv = SerializeNodeEnd(*aNode, aString);
NS_ENSURE_SUCCESS(rv, rv);
}
}
}
return NS_OK;
}
nsresult nsDocumentEncoder::SerializeRangeContextStart(
const nsTArray<nsINode*>& aAncestorArray, nsAString& aString) {
if (mDisableContextSerialize) {
return NS_OK;
}
AutoTArray<nsINode*, 8>* serializedContext = mRangeContexts.AppendElement();
int32_t i = aAncestorArray.Length(), j;
nsresult rv = NS_OK;
// currently only for table-related elements; see Bug 137450
j = GetImmediateContextCount(aAncestorArray);
while (i > 0) {
nsINode* node = aAncestorArray.ElementAt(--i);
if (!node) break;
// Either a general inclusion or as immediate context
if (IncludeInContext(node) || i < j) {
rv = SerializeNodeStart(*node, 0, -1, aString);
serializedContext->AppendElement(node);
if (NS_FAILED(rv)) break;
}
}
return rv;
}
nsresult nsDocumentEncoder::SerializeRangeContextEnd(nsAString& aString) {
if (mDisableContextSerialize) {
return NS_OK;
}
MOZ_RELEASE_ASSERT(!mRangeContexts.IsEmpty(),
"Tried to end context without starting one.");
AutoTArray<nsINode*, 8>& serializedContext = mRangeContexts.LastElement();
nsresult rv = NS_OK;
for (nsINode* node : Reversed(serializedContext)) {
rv = SerializeNodeEnd(*node, aString);
if (NS_FAILED(rv)) break;
}
mRangeContexts.RemoveLastElement();
return rv;
}
nsresult nsDocumentEncoder::SerializeRangeToString(nsRange* aRange,
nsAString& aOutputString) {
if (!aRange || aRange->Collapsed()) return NS_OK;
mCommonAncestorOfRange = aRange->GetCommonAncestor();
if (!mCommonAncestorOfRange) {
return NS_OK;
}
nsINode* startContainer = aRange->GetStartContainer();
NS_ENSURE_TRUE(startContainer, NS_ERROR_FAILURE);
int32_t startOffset = aRange->StartOffset();
nsINode* endContainer = aRange->GetEndContainer();
NS_ENSURE_TRUE(endContainer, NS_ERROR_FAILURE);
int32_t endOffset = aRange->EndOffset();
mContextInfoDepth = {};
mCommonAncestors.Clear();
mRangeBoundaryPathsAndOffsets = {};
auto& startContainerPath = mRangeBoundaryPathsAndOffsets.mStartContainerPath;
auto& startContainerOffsets =
mRangeBoundaryPathsAndOffsets.mStartContainerOffsets;
auto& endContainerPath = mRangeBoundaryPathsAndOffsets.mEndContainerPath;
auto& endContainerOffsets =
mRangeBoundaryPathsAndOffsets.mEndContainerOffsets;
nsContentUtils::GetAncestors(mCommonAncestorOfRange, mCommonAncestors);
nsContentUtils::GetAncestorsAndOffsets(
startContainer, startOffset, &startContainerPath, &startContainerOffsets);
nsContentUtils::GetAncestorsAndOffsets(
endContainer, endOffset, &endContainerPath, &endContainerOffsets);
nsCOMPtr<nsIContent> commonContent =
do_QueryInterface(mCommonAncestorOfRange);
mStartRootIndex = startContainerPath.IndexOf(commonContent);
mEndRootIndex = endContainerPath.IndexOf(commonContent);
nsresult rv = NS_OK;
rv = SerializeRangeContextStart(mCommonAncestors, aOutputString);
NS_ENSURE_SUCCESS(rv, rv);
if (startContainer == endContainer && IsTextNode(startContainer)) {
if (mFlags & SkipInvisibleContent) {
// Check that the parent is visible if we don't a frame.
// IsInvisibleNodeAndShouldBeSkipped() will do it when there's a frame.
nsCOMPtr<nsIContent> content = do_QueryInterface(startContainer);
if (content && !content->GetPrimaryFrame()) {
nsIContent* parent = content->GetParent();
if (!parent || IsInvisibleNodeAndShouldBeSkipped(*parent)) {
return NS_OK;
}
}
}
rv = SerializeNodeStart(*startContainer, startOffset, endOffset,
aOutputString);
NS_ENSURE_SUCCESS(rv, rv);
rv = SerializeNodeEnd(*startContainer, aOutputString);
NS_ENSURE_SUCCESS(rv, rv);
} else {
rv = SerializeRangeNodes(aRange, mCommonAncestorOfRange, aOutputString, 0);
NS_ENSURE_SUCCESS(rv, rv);
}
rv = SerializeRangeContextEnd(aOutputString);
NS_ENSURE_SUCCESS(rv, rv);
return rv;
}
void nsDocumentEncoder::ReleaseDocumentReferenceAndInitialize(
bool aClearCachedSerializer) {
mDocument = nullptr;
Initialize(aClearCachedSerializer);
}
NS_IMETHODIMP
nsDocumentEncoder::EncodeToString(nsAString& aOutputString) {
return EncodeToStringWithMaxLength(0, aOutputString);
}
NS_IMETHODIMP
nsDocumentEncoder::EncodeToStringWithMaxLength(uint32_t aMaxLength,
nsAString& aOutputString) {
MOZ_ASSERT(mRangeContexts.IsEmpty(), "Re-entrant call to nsDocumentEncoder.");
auto rangeContextGuard = MakeScopeExit([&] { mRangeContexts.Clear(); });
if (!mDocument) return NS_ERROR_NOT_INITIALIZED;
AutoReleaseDocumentIfNeeded autoReleaseDocument(this);
aOutputString.Truncate();
nsString output;
static const size_t kStringBufferSizeInBytes = 2048;
if (!mCachedBuffer) {
mCachedBuffer = nsStringBuffer::Alloc(kStringBufferSizeInBytes).take();
if (NS_WARN_IF(!mCachedBuffer)) {
return NS_ERROR_OUT_OF_MEMORY;
}
}
NS_ASSERTION(
!mCachedBuffer->IsReadonly(),
"nsIDocumentEncoder shouldn't keep reference to non-readonly buffer!");
static_cast<char16_t*>(mCachedBuffer->Data())[0] = char16_t(0);
mCachedBuffer->ToString(0, output, true);
// output owns the buffer now!
mCachedBuffer = nullptr;
if (!mSerializer) {
nsAutoCString progId(NS_CONTENTSERIALIZER_CONTRACTID_PREFIX);
AppendUTF16toUTF8(mMimeType, progId);
mSerializer = do_CreateInstance(progId.get());
NS_ENSURE_TRUE(mSerializer, NS_ERROR_NOT_IMPLEMENTED);
}
nsresult rv = NS_OK;
bool rewriteEncodingDeclaration =
!mEncodingScope.IsLimited() &&
!(mFlags & OutputDontRewriteEncodingDeclaration);
mSerializer->Init(mFlags, mWrapColumn, mEncoding, mIsCopying,
rewriteEncodingDeclaration, &mNeedsPreformatScanning);
rv = SerializeDependingOnScope(output, aMaxLength);
NS_ENSURE_SUCCESS(rv, rv);
rv = mSerializer->Flush(output);
mCachedBuffer = nsStringBuffer::FromString(output);
// We have to be careful how we set aOutputString, because we don't
// want it to end up sharing mCachedBuffer if we plan to reuse it.
bool setOutput = false;
// Try to cache the buffer.
if (mCachedBuffer) {
if ((mCachedBuffer->StorageSize() == kStringBufferSizeInBytes) &&
!mCachedBuffer->IsReadonly()) {
mCachedBuffer->AddRef();
} else {
if (NS_SUCCEEDED(rv)) {
mCachedBuffer->ToString(output.Length(), aOutputString);
setOutput = true;
}
mCachedBuffer = nullptr;
}
}
if (!setOutput && NS_SUCCEEDED(rv)) {
aOutputString.Append(output.get(), output.Length());
}
return rv;
}
NS_IMETHODIMP
nsDocumentEncoder::EncodeToStream(nsIOutputStream* aStream) {
MOZ_ASSERT(mRangeContexts.IsEmpty(), "Re-entrant call to nsDocumentEncoder.");
auto rangeContextGuard = MakeScopeExit([&] { mRangeContexts.Clear(); });
NS_ENSURE_ARG_POINTER(aStream);
nsresult rv = NS_OK;
if (!mDocument) return NS_ERROR_NOT_INITIALIZED;
if (!mEncoding) {
return NS_ERROR_UCONV_NOCONV;
}
const bool isPlainText = mMimeType.LowerCaseEqualsLiteral(kTextMime);
mTextStreamer.emplace(*aStream, mEncoding->NewEncoder(), isPlainText);
nsAutoString buf;
rv = EncodeToString(buf);
// Force a flush of the last chunk of data.
rv = mTextStreamer->ForceFlush(buf);
NS_ENSURE_SUCCESS(rv, rv);
mTextStreamer.reset();
return rv;
}
NS_IMETHODIMP
nsDocumentEncoder::EncodeToStringWithContext(nsAString& aContextString,
nsAString& aInfoString,
nsAString& aEncodedString) {
return NS_ERROR_NOT_IMPLEMENTED;
}
NS_IMETHODIMP
nsDocumentEncoder::SetNodeFixup(nsIDocumentEncoderNodeFixup* aFixup) {
mNodeFixup = aFixup;
return NS_OK;
}
bool do_getDocumentTypeSupportedForEncoding(const char* aContentType) {
if (!nsCRT::strcmp(aContentType, "text/xml") ||
!nsCRT::strcmp(aContentType, "application/xml") ||
!nsCRT::strcmp(aContentType, "application/xhtml+xml") ||
!nsCRT::strcmp(aContentType, "image/svg+xml") ||
!nsCRT::strcmp(aContentType, "text/html") ||
!nsCRT::strcmp(aContentType, "text/plain")) {
return true;
}
return false;
}
already_AddRefed<nsIDocumentEncoder> do_createDocumentEncoder(
const char* aContentType) {
if (do_getDocumentTypeSupportedForEncoding(aContentType)) {
return do_AddRef(new nsDocumentEncoder);
}
return nullptr;
}
class nsHTMLCopyEncoder : public nsDocumentEncoder {
public:
nsHTMLCopyEncoder();
virtual ~nsHTMLCopyEncoder();
NS_IMETHOD Init(Document* aDocument, const nsAString& aMimeType,
uint32_t aFlags) override;
// overridden methods from nsDocumentEncoder
MOZ_CAN_RUN_SCRIPT_BOUNDARY
NS_IMETHOD SetSelection(Selection* aSelection) override;
NS_IMETHOD EncodeToStringWithContext(nsAString& aContextString,
nsAString& aInfoString,
nsAString& aEncodedString) override;
NS_IMETHOD EncodeToString(nsAString& aOutputString) override;
protected:
enum Endpoint { kStart, kEnd };
nsresult PromoteRange(nsRange* inRange);
nsresult PromoteAncestorChain(nsCOMPtr<nsINode>* ioNode,
int32_t* ioStartOffset, int32_t* ioEndOffset);
nsresult GetPromotedPoint(Endpoint aWhere, nsINode* aNode, int32_t aOffset,
nsCOMPtr<nsINode>* outNode, int32_t* outOffset,
nsINode* aCommon);
static nsCOMPtr<nsINode> GetChildAt(nsINode* aParent, int32_t aOffset);
static bool IsMozBR(Element* aNode);
static nsresult GetNodeLocation(nsINode* inChild,
nsCOMPtr<nsINode>* outParent,
int32_t* outOffset);
bool IsRoot(nsINode* aNode);
static bool IsFirstNode(nsINode* aNode);
static bool IsLastNode(nsINode* aNode);
virtual bool IncludeInContext(nsINode* aNode) override;
virtual int32_t GetImmediateContextCount(
const nsTArray<nsINode*>& aAncestorArray) override;
bool mIsTextWidget;
};
nsHTMLCopyEncoder::nsHTMLCopyEncoder() { mIsTextWidget = false; }
nsHTMLCopyEncoder::~nsHTMLCopyEncoder() {}
NS_IMETHODIMP
nsHTMLCopyEncoder::Init(Document* aDocument, const nsAString& aMimeType,
uint32_t aFlags) {
if (!aDocument) return NS_ERROR_INVALID_ARG;
mIsTextWidget = false;
Initialize();
mIsCopying = true;
mDocument = aDocument;
// Hack, hack! Traditionally, the caller passes text/unicode, which is
// treated as "guess text/html or text/plain" in this context. (It has a
// different meaning in other contexts. Sigh.) From now on, "text/plain"
// means forcing text/plain instead of guessing.
if (aMimeType.EqualsLiteral("text/plain")) {
mMimeType.AssignLiteral("text/plain");
} else {
mMimeType.AssignLiteral("text/html");
}
// Make all links absolute when copying
// (see related bugs #57296, #41924, #58646, #32768)
mFlags = aFlags | OutputAbsoluteLinks;
if (!mDocument->IsScriptEnabled()) mFlags |= OutputNoScriptContent;
return NS_OK;
}
NS_IMETHODIMP
nsHTMLCopyEncoder::SetSelection(Selection* aSelection) {
// check for text widgets: we need to recognize these so that
// we don't tweak the selection to be outside of the magic
// div that ender-lite text widgets are embedded in.
if (!aSelection) return NS_ERROR_NULL_POINTER;
uint32_t rangeCount = aSelection->RangeCount();
// if selection is uninitialized return
if (!rangeCount) {
return NS_ERROR_FAILURE;
}
// we'll just use the common parent of the first range. Implicit assumption
// here that multi-range selections are table cell selections, in which case
// the common parent is somewhere in the table and we don't really care where.
//
// FIXME(emilio, bug 1455894): This assumption is already wrong, and will
// probably be more wrong in a Shadow DOM world...
//
// We should be able to write this as "Find the common ancestor of the
// selection, then go through the flattened tree and serialize the selected
// nodes", effectively serializing the composed tree.
RefPtr<nsRange> range = aSelection->GetRangeAt(0);
nsINode* commonParent = range->GetCommonAncestor();
for (nsCOMPtr<nsIContent> selContent(do_QueryInterface(commonParent));
selContent; selContent = selContent->GetParent()) {
// checking for selection inside a plaintext form widget
if (selContent->IsAnyOfHTMLElements(nsGkAtoms::input,
nsGkAtoms::textarea)) {
mIsTextWidget = true;
break;
}
}
// normalize selection if we are not in a widget
if (mIsTextWidget) {
mEncodingScope.mSelection = aSelection;
mMimeType.AssignLiteral("text/plain");
return NS_OK;
}
// XXX We should try to get rid of the Selection object here.
// XXX bug 1245883
// also consider ourselves in a text widget if we can't find an html document
if (!(mDocument && mDocument->IsHTMLDocument())) {
mIsTextWidget = true;
mEncodingScope.mSelection = aSelection;
// mMimeType is set to text/plain when encoding starts.
return NS_OK;
}
// there's no Clone() for selection! fix...
// nsresult rv = aSelection->Clone(getter_AddRefs(mSelection);
// NS_ENSURE_SUCCESS(rv, rv);
mEncodingScope.mSelection = new Selection();
// loop thru the ranges in the selection
for (uint32_t rangeIdx = 0; rangeIdx < rangeCount; ++rangeIdx) {
range = aSelection->GetRangeAt(rangeIdx);
NS_ENSURE_TRUE(range, NS_ERROR_FAILURE);
RefPtr<nsRange> myRange = range->CloneRange();
MOZ_ASSERT(myRange);
// adjust range to include any ancestors who's children are entirely
// selected
nsresult rv = PromoteRange(myRange);
NS_ENSURE_SUCCESS(rv, rv);
ErrorResult result;
RefPtr<Selection> selection(mEncodingScope.mSelection);
RefPtr<Document> document(mDocument);
selection->AddRangeInternal(*myRange, document, result);
rv = result.StealNSResult();
NS_ENSURE_SUCCESS(rv, rv);
}
return NS_OK;
}
NS_IMETHODIMP
nsHTMLCopyEncoder::EncodeToString(nsAString& aOutputString) {
if (mIsTextWidget) {
mMimeType.AssignLiteral("text/plain");
}
return nsDocumentEncoder::EncodeToString(aOutputString);
}
NS_IMETHODIMP
nsHTMLCopyEncoder::EncodeToStringWithContext(nsAString& aContextString,
nsAString& aInfoString,
nsAString& aEncodedString) {
nsresult rv = EncodeToString(aEncodedString);
NS_ENSURE_SUCCESS(rv, rv);
// do not encode any context info or range hints if we are in a text widget.
if (mIsTextWidget) return NS_OK;
// now encode common ancestors into aContextString. Note that the common
// ancestors will be for the last range in the selection in the case of
// multirange selections. encoding ancestors every range in a multirange
// selection in a way that could be understood by the paste code would be a
// lot more work to do. As a practical matter, selections are single range,
// and the ones that aren't are table cell selections where all the cells are
// in the same table.
// leaf of ancestors might be text node. If so discard it.
int32_t count = mCommonAncestors.Length();
int32_t i;
nsCOMPtr<nsINode> node;
if (count > 0) node = mCommonAncestors.ElementAt(0);
if (node && IsTextNode(node)) {
mCommonAncestors.RemoveElementAt(0);
if (mContextInfoDepth.mStart) {
--mContextInfoDepth.mStart;
}
if (mContextInfoDepth.mEnd) {
--mContextInfoDepth.mEnd;
}
count--;
}
i = count;
while (i > 0) {
node = mCommonAncestors.ElementAt(--i);
rv = SerializeNodeStart(*node, 0, -1, aContextString);
NS_ENSURE_SUCCESS(rv, rv);
}
// i = 0; guaranteed by above
while (i < count) {
node = mCommonAncestors.ElementAt(i++);
rv = SerializeNodeEnd(*node, aContextString);
NS_ENSURE_SUCCESS(rv, rv);
}
// encode range info : the start and end depth of the selection, where the
// depth is distance down in the parent hierarchy. Later we will need to add
// leading/trailing whitespace info to this.
nsAutoString infoString;
infoString.AppendInt(mContextInfoDepth.mStart);
infoString.Append(char16_t(','));
infoString.AppendInt(mContextInfoDepth.mEnd);
aInfoString = infoString;
return rv;
}
bool nsHTMLCopyEncoder::IncludeInContext(nsINode* aNode) {
nsCOMPtr<nsIContent> content(do_QueryInterface(aNode));
if (!content) return false;
return content->IsAnyOfHTMLElements(
nsGkAtoms::b, nsGkAtoms::i, nsGkAtoms::u, nsGkAtoms::a, nsGkAtoms::tt,
nsGkAtoms::s, nsGkAtoms::big, nsGkAtoms::small, nsGkAtoms::strike,
nsGkAtoms::em, nsGkAtoms::strong, nsGkAtoms::dfn, nsGkAtoms::code,
nsGkAtoms::cite, nsGkAtoms::var, nsGkAtoms::abbr, nsGkAtoms::font,
nsGkAtoms::script, nsGkAtoms::span, nsGkAtoms::pre, nsGkAtoms::h1,
nsGkAtoms::h2, nsGkAtoms::h3, nsGkAtoms::h4, nsGkAtoms::h5,
nsGkAtoms::h6);
}
nsresult nsHTMLCopyEncoder::PromoteRange(nsRange* inRange) {
if (!inRange->IsPositioned()) {
return NS_ERROR_UNEXPECTED;
}
nsCOMPtr<nsINode> startNode = inRange->GetStartContainer();
uint32_t startOffset = inRange->StartOffset();
nsCOMPtr<nsINode> endNode = inRange->GetEndContainer();
uint32_t endOffset = inRange->EndOffset();
nsCOMPtr<nsINode> common = inRange->GetCommonAncestor();
nsCOMPtr<nsINode> opStartNode;
nsCOMPtr<nsINode> opEndNode;
int32_t opStartOffset, opEndOffset;
// examine range endpoints.
nsresult rv =
GetPromotedPoint(kStart, startNode, static_cast<int32_t>(startOffset),
address_of(opStartNode), &opStartOffset, common);
NS_ENSURE_SUCCESS(rv, rv);
rv = GetPromotedPoint(kEnd, endNode, static_cast<int32_t>(endOffset),
address_of(opEndNode), &opEndOffset, common);
NS_ENSURE_SUCCESS(rv, rv);
// if both range endpoints are at the common ancestor, check for possible
// inclusion of ancestors
if (opStartNode == common && opEndNode == common) {
rv = PromoteAncestorChain(address_of(opStartNode), &opStartOffset,
&opEndOffset);
NS_ENSURE_SUCCESS(rv, rv);
opEndNode = opStartNode;
}
// set the range to the new values
ErrorResult err;
inRange->SetStart(*opStartNode, static_cast<uint32_t>(opStartOffset), err);
if (NS_WARN_IF(err.Failed())) {
return err.StealNSResult();
}
inRange->SetEnd(*opEndNode, static_cast<uint32_t>(opEndOffset), err);
if (NS_WARN_IF(err.Failed())) {
return err.StealNSResult();
}
return NS_OK;
}
// PromoteAncestorChain will promote a range represented by
// [{*ioNode,*ioStartOffset} , {*ioNode,*ioEndOffset}] The promotion is
// different from that found in getPromotedPoint: it will only promote one
// endpoint if it can promote the other. Thus, instead of having a
// startnode/endNode, there is just the one ioNode.
nsresult nsHTMLCopyEncoder::PromoteAncestorChain(nsCOMPtr<nsINode>* ioNode,
int32_t* ioStartOffset,
int32_t* ioEndOffset) {
if (!ioNode || !ioStartOffset || !ioEndOffset) return NS_ERROR_NULL_POINTER;
nsresult rv = NS_OK;
bool done = false;
nsCOMPtr<nsINode> frontNode, endNode, parent;
int32_t frontOffset, endOffset;
// save the editable state of the ioNode, so we don't promote an ancestor if
// it has different editable state
nsCOMPtr<nsINode> node = *ioNode;
bool isEditable = node->IsEditable();
// loop for as long as we can promote both endpoints
while (!done) {
node = *ioNode;
parent = node->GetParentNode();
if (!parent) {
done = true;
} else {
// passing parent as last param to GetPromotedPoint() allows it to promote
// only one level up the hierarchy.
rv = GetPromotedPoint(kStart, *ioNode, *ioStartOffset,
address_of(frontNode), &frontOffset, parent);
NS_ENSURE_SUCCESS(rv, rv);
// then we make the same attempt with the endpoint
rv = GetPromotedPoint(kEnd, *ioNode, *ioEndOffset, address_of(endNode),
&endOffset, parent);
NS_ENSURE_SUCCESS(rv, rv);
// if both endpoints were promoted one level and isEditable is the same as
// the original node, keep looping - otherwise we are done.
if ((frontNode != parent) || (endNode != parent) ||
(frontNode->IsEditable() != isEditable))
done = true;
else {
*ioNode = frontNode;
*ioStartOffset = frontOffset;
*ioEndOffset = endOffset;
}
}
}
return rv;
}
nsresult nsHTMLCopyEncoder::GetPromotedPoint(Endpoint aWhere, nsINode* aNode,
int32_t aOffset,
nsCOMPtr<nsINode>* outNode,
int32_t* outOffset,
nsINode* common) {
nsresult rv = NS_OK;
nsCOMPtr<nsINode> node = aNode;
nsCOMPtr<nsINode> parent = aNode;
int32_t offset = aOffset;
bool bResetPromotion = false;
// default values
*outNode = node;
*outOffset = offset;
if (common == node) return NS_OK;
if (aWhere == kStart) {
// some special casing for text nodes
if (auto nodeAsText = aNode->GetAsText()) {
// if not at beginning of text node, we are done
if (offset > 0) {
// unless everything before us in just whitespace. NOTE: we need a more
// general solution that truly detects all cases of non-significant
// whitesace with no false alarms.
nsAutoString text;
nodeAsText->SubstringData(0, offset, text, IgnoreErrors());
text.CompressWhitespace();
if (!text.IsEmpty()) return NS_OK;
bResetPromotion = true;
}
// else
rv = GetNodeLocation(aNode, address_of(parent), &offset);
NS_ENSURE_SUCCESS(rv, rv);
} else {
node = GetChildAt(parent, offset);
}
if (!node) node = parent;
// finding the real start for this point. look up the tree for as long as
// we are the first node in the container, and as long as we haven't hit the
// body node.
if (!IsRoot(node) && (parent != common)) {
rv = GetNodeLocation(node, address_of(parent), &offset);
NS_ENSURE_SUCCESS(rv, rv);
if (offset == -1) return NS_OK; // we hit generated content; STOP
while ((IsFirstNode(node)) && (!IsRoot(parent)) && (parent != common)) {
if (bResetPromotion) {
nsCOMPtr<nsIContent> content = do_QueryInterface(parent);
if (content && content->IsHTMLElement()) {
if (nsHTMLElement::IsBlock(
nsHTMLTags::AtomTagToId(content->NodeInfo()->NameAtom()))) {
bResetPromotion = false;
}
}
}
node = parent;
rv = GetNodeLocation(node, address_of(parent), &offset);
NS_ENSURE_SUCCESS(rv, rv);
if (offset == -1) // we hit generated content; STOP
{
// back up a bit
parent = node;
offset = 0;
break;
}
}
if (bResetPromotion) {
*outNode = aNode;
*outOffset = aOffset;
} else {
*outNode = parent;
*outOffset = offset;
}
return rv;
}
}
if (aWhere == kEnd) {
// some special casing for text nodes
if (auto nodeAsText = aNode->GetAsText()) {
// if not at end of text node, we are done
uint32_t len = aNode->Length();
if (offset < (int32_t)len) {
// unless everything after us in just whitespace. NOTE: we need a more
// general solution that truly detects all cases of non-significant
// whitespace with no false alarms.
nsAutoString text;
nodeAsText->SubstringData(offset, len - offset, text, IgnoreErrors());
text.CompressWhitespace();
if (!text.IsEmpty()) return NS_OK;
bResetPromotion = true;
}
rv = GetNodeLocation(aNode, address_of(parent), &offset);
NS_ENSURE_SUCCESS(rv, rv);
} else {
if (offset) offset--; // we want node _before_ offset
node = GetChildAt(parent, offset);
}
if (!node) node = parent;
// finding the real end for this point. look up the tree for as long as we
// are the last node in the container, and as long as we haven't hit the
// body node.
if (!IsRoot(node) && (parent != common)) {
rv = GetNodeLocation(node, address_of(parent), &offset);
NS_ENSURE_SUCCESS(rv, rv);
if (offset == -1) return NS_OK; // we hit generated content; STOP
while ((IsLastNode(node)) && (!IsRoot(parent)) && (parent != common)) {
if (bResetPromotion) {
nsCOMPtr<nsIContent> content = do_QueryInterface(parent);
if (content && content->IsHTMLElement()) {
if (nsHTMLElement::IsBlock(
nsHTMLTags::AtomTagToId(content->NodeInfo()->NameAtom()))) {
bResetPromotion = false;
}
}
}
node = parent;
rv = GetNodeLocation(node, address_of(parent), &offset);
NS_ENSURE_SUCCESS(rv, rv);
if (offset == -1) // we hit generated content; STOP
{
// back up a bit
parent = node;
offset = 0;
break;
}
}
if (bResetPromotion) {
*outNode = aNode;
*outOffset = aOffset;
} else {
*outNode = parent;
offset++; // add one since this in an endpoint - want to be AFTER node.
*outOffset = offset;
}
return rv;
}
}
return rv;
}
nsCOMPtr<nsINode> nsHTMLCopyEncoder::GetChildAt(nsINode* aParent,
int32_t aOffset) {
nsCOMPtr<nsINode> resultNode;
if (!aParent) return resultNode;
nsCOMPtr<nsIContent> content = do_QueryInterface(aParent);
MOZ_ASSERT(content, "null content in nsHTMLCopyEncoder::GetChildAt");
resultNode = content->GetChildAt_Deprecated(aOffset);
return resultNode;
}
bool nsHTMLCopyEncoder::IsMozBR(Element* aElement) {
return aElement->IsHTMLElement(nsGkAtoms::br) &&
aElement->AttrValueIs(kNameSpaceID_None, nsGkAtoms::type,
NS_LITERAL_STRING("_moz"), eIgnoreCase);
}
nsresult nsHTMLCopyEncoder::GetNodeLocation(nsINode* inChild,
nsCOMPtr<nsINode>* outParent,
int32_t* outOffset) {
NS_ASSERTION((inChild && outParent && outOffset), "bad args");
if (inChild && outParent && outOffset) {
nsCOMPtr<nsIContent> child = do_QueryInterface(inChild);
if (!child) {
return NS_ERROR_NULL_POINTER;
}
nsIContent* parent = child->GetParent();
if (!parent) {
return NS_ERROR_NULL_POINTER;
}
*outParent = parent;
*outOffset = parent->ComputeIndexOf(child);
return NS_OK;
}
return NS_ERROR_NULL_POINTER;
}
bool nsHTMLCopyEncoder::IsRoot(nsINode* aNode) {
nsCOMPtr<nsIContent> content = do_QueryInterface(aNode);
if (!content) {
return false;
}
if (mIsTextWidget) {
return content->IsHTMLElement(nsGkAtoms::div);
}
return content->IsAnyOfHTMLElements(nsGkAtoms::body, nsGkAtoms::td,
nsGkAtoms::th);
}
bool nsHTMLCopyEncoder::IsFirstNode(nsINode* aNode) {
// need to check if any nodes before us are really visible.
// Mike wrote something for me along these lines in nsSelectionController,
// but I don't think it's ready for use yet - revisit.
// HACK: for now, simply consider all whitespace text nodes to be
// invisible formatting nodes.
for (nsIContent* sibling = aNode->GetPreviousSibling(); sibling;
sibling = sibling->GetPreviousSibling()) {
if (!sibling->TextIsOnlyWhitespace()) {
return false;
}
}
return true;
}
bool nsHTMLCopyEncoder::IsLastNode(nsINode* aNode) {
// need to check if any nodes after us are really visible.
// Mike wrote something for me along these lines in nsSelectionController,
// but I don't think it's ready for use yet - revisit.
// HACK: for now, simply consider all whitespace text nodes to be
// invisible formatting nodes.
for (nsIContent* sibling = aNode->GetNextSibling(); sibling;
sibling = sibling->GetNextSibling()) {
if (sibling->IsElement() && IsMozBR(sibling->AsElement())) {
// we ignore trailing moz BRs.
continue;
}
if (!sibling->TextIsOnlyWhitespace()) {
return false;
}
}
return true;
}
already_AddRefed<nsIDocumentEncoder> do_createHTMLCopyEncoder() {
return do_AddRef(new nsHTMLCopyEncoder);
}
int32_t nsHTMLCopyEncoder::GetImmediateContextCount(
const nsTArray<nsINode*>& aAncestorArray) {
int32_t i = aAncestorArray.Length(), j = 0;
while (j < i) {
nsINode* node = aAncestorArray.ElementAt(j);
if (!node) {
break;
}
nsCOMPtr<nsIContent> content(do_QueryInterface(node));
if (!content || !content->IsAnyOfHTMLElements(
nsGkAtoms::tr, nsGkAtoms::thead, nsGkAtoms::tbody,
nsGkAtoms::tfoot, nsGkAtoms::table)) {
break;
}
++j;
}
return j;
}