зеркало из https://github.com/mozilla/gecko-dev.git
1414 строки
48 KiB
C++
1414 строки
48 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include <vector>
|
|
#include "mozilla/RefPtr.h"
|
|
#include "gtest/gtest.h"
|
|
#include "nsRegion.h"
|
|
#include "nsRect.h"
|
|
#include "TreeTraversal.h"
|
|
#include <stack>
|
|
#include <queue>
|
|
|
|
const int PERFORMANCE_TREE_DEPTH = 20;
|
|
const int PERFORMANCE_TREE_CHILD_COUNT = 2;
|
|
const int PERFORMANCE_TREE_LEAF_COUNT = 1048576; // 2 ** 20
|
|
const int PERFORMANCE_REGION_XWRAP = 1024;
|
|
|
|
using namespace mozilla::layers;
|
|
using namespace mozilla;
|
|
|
|
enum class SearchNodeType { Needle, Hay };
|
|
enum class ForEachNodeType { Continue, Skip };
|
|
|
|
template <class T>
|
|
class TestNodeBase {
|
|
public:
|
|
NS_INLINE_DECL_REFCOUNTING(TestNodeBase<T>);
|
|
explicit TestNodeBase(T aType, int aExpectedTraversalRank = -1);
|
|
explicit TestNodeBase();
|
|
void SetActualTraversalRank(int aRank);
|
|
void SetValue(int aValue);
|
|
void SetType(T aType);
|
|
void SetRegion(nsRegion aRegion);
|
|
int GetExpectedTraversalRank();
|
|
int GetActualTraversalRank();
|
|
int GetValue();
|
|
T GetType();
|
|
nsRegion GetRegion();
|
|
virtual bool IsLeaf() = 0;
|
|
|
|
private:
|
|
MOZ_INIT_OUTSIDE_CTOR int mExpectedTraversalRank;
|
|
MOZ_INIT_OUTSIDE_CTOR int mActualTraversalRank;
|
|
MOZ_INIT_OUTSIDE_CTOR int mValue;
|
|
MOZ_INIT_OUTSIDE_CTOR nsRegion mRegion;
|
|
MOZ_INIT_OUTSIDE_CTOR T mType;
|
|
|
|
protected:
|
|
virtual ~TestNodeBase<T>(){};
|
|
};
|
|
|
|
template <class T>
|
|
class TestNodeReverse : public TestNodeBase<T> {
|
|
public:
|
|
explicit TestNodeReverse(T aType, int aExpectedTraversalRank = -1);
|
|
explicit TestNodeReverse();
|
|
void AddChild(RefPtr<TestNodeReverse<T>> aNode);
|
|
TestNodeReverse<T>* GetLastChild();
|
|
TestNodeReverse<T>* GetPrevSibling();
|
|
bool IsLeaf();
|
|
|
|
private:
|
|
void SetPrevSibling(RefPtr<TestNodeReverse<T>> aNode);
|
|
void SetLastChild(RefPtr<TestNodeReverse<T>> aNode);
|
|
RefPtr<TestNodeReverse<T>> mSiblingNode;
|
|
RefPtr<TestNodeReverse<T>> mLastChildNode;
|
|
~TestNodeReverse<T>(){};
|
|
};
|
|
|
|
template <class T>
|
|
class TestNodeForward : public TestNodeBase<T> {
|
|
public:
|
|
explicit TestNodeForward(T aType, int aExpectedTraversalRank = -1);
|
|
explicit TestNodeForward();
|
|
void AddChild(RefPtr<TestNodeForward<T>> aNode);
|
|
TestNodeForward<T>* GetFirstChild();
|
|
TestNodeForward<T>* GetNextSibling();
|
|
bool IsLeaf();
|
|
|
|
private:
|
|
void SetNextSibling(RefPtr<TestNodeForward<T>> aNode);
|
|
void SetLastChild(RefPtr<TestNodeForward<T>> aNode);
|
|
void SetFirstChild(RefPtr<TestNodeForward<T>> aNode);
|
|
RefPtr<TestNodeForward<T>> mSiblingNode = nullptr;
|
|
RefPtr<TestNodeForward<T>> mFirstChildNode = nullptr;
|
|
// Track last child to facilitate appending children
|
|
RefPtr<TestNodeForward<T>> mLastChildNode = nullptr;
|
|
~TestNodeForward<T>(){};
|
|
};
|
|
|
|
template <class T>
|
|
TestNodeReverse<T>::TestNodeReverse(T aType, int aExpectedTraversalRank)
|
|
: TestNodeBase<T>(aType, aExpectedTraversalRank) {}
|
|
|
|
template <class T>
|
|
TestNodeReverse<T>::TestNodeReverse() : TestNodeBase<T>() {}
|
|
|
|
template <class T>
|
|
void TestNodeReverse<T>::SetLastChild(RefPtr<TestNodeReverse<T>> aNode) {
|
|
mLastChildNode = aNode;
|
|
}
|
|
|
|
template <class T>
|
|
void TestNodeReverse<T>::AddChild(RefPtr<TestNodeReverse<T>> aNode) {
|
|
aNode->SetPrevSibling(mLastChildNode);
|
|
SetLastChild(aNode);
|
|
}
|
|
|
|
template <class T>
|
|
void TestNodeReverse<T>::SetPrevSibling(RefPtr<TestNodeReverse<T>> aNode) {
|
|
mSiblingNode = aNode;
|
|
}
|
|
|
|
template <class T>
|
|
TestNodeReverse<T>* TestNodeReverse<T>::GetLastChild() {
|
|
return mLastChildNode;
|
|
}
|
|
|
|
template <class T>
|
|
TestNodeReverse<T>* TestNodeReverse<T>::GetPrevSibling() {
|
|
return mSiblingNode;
|
|
}
|
|
|
|
template <class T>
|
|
bool TestNodeReverse<T>::IsLeaf() {
|
|
return !mLastChildNode;
|
|
}
|
|
|
|
template <class T>
|
|
TestNodeForward<T>::TestNodeForward(T aType, int aExpectedTraversalRank)
|
|
: TestNodeBase<T>(aType, aExpectedTraversalRank) {}
|
|
|
|
template <class T>
|
|
TestNodeForward<T>::TestNodeForward() : TestNodeBase<T>() {}
|
|
|
|
template <class T>
|
|
void TestNodeForward<T>::AddChild(RefPtr<TestNodeForward<T>> aNode) {
|
|
if (mFirstChildNode == nullptr) {
|
|
SetFirstChild(aNode);
|
|
SetLastChild(aNode);
|
|
} else {
|
|
mLastChildNode->SetNextSibling(aNode);
|
|
SetLastChild(aNode);
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
void TestNodeForward<T>::SetLastChild(RefPtr<TestNodeForward<T>> aNode) {
|
|
mLastChildNode = aNode;
|
|
}
|
|
|
|
template <class T>
|
|
void TestNodeForward<T>::SetFirstChild(RefPtr<TestNodeForward<T>> aNode) {
|
|
mFirstChildNode = aNode;
|
|
}
|
|
|
|
template <class T>
|
|
void TestNodeForward<T>::SetNextSibling(RefPtr<TestNodeForward<T>> aNode) {
|
|
mSiblingNode = aNode;
|
|
}
|
|
|
|
template <class T>
|
|
bool TestNodeForward<T>::IsLeaf() {
|
|
return !mFirstChildNode;
|
|
}
|
|
|
|
template <class T>
|
|
TestNodeForward<T>* TestNodeForward<T>::GetFirstChild() {
|
|
return mFirstChildNode;
|
|
}
|
|
|
|
template <class T>
|
|
TestNodeForward<T>* TestNodeForward<T>::GetNextSibling() {
|
|
return mSiblingNode;
|
|
}
|
|
|
|
template <class T>
|
|
TestNodeBase<T>::TestNodeBase(T aType, int aExpectedTraversalRank)
|
|
: mExpectedTraversalRank(aExpectedTraversalRank),
|
|
mActualTraversalRank(-1),
|
|
mType(aType) {}
|
|
|
|
template <class T>
|
|
TestNodeBase<T>::TestNodeBase() {}
|
|
|
|
template <class T>
|
|
int TestNodeBase<T>::GetActualTraversalRank() {
|
|
return mActualTraversalRank;
|
|
}
|
|
|
|
template <class T>
|
|
void TestNodeBase<T>::SetActualTraversalRank(int aRank) {
|
|
mActualTraversalRank = aRank;
|
|
}
|
|
|
|
template <class T>
|
|
int TestNodeBase<T>::GetExpectedTraversalRank() {
|
|
return mExpectedTraversalRank;
|
|
}
|
|
|
|
template <class T>
|
|
T TestNodeBase<T>::GetType() {
|
|
return mType;
|
|
}
|
|
|
|
template <class T>
|
|
void TestNodeBase<T>::SetType(T aType) {
|
|
mType = aType;
|
|
}
|
|
|
|
template <class T>
|
|
nsRegion TestNodeBase<T>::GetRegion() {
|
|
return mRegion;
|
|
}
|
|
|
|
template <class T>
|
|
void TestNodeBase<T>::SetRegion(nsRegion aRegion) {
|
|
mRegion = aRegion;
|
|
}
|
|
|
|
template <class T>
|
|
int TestNodeBase<T>::GetValue() {
|
|
return mValue;
|
|
}
|
|
|
|
template <class T>
|
|
void TestNodeBase<T>::SetValue(int aValue) {
|
|
mValue = aValue;
|
|
}
|
|
|
|
typedef TestNodeBase<SearchNodeType> SearchTestNode;
|
|
typedef TestNodeBase<ForEachNodeType> ForEachTestNode;
|
|
typedef TestNodeReverse<SearchNodeType> SearchTestNodeReverse;
|
|
typedef TestNodeReverse<ForEachNodeType> ForEachTestNodeReverse;
|
|
typedef TestNodeForward<SearchNodeType> SearchTestNodeForward;
|
|
typedef TestNodeForward<ForEachNodeType> ForEachTestNodeForward;
|
|
|
|
TEST(TreeTraversal, DepthFirstSearchNull)
|
|
{
|
|
RefPtr<SearchTestNodeReverse> nullNode;
|
|
RefPtr<SearchTestNodeReverse> result =
|
|
DepthFirstSearch<layers::ReverseIterator>(
|
|
nullNode.get(), [](SearchTestNodeReverse* aNode) {
|
|
return aNode->GetType() == SearchNodeType::Needle;
|
|
});
|
|
ASSERT_EQ(result.get(), nullptr)
|
|
<< "Null root did not return null search result.";
|
|
}
|
|
|
|
TEST(TreeTraversal, DepthFirstSearchValueExists)
|
|
{
|
|
int visitCount = 0;
|
|
size_t expectedNeedleTraversalRank = 7;
|
|
RefPtr<SearchTestNodeForward> needleNode;
|
|
std::vector<RefPtr<SearchTestNodeForward>> nodeList;
|
|
nodeList.reserve(10);
|
|
for (size_t i = 0; i < 10; i++) {
|
|
if (i == expectedNeedleTraversalRank) {
|
|
needleNode = new SearchTestNodeForward(SearchNodeType::Needle, i);
|
|
nodeList.push_back(needleNode);
|
|
} else if (i < expectedNeedleTraversalRank) {
|
|
nodeList.push_back(new SearchTestNodeForward(SearchNodeType::Hay, i));
|
|
} else {
|
|
nodeList.push_back(new SearchTestNodeForward(SearchNodeType::Hay));
|
|
}
|
|
}
|
|
|
|
RefPtr<SearchTestNodeForward> root = nodeList[0];
|
|
nodeList[0]->AddChild(nodeList[1]);
|
|
nodeList[0]->AddChild(nodeList[4]);
|
|
nodeList[1]->AddChild(nodeList[2]);
|
|
nodeList[1]->AddChild(nodeList[3]);
|
|
nodeList[4]->AddChild(nodeList[5]);
|
|
nodeList[4]->AddChild(nodeList[6]);
|
|
nodeList[6]->AddChild(nodeList[7]);
|
|
nodeList[7]->AddChild(nodeList[8]);
|
|
nodeList[7]->AddChild(nodeList[9]);
|
|
|
|
RefPtr<SearchTestNodeForward> foundNode =
|
|
DepthFirstSearch<layers::ForwardIterator>(
|
|
root.get(), [&visitCount](SearchTestNodeForward* aNode) {
|
|
aNode->SetActualTraversalRank(visitCount);
|
|
visitCount++;
|
|
return aNode->GetType() == SearchNodeType::Needle;
|
|
});
|
|
|
|
for (size_t i = 0; i < nodeList.size(); i++) {
|
|
ASSERT_EQ(nodeList[i]->GetExpectedTraversalRank(),
|
|
nodeList[i]->GetActualTraversalRank())
|
|
<< "Node at index " << i << " was hit out of order.";
|
|
}
|
|
|
|
ASSERT_EQ(foundNode, needleNode) << "Search did not return expected node.";
|
|
ASSERT_EQ(foundNode->GetType(), SearchNodeType::Needle)
|
|
<< "Returned node does not match expected value (something odd "
|
|
"happened).";
|
|
}
|
|
|
|
TEST(TreeTraversal, DepthFirstSearchValueExistsReverse)
|
|
{
|
|
int visitCount = 0;
|
|
size_t expectedNeedleTraversalRank = 7;
|
|
RefPtr<SearchTestNodeReverse> needleNode;
|
|
std::vector<RefPtr<SearchTestNodeReverse>> nodeList;
|
|
nodeList.reserve(10);
|
|
for (size_t i = 0; i < 10; i++) {
|
|
if (i == expectedNeedleTraversalRank) {
|
|
needleNode = new SearchTestNodeReverse(SearchNodeType::Needle, i);
|
|
nodeList.push_back(needleNode);
|
|
} else if (i < expectedNeedleTraversalRank) {
|
|
nodeList.push_back(new SearchTestNodeReverse(SearchNodeType::Hay, i));
|
|
} else {
|
|
nodeList.push_back(new SearchTestNodeReverse(SearchNodeType::Hay));
|
|
}
|
|
}
|
|
|
|
RefPtr<SearchTestNodeReverse> root = nodeList[0];
|
|
nodeList[0]->AddChild(nodeList[4]);
|
|
nodeList[0]->AddChild(nodeList[1]);
|
|
nodeList[1]->AddChild(nodeList[3]);
|
|
nodeList[1]->AddChild(nodeList[2]);
|
|
nodeList[4]->AddChild(nodeList[6]);
|
|
nodeList[4]->AddChild(nodeList[5]);
|
|
nodeList[6]->AddChild(nodeList[7]);
|
|
nodeList[7]->AddChild(nodeList[9]);
|
|
nodeList[7]->AddChild(nodeList[8]);
|
|
|
|
RefPtr<SearchTestNodeReverse> foundNode =
|
|
DepthFirstSearch<layers::ReverseIterator>(
|
|
root.get(), [&visitCount](SearchTestNodeReverse* aNode) {
|
|
aNode->SetActualTraversalRank(visitCount);
|
|
visitCount++;
|
|
return aNode->GetType() == SearchNodeType::Needle;
|
|
});
|
|
|
|
for (size_t i = 0; i < nodeList.size(); i++) {
|
|
ASSERT_EQ(nodeList[i]->GetExpectedTraversalRank(),
|
|
nodeList[i]->GetActualTraversalRank())
|
|
<< "Node at index " << i << " was hit out of order.";
|
|
}
|
|
|
|
ASSERT_EQ(foundNode, needleNode) << "Search did not return expected node.";
|
|
ASSERT_EQ(foundNode->GetType(), SearchNodeType::Needle)
|
|
<< "Returned node does not match expected value (something odd "
|
|
"happened).";
|
|
}
|
|
|
|
TEST(TreeTraversal, DepthFirstSearchRootIsNeedle)
|
|
{
|
|
RefPtr<SearchTestNodeReverse> root =
|
|
new SearchTestNodeReverse(SearchNodeType::Needle, 0);
|
|
RefPtr<SearchTestNodeReverse> childNode1 =
|
|
new SearchTestNodeReverse(SearchNodeType::Hay);
|
|
RefPtr<SearchTestNodeReverse> childNode2 =
|
|
new SearchTestNodeReverse(SearchNodeType::Hay);
|
|
int visitCount = 0;
|
|
RefPtr<SearchTestNodeReverse> result =
|
|
DepthFirstSearch<layers::ReverseIterator>(
|
|
root.get(), [&visitCount](SearchTestNodeReverse* aNode) {
|
|
aNode->SetActualTraversalRank(visitCount);
|
|
visitCount++;
|
|
return aNode->GetType() == SearchNodeType::Needle;
|
|
});
|
|
ASSERT_EQ(result, root) << "Search starting at needle did not return needle.";
|
|
ASSERT_EQ(root->GetExpectedTraversalRank(), root->GetActualTraversalRank())
|
|
<< "Search starting at needle did not return needle.";
|
|
ASSERT_EQ(childNode1->GetExpectedTraversalRank(),
|
|
childNode1->GetActualTraversalRank())
|
|
<< "Search starting at needle continued past needle.";
|
|
ASSERT_EQ(childNode2->GetExpectedTraversalRank(),
|
|
childNode2->GetActualTraversalRank())
|
|
<< "Search starting at needle continued past needle.";
|
|
}
|
|
|
|
TEST(TreeTraversal, DepthFirstSearchValueDoesNotExist)
|
|
{
|
|
int visitCount = 0;
|
|
std::vector<RefPtr<SearchTestNodeForward>> nodeList;
|
|
nodeList.reserve(10);
|
|
for (int i = 0; i < 10; i++) {
|
|
nodeList.push_back(new SearchTestNodeForward(SearchNodeType::Hay, i));
|
|
}
|
|
|
|
RefPtr<SearchTestNodeForward> root = nodeList[0];
|
|
nodeList[0]->AddChild(nodeList[1]);
|
|
nodeList[0]->AddChild(nodeList[4]);
|
|
nodeList[1]->AddChild(nodeList[2]);
|
|
nodeList[1]->AddChild(nodeList[3]);
|
|
nodeList[4]->AddChild(nodeList[5]);
|
|
nodeList[4]->AddChild(nodeList[6]);
|
|
nodeList[6]->AddChild(nodeList[7]);
|
|
nodeList[7]->AddChild(nodeList[8]);
|
|
nodeList[7]->AddChild(nodeList[9]);
|
|
|
|
RefPtr<SearchTestNodeForward> foundNode =
|
|
DepthFirstSearch<layers::ForwardIterator>(
|
|
root.get(), [&visitCount](SearchTestNodeForward* aNode) {
|
|
aNode->SetActualTraversalRank(visitCount);
|
|
visitCount++;
|
|
return aNode->GetType() == SearchNodeType::Needle;
|
|
});
|
|
|
|
for (int i = 0; i < 10; i++) {
|
|
ASSERT_EQ(nodeList[i]->GetExpectedTraversalRank(),
|
|
nodeList[i]->GetActualTraversalRank())
|
|
<< "Node at index " << i << " was hit out of order.";
|
|
}
|
|
|
|
ASSERT_EQ(foundNode.get(), nullptr)
|
|
<< "Search found something that should not exist.";
|
|
}
|
|
|
|
TEST(TreeTraversal, DepthFirstSearchValueDoesNotExistReverse)
|
|
{
|
|
int visitCount = 0;
|
|
std::vector<RefPtr<SearchTestNodeReverse>> nodeList;
|
|
nodeList.reserve(10);
|
|
for (int i = 0; i < 10; i++) {
|
|
nodeList.push_back(new SearchTestNodeReverse(SearchNodeType::Hay, i));
|
|
}
|
|
|
|
RefPtr<SearchTestNodeReverse> root = nodeList[0];
|
|
nodeList[0]->AddChild(nodeList[4]);
|
|
nodeList[0]->AddChild(nodeList[1]);
|
|
nodeList[1]->AddChild(nodeList[3]);
|
|
nodeList[1]->AddChild(nodeList[2]);
|
|
nodeList[4]->AddChild(nodeList[6]);
|
|
nodeList[4]->AddChild(nodeList[5]);
|
|
nodeList[6]->AddChild(nodeList[7]);
|
|
nodeList[7]->AddChild(nodeList[9]);
|
|
nodeList[7]->AddChild(nodeList[8]);
|
|
|
|
RefPtr<SearchTestNodeReverse> foundNode =
|
|
DepthFirstSearch<layers::ReverseIterator>(
|
|
root.get(), [&visitCount](SearchTestNodeReverse* aNode) {
|
|
aNode->SetActualTraversalRank(visitCount);
|
|
visitCount++;
|
|
return aNode->GetType() == SearchNodeType::Needle;
|
|
});
|
|
|
|
for (int i = 0; i < 10; i++) {
|
|
ASSERT_EQ(nodeList[i]->GetExpectedTraversalRank(),
|
|
nodeList[i]->GetActualTraversalRank())
|
|
<< "Node at index " << i << " was hit out of order.";
|
|
}
|
|
|
|
ASSERT_EQ(foundNode.get(), nullptr)
|
|
<< "Search found something that should not exist.";
|
|
}
|
|
|
|
TEST(TreeTraversal, DepthFirstSearchPostOrderNull)
|
|
{
|
|
RefPtr<SearchTestNodeReverse> nullNode;
|
|
RefPtr<SearchTestNodeReverse> result =
|
|
DepthFirstSearchPostOrder<layers::ReverseIterator>(
|
|
nullNode.get(), [](SearchTestNodeReverse* aNode) {
|
|
return aNode->GetType() == SearchNodeType::Needle;
|
|
});
|
|
ASSERT_EQ(result.get(), nullptr)
|
|
<< "Null root did not return null search result.";
|
|
}
|
|
|
|
TEST(TreeTraversal, DepthFirstSearchPostOrderValueExists)
|
|
{
|
|
int visitCount = 0;
|
|
size_t expectedNeedleTraversalRank = 7;
|
|
RefPtr<SearchTestNodeForward> needleNode;
|
|
std::vector<RefPtr<SearchTestNodeForward>> nodeList;
|
|
for (size_t i = 0; i < 10; i++) {
|
|
if (i == expectedNeedleTraversalRank) {
|
|
needleNode = new SearchTestNodeForward(SearchNodeType::Needle, i);
|
|
nodeList.push_back(needleNode);
|
|
} else if (i < expectedNeedleTraversalRank) {
|
|
nodeList.push_back(new SearchTestNodeForward(SearchNodeType::Hay, i));
|
|
} else {
|
|
nodeList.push_back(new SearchTestNodeForward(SearchNodeType::Hay));
|
|
}
|
|
}
|
|
|
|
RefPtr<SearchTestNodeForward> root = nodeList[9];
|
|
nodeList[9]->AddChild(nodeList[2]);
|
|
nodeList[9]->AddChild(nodeList[8]);
|
|
nodeList[2]->AddChild(nodeList[0]);
|
|
nodeList[2]->AddChild(nodeList[1]);
|
|
nodeList[8]->AddChild(nodeList[6]);
|
|
nodeList[8]->AddChild(nodeList[7]);
|
|
nodeList[6]->AddChild(nodeList[5]);
|
|
nodeList[5]->AddChild(nodeList[3]);
|
|
nodeList[5]->AddChild(nodeList[4]);
|
|
|
|
RefPtr<SearchTestNodeForward> foundNode =
|
|
DepthFirstSearchPostOrder<layers::ForwardIterator>(
|
|
root.get(), [&visitCount](SearchTestNodeForward* aNode) {
|
|
aNode->SetActualTraversalRank(visitCount);
|
|
visitCount++;
|
|
return aNode->GetType() == SearchNodeType::Needle;
|
|
});
|
|
|
|
for (size_t i = 0; i < nodeList.size(); i++) {
|
|
ASSERT_EQ(nodeList[i]->GetExpectedTraversalRank(),
|
|
nodeList[i]->GetActualTraversalRank())
|
|
<< "Node at index " << i << " was hit out of order.";
|
|
}
|
|
|
|
ASSERT_EQ(foundNode, needleNode) << "Search did not return expected node.";
|
|
ASSERT_EQ(foundNode->GetType(), SearchNodeType::Needle)
|
|
<< "Returned node does not match expected value (something odd "
|
|
"happened).";
|
|
}
|
|
|
|
TEST(TreeTraversal, DepthFirstSearchPostOrderValueExistsReverse)
|
|
{
|
|
int visitCount = 0;
|
|
size_t expectedNeedleTraversalRank = 7;
|
|
RefPtr<SearchTestNodeReverse> needleNode;
|
|
std::vector<RefPtr<SearchTestNodeReverse>> nodeList;
|
|
for (size_t i = 0; i < 10; i++) {
|
|
if (i == expectedNeedleTraversalRank) {
|
|
needleNode = new SearchTestNodeReverse(SearchNodeType::Needle, i);
|
|
nodeList.push_back(needleNode);
|
|
} else if (i < expectedNeedleTraversalRank) {
|
|
nodeList.push_back(new SearchTestNodeReverse(SearchNodeType::Hay, i));
|
|
} else {
|
|
nodeList.push_back(new SearchTestNodeReverse(SearchNodeType::Hay));
|
|
}
|
|
}
|
|
|
|
RefPtr<SearchTestNodeReverse> root = nodeList[9];
|
|
nodeList[9]->AddChild(nodeList[8]);
|
|
nodeList[9]->AddChild(nodeList[2]);
|
|
nodeList[2]->AddChild(nodeList[1]);
|
|
nodeList[2]->AddChild(nodeList[0]);
|
|
nodeList[8]->AddChild(nodeList[7]);
|
|
nodeList[8]->AddChild(nodeList[6]);
|
|
nodeList[6]->AddChild(nodeList[5]);
|
|
nodeList[5]->AddChild(nodeList[4]);
|
|
nodeList[5]->AddChild(nodeList[3]);
|
|
|
|
RefPtr<SearchTestNodeReverse> foundNode =
|
|
DepthFirstSearchPostOrder<layers::ReverseIterator>(
|
|
root.get(), [&visitCount](SearchTestNodeReverse* aNode) {
|
|
aNode->SetActualTraversalRank(visitCount);
|
|
visitCount++;
|
|
return aNode->GetType() == SearchNodeType::Needle;
|
|
});
|
|
|
|
for (size_t i = 0; i < nodeList.size(); i++) {
|
|
ASSERT_EQ(nodeList[i]->GetExpectedTraversalRank(),
|
|
nodeList[i]->GetActualTraversalRank())
|
|
<< "Node at index " << i << " was hit out of order.";
|
|
}
|
|
|
|
ASSERT_EQ(foundNode, needleNode) << "Search did not return expected node.";
|
|
ASSERT_EQ(foundNode->GetType(), SearchNodeType::Needle)
|
|
<< "Returned node does not match expected value (something odd "
|
|
"happened).";
|
|
}
|
|
|
|
TEST(TreeTraversal, DepthFirstSearchPostOrderRootIsNeedle)
|
|
{
|
|
RefPtr<SearchTestNodeReverse> root =
|
|
new SearchTestNodeReverse(SearchNodeType::Needle, 0);
|
|
RefPtr<SearchTestNodeReverse> childNode1 =
|
|
new SearchTestNodeReverse(SearchNodeType::Hay);
|
|
RefPtr<SearchTestNodeReverse> childNode2 =
|
|
new SearchTestNodeReverse(SearchNodeType::Hay);
|
|
int visitCount = 0;
|
|
RefPtr<SearchTestNodeReverse> result =
|
|
DepthFirstSearchPostOrder<layers::ReverseIterator>(
|
|
root.get(), [&visitCount](SearchTestNodeReverse* aNode) {
|
|
aNode->SetActualTraversalRank(visitCount);
|
|
visitCount++;
|
|
return aNode->GetType() == SearchNodeType::Needle;
|
|
});
|
|
ASSERT_EQ(result, root) << "Search starting at needle did not return needle.";
|
|
ASSERT_EQ(root->GetExpectedTraversalRank(), root->GetActualTraversalRank())
|
|
<< "Search starting at needle did not return needle.";
|
|
ASSERT_EQ(childNode1->GetExpectedTraversalRank(),
|
|
childNode1->GetActualTraversalRank())
|
|
<< "Search starting at needle continued past needle.";
|
|
ASSERT_EQ(childNode2->GetExpectedTraversalRank(),
|
|
childNode2->GetActualTraversalRank())
|
|
<< "Search starting at needle continued past needle.";
|
|
}
|
|
|
|
TEST(TreeTraversal, DepthFirstSearchPostOrderValueDoesNotExist)
|
|
{
|
|
int visitCount = 0;
|
|
std::vector<RefPtr<SearchTestNodeForward>> nodeList;
|
|
nodeList.reserve(10);
|
|
for (int i = 0; i < 10; i++) {
|
|
nodeList.push_back(new SearchTestNodeForward(SearchNodeType::Hay, i));
|
|
}
|
|
|
|
RefPtr<SearchTestNodeForward> root = nodeList[9];
|
|
nodeList[9]->AddChild(nodeList[2]);
|
|
nodeList[9]->AddChild(nodeList[8]);
|
|
nodeList[2]->AddChild(nodeList[0]);
|
|
nodeList[2]->AddChild(nodeList[1]);
|
|
nodeList[8]->AddChild(nodeList[6]);
|
|
nodeList[8]->AddChild(nodeList[7]);
|
|
nodeList[6]->AddChild(nodeList[5]);
|
|
nodeList[5]->AddChild(nodeList[3]);
|
|
nodeList[5]->AddChild(nodeList[4]);
|
|
|
|
RefPtr<SearchTestNodeForward> foundNode =
|
|
DepthFirstSearchPostOrder<layers::ForwardIterator>(
|
|
root.get(), [&visitCount](SearchTestNodeForward* aNode) {
|
|
aNode->SetActualTraversalRank(visitCount);
|
|
visitCount++;
|
|
return aNode->GetType() == SearchNodeType::Needle;
|
|
});
|
|
|
|
for (int i = 0; i < 10; i++) {
|
|
ASSERT_EQ(nodeList[i]->GetExpectedTraversalRank(),
|
|
nodeList[i]->GetActualTraversalRank())
|
|
<< "Node at index " << i << " was hit out of order.";
|
|
}
|
|
|
|
ASSERT_EQ(foundNode.get(), nullptr)
|
|
<< "Search found something that should not exist.";
|
|
}
|
|
|
|
TEST(TreeTraversal, DepthFirstSearchPostOrderValueDoesNotExistReverse)
|
|
{
|
|
int visitCount = 0;
|
|
std::vector<RefPtr<SearchTestNodeReverse>> nodeList;
|
|
nodeList.reserve(10);
|
|
for (int i = 0; i < 10; i++) {
|
|
nodeList.push_back(new SearchTestNodeReverse(SearchNodeType::Hay, i));
|
|
}
|
|
|
|
RefPtr<SearchTestNodeReverse> root = nodeList[9];
|
|
nodeList[9]->AddChild(nodeList[8]);
|
|
nodeList[9]->AddChild(nodeList[2]);
|
|
nodeList[2]->AddChild(nodeList[1]);
|
|
nodeList[2]->AddChild(nodeList[0]);
|
|
nodeList[8]->AddChild(nodeList[7]);
|
|
nodeList[8]->AddChild(nodeList[6]);
|
|
nodeList[6]->AddChild(nodeList[5]);
|
|
nodeList[5]->AddChild(nodeList[4]);
|
|
nodeList[5]->AddChild(nodeList[3]);
|
|
|
|
RefPtr<SearchTestNodeReverse> foundNode =
|
|
DepthFirstSearchPostOrder<layers::ReverseIterator>(
|
|
root.get(), [&visitCount](SearchTestNodeReverse* aNode) {
|
|
aNode->SetActualTraversalRank(visitCount);
|
|
visitCount++;
|
|
return aNode->GetType() == SearchNodeType::Needle;
|
|
});
|
|
|
|
for (int i = 0; i < 10; i++) {
|
|
ASSERT_EQ(nodeList[i]->GetExpectedTraversalRank(),
|
|
nodeList[i]->GetActualTraversalRank())
|
|
<< "Node at index " << i << " was hit out of order.";
|
|
}
|
|
|
|
ASSERT_EQ(foundNode.get(), nullptr)
|
|
<< "Search found something that should not exist.";
|
|
}
|
|
|
|
TEST(TreeTraversal, BreadthFirstSearchNull)
|
|
{
|
|
RefPtr<SearchTestNodeReverse> nullNode;
|
|
RefPtr<SearchTestNodeReverse> result =
|
|
BreadthFirstSearch<layers::ReverseIterator>(
|
|
nullNode.get(), [](SearchTestNodeReverse* aNode) {
|
|
return aNode->GetType() == SearchNodeType::Needle;
|
|
});
|
|
ASSERT_EQ(result.get(), nullptr)
|
|
<< "Null root did not return null search result.";
|
|
}
|
|
|
|
TEST(TreeTraversal, BreadthFirstSearchRootIsNeedle)
|
|
{
|
|
RefPtr<SearchTestNodeReverse> root =
|
|
new SearchTestNodeReverse(SearchNodeType::Needle, 0);
|
|
RefPtr<SearchTestNodeReverse> childNode1 =
|
|
new SearchTestNodeReverse(SearchNodeType::Hay);
|
|
RefPtr<SearchTestNodeReverse> childNode2 =
|
|
new SearchTestNodeReverse(SearchNodeType::Hay);
|
|
int visitCount = 0;
|
|
RefPtr<SearchTestNodeReverse> result =
|
|
BreadthFirstSearch<layers::ReverseIterator>(
|
|
root.get(), [&visitCount](SearchTestNodeReverse* aNode) {
|
|
aNode->SetActualTraversalRank(visitCount);
|
|
visitCount++;
|
|
return aNode->GetType() == SearchNodeType::Needle;
|
|
});
|
|
ASSERT_EQ(result, root) << "Search starting at needle did not return needle.";
|
|
ASSERT_EQ(root->GetExpectedTraversalRank(), root->GetActualTraversalRank())
|
|
<< "Search starting at needle did not return needle.";
|
|
ASSERT_EQ(childNode1->GetExpectedTraversalRank(),
|
|
childNode1->GetActualTraversalRank())
|
|
<< "Search starting at needle continued past needle.";
|
|
ASSERT_EQ(childNode2->GetExpectedTraversalRank(),
|
|
childNode2->GetActualTraversalRank())
|
|
<< "Search starting at needle continued past needle.";
|
|
}
|
|
|
|
TEST(TreeTraversal, BreadthFirstSearchValueExists)
|
|
{
|
|
int visitCount = 0;
|
|
size_t expectedNeedleTraversalRank = 7;
|
|
RefPtr<SearchTestNodeForward> needleNode;
|
|
std::vector<RefPtr<SearchTestNodeForward>> nodeList;
|
|
nodeList.reserve(10);
|
|
for (size_t i = 0; i < 10; i++) {
|
|
if (i == expectedNeedleTraversalRank) {
|
|
needleNode = new SearchTestNodeForward(SearchNodeType::Needle, i);
|
|
nodeList.push_back(needleNode);
|
|
} else if (i < expectedNeedleTraversalRank) {
|
|
nodeList.push_back(new SearchTestNodeForward(SearchNodeType::Hay, i));
|
|
} else {
|
|
nodeList.push_back(new SearchTestNodeForward(SearchNodeType::Hay));
|
|
}
|
|
}
|
|
|
|
RefPtr<SearchTestNodeForward> root = nodeList[0];
|
|
nodeList[0]->AddChild(nodeList[1]);
|
|
nodeList[0]->AddChild(nodeList[2]);
|
|
nodeList[1]->AddChild(nodeList[3]);
|
|
nodeList[1]->AddChild(nodeList[4]);
|
|
nodeList[2]->AddChild(nodeList[5]);
|
|
nodeList[2]->AddChild(nodeList[6]);
|
|
nodeList[6]->AddChild(nodeList[7]);
|
|
nodeList[7]->AddChild(nodeList[8]);
|
|
nodeList[7]->AddChild(nodeList[9]);
|
|
|
|
RefPtr<SearchTestNodeForward> foundNode =
|
|
BreadthFirstSearch<layers::ForwardIterator>(
|
|
root.get(), [&visitCount](SearchTestNodeForward* aNode) {
|
|
aNode->SetActualTraversalRank(visitCount);
|
|
visitCount++;
|
|
return aNode->GetType() == SearchNodeType::Needle;
|
|
});
|
|
|
|
for (size_t i = 0; i < nodeList.size(); i++) {
|
|
ASSERT_EQ(nodeList[i]->GetExpectedTraversalRank(),
|
|
nodeList[i]->GetActualTraversalRank())
|
|
<< "Node at index " << i << " was hit out of order.";
|
|
}
|
|
|
|
ASSERT_EQ(foundNode, needleNode) << "Search did not return expected node.";
|
|
ASSERT_EQ(foundNode->GetType(), SearchNodeType::Needle)
|
|
<< "Returned node does not match expected value (something odd "
|
|
"happened).";
|
|
}
|
|
|
|
TEST(TreeTraversal, BreadthFirstSearchValueExistsReverse)
|
|
{
|
|
int visitCount = 0;
|
|
size_t expectedNeedleTraversalRank = 7;
|
|
RefPtr<SearchTestNodeReverse> needleNode;
|
|
std::vector<RefPtr<SearchTestNodeReverse>> nodeList;
|
|
nodeList.reserve(10);
|
|
for (size_t i = 0; i < 10; i++) {
|
|
if (i == expectedNeedleTraversalRank) {
|
|
needleNode = new SearchTestNodeReverse(SearchNodeType::Needle, i);
|
|
nodeList.push_back(needleNode);
|
|
} else if (i < expectedNeedleTraversalRank) {
|
|
nodeList.push_back(new SearchTestNodeReverse(SearchNodeType::Hay, i));
|
|
} else {
|
|
nodeList.push_back(new SearchTestNodeReverse(SearchNodeType::Hay));
|
|
}
|
|
}
|
|
|
|
RefPtr<SearchTestNodeReverse> root = nodeList[0];
|
|
nodeList[0]->AddChild(nodeList[2]);
|
|
nodeList[0]->AddChild(nodeList[1]);
|
|
nodeList[1]->AddChild(nodeList[4]);
|
|
nodeList[1]->AddChild(nodeList[3]);
|
|
nodeList[2]->AddChild(nodeList[6]);
|
|
nodeList[2]->AddChild(nodeList[5]);
|
|
nodeList[6]->AddChild(nodeList[7]);
|
|
nodeList[7]->AddChild(nodeList[9]);
|
|
nodeList[7]->AddChild(nodeList[8]);
|
|
|
|
RefPtr<SearchTestNodeReverse> foundNode =
|
|
BreadthFirstSearch<layers::ReverseIterator>(
|
|
root.get(), [&visitCount](SearchTestNodeReverse* aNode) {
|
|
aNode->SetActualTraversalRank(visitCount);
|
|
visitCount++;
|
|
return aNode->GetType() == SearchNodeType::Needle;
|
|
});
|
|
|
|
for (size_t i = 0; i < nodeList.size(); i++) {
|
|
ASSERT_EQ(nodeList[i]->GetExpectedTraversalRank(),
|
|
nodeList[i]->GetActualTraversalRank())
|
|
<< "Node at index " << i << " was hit out of order.";
|
|
}
|
|
|
|
ASSERT_EQ(foundNode, needleNode) << "Search did not return expected node.";
|
|
ASSERT_EQ(foundNode->GetType(), SearchNodeType::Needle)
|
|
<< "Returned node does not match expected value (something odd "
|
|
"happened).";
|
|
}
|
|
|
|
TEST(TreeTraversal, BreadthFirstSearchValueDoesNotExist)
|
|
{
|
|
int visitCount = 0;
|
|
std::vector<RefPtr<SearchTestNodeForward>> nodeList;
|
|
nodeList.reserve(10);
|
|
for (int i = 0; i < 10; i++) {
|
|
nodeList.push_back(new SearchTestNodeForward(SearchNodeType::Hay, i));
|
|
}
|
|
|
|
RefPtr<SearchTestNodeForward> root = nodeList[0];
|
|
nodeList[0]->AddChild(nodeList[1]);
|
|
nodeList[0]->AddChild(nodeList[2]);
|
|
nodeList[1]->AddChild(nodeList[3]);
|
|
nodeList[1]->AddChild(nodeList[4]);
|
|
nodeList[2]->AddChild(nodeList[5]);
|
|
nodeList[2]->AddChild(nodeList[6]);
|
|
nodeList[6]->AddChild(nodeList[7]);
|
|
nodeList[7]->AddChild(nodeList[8]);
|
|
nodeList[7]->AddChild(nodeList[9]);
|
|
|
|
RefPtr<SearchTestNodeForward> foundNode =
|
|
BreadthFirstSearch<layers::ForwardIterator>(
|
|
root.get(), [&visitCount](SearchTestNodeForward* aNode) {
|
|
aNode->SetActualTraversalRank(visitCount);
|
|
visitCount++;
|
|
return aNode->GetType() == SearchNodeType::Needle;
|
|
});
|
|
|
|
for (size_t i = 0; i < nodeList.size(); i++) {
|
|
ASSERT_EQ(nodeList[i]->GetExpectedTraversalRank(),
|
|
nodeList[i]->GetActualTraversalRank())
|
|
<< "Node at index " << i << " was hit out of order.";
|
|
}
|
|
|
|
ASSERT_EQ(foundNode.get(), nullptr)
|
|
<< "Search found something that should not exist.";
|
|
}
|
|
|
|
TEST(TreeTraversal, BreadthFirstSearchValueDoesNotExistReverse)
|
|
{
|
|
int visitCount = 0;
|
|
std::vector<RefPtr<SearchTestNodeReverse>> nodeList;
|
|
nodeList.reserve(10);
|
|
for (int i = 0; i < 10; i++) {
|
|
nodeList.push_back(new SearchTestNodeReverse(SearchNodeType::Hay, i));
|
|
}
|
|
|
|
RefPtr<SearchTestNodeReverse> root = nodeList[0];
|
|
nodeList[0]->AddChild(nodeList[2]);
|
|
nodeList[0]->AddChild(nodeList[1]);
|
|
nodeList[1]->AddChild(nodeList[4]);
|
|
nodeList[1]->AddChild(nodeList[3]);
|
|
nodeList[2]->AddChild(nodeList[6]);
|
|
nodeList[2]->AddChild(nodeList[5]);
|
|
nodeList[6]->AddChild(nodeList[7]);
|
|
nodeList[7]->AddChild(nodeList[9]);
|
|
nodeList[7]->AddChild(nodeList[8]);
|
|
|
|
RefPtr<SearchTestNodeReverse> foundNode =
|
|
BreadthFirstSearch<layers::ReverseIterator>(
|
|
root.get(), [&visitCount](SearchTestNodeReverse* aNode) {
|
|
aNode->SetActualTraversalRank(visitCount);
|
|
visitCount++;
|
|
return aNode->GetType() == SearchNodeType::Needle;
|
|
});
|
|
|
|
for (size_t i = 0; i < nodeList.size(); i++) {
|
|
ASSERT_EQ(nodeList[i]->GetExpectedTraversalRank(),
|
|
nodeList[i]->GetActualTraversalRank())
|
|
<< "Node at index " << i << " was hit out of order.";
|
|
}
|
|
|
|
ASSERT_EQ(foundNode.get(), nullptr)
|
|
<< "Search found something that should not exist.";
|
|
}
|
|
|
|
TEST(TreeTraversal, ForEachNodeNullStillRuns)
|
|
{
|
|
RefPtr<ForEachTestNodeReverse> nullNode;
|
|
ForEachNode<layers::ReverseIterator>(
|
|
nullNode.get(),
|
|
[](ForEachTestNodeReverse* aNode) { return TraversalFlag::Continue; });
|
|
}
|
|
|
|
TEST(TreeTraversal, ForEachNodeAllEligible)
|
|
{
|
|
std::vector<RefPtr<ForEachTestNodeForward>> nodeList;
|
|
int visitCount = 0;
|
|
nodeList.reserve(10);
|
|
for (int i = 0; i < 10; i++) {
|
|
nodeList.push_back(
|
|
new ForEachTestNodeForward(ForEachNodeType::Continue, i));
|
|
}
|
|
|
|
RefPtr<ForEachTestNodeForward> root = nodeList[0];
|
|
nodeList[0]->AddChild(nodeList[1]);
|
|
nodeList[0]->AddChild(nodeList[4]);
|
|
nodeList[1]->AddChild(nodeList[2]);
|
|
nodeList[1]->AddChild(nodeList[3]);
|
|
nodeList[4]->AddChild(nodeList[5]);
|
|
nodeList[4]->AddChild(nodeList[6]);
|
|
nodeList[6]->AddChild(nodeList[7]);
|
|
nodeList[7]->AddChild(nodeList[8]);
|
|
nodeList[7]->AddChild(nodeList[9]);
|
|
|
|
ForEachNode<layers::ForwardIterator>(
|
|
root.get(), [&visitCount](ForEachTestNodeForward* aNode) {
|
|
aNode->SetActualTraversalRank(visitCount);
|
|
visitCount++;
|
|
return aNode->GetType() == ForEachNodeType::Continue
|
|
? TraversalFlag::Continue
|
|
: TraversalFlag::Skip;
|
|
});
|
|
|
|
for (size_t i = 0; i < nodeList.size(); i++) {
|
|
ASSERT_EQ(nodeList[i]->GetExpectedTraversalRank(),
|
|
nodeList[i]->GetActualTraversalRank())
|
|
<< "Node at index " << i << " was hit out of order.";
|
|
}
|
|
}
|
|
|
|
TEST(TreeTraversal, ForEachNodeAllEligibleReverse)
|
|
{
|
|
std::vector<RefPtr<ForEachTestNodeReverse>> nodeList;
|
|
int visitCount = 0;
|
|
nodeList.reserve(10);
|
|
for (int i = 0; i < 10; i++) {
|
|
nodeList.push_back(
|
|
new ForEachTestNodeReverse(ForEachNodeType::Continue, i));
|
|
}
|
|
|
|
RefPtr<ForEachTestNodeReverse> root = nodeList[0];
|
|
nodeList[0]->AddChild(nodeList[4]);
|
|
nodeList[0]->AddChild(nodeList[1]);
|
|
nodeList[1]->AddChild(nodeList[3]);
|
|
nodeList[1]->AddChild(nodeList[2]);
|
|
nodeList[4]->AddChild(nodeList[6]);
|
|
nodeList[4]->AddChild(nodeList[5]);
|
|
nodeList[6]->AddChild(nodeList[7]);
|
|
nodeList[7]->AddChild(nodeList[9]);
|
|
nodeList[7]->AddChild(nodeList[8]);
|
|
|
|
ForEachNode<layers::ReverseIterator>(
|
|
root.get(), [&visitCount](ForEachTestNodeReverse* aNode) {
|
|
aNode->SetActualTraversalRank(visitCount);
|
|
visitCount++;
|
|
return aNode->GetType() == ForEachNodeType::Continue
|
|
? TraversalFlag::Continue
|
|
: TraversalFlag::Skip;
|
|
});
|
|
|
|
for (size_t i = 0; i < nodeList.size(); i++) {
|
|
ASSERT_EQ(nodeList[i]->GetExpectedTraversalRank(),
|
|
nodeList[i]->GetActualTraversalRank())
|
|
<< "Node at index " << i << " was hit out of order.";
|
|
}
|
|
}
|
|
|
|
TEST(TreeTraversal, ForEachNodeSomeIneligibleNodes)
|
|
{
|
|
std::vector<RefPtr<ForEachTestNodeForward>> expectedVisitedNodeList;
|
|
std::vector<RefPtr<ForEachTestNodeForward>> expectedSkippedNodeList;
|
|
int visitCount = 0;
|
|
|
|
expectedVisitedNodeList.push_back(
|
|
new ForEachTestNodeForward(ForEachNodeType::Continue, 0));
|
|
expectedVisitedNodeList.push_back(
|
|
new ForEachTestNodeForward(ForEachNodeType::Skip, 1));
|
|
expectedVisitedNodeList.push_back(
|
|
new ForEachTestNodeForward(ForEachNodeType::Continue, 2));
|
|
expectedVisitedNodeList.push_back(
|
|
new ForEachTestNodeForward(ForEachNodeType::Skip, 3));
|
|
|
|
expectedSkippedNodeList.push_back(
|
|
new ForEachTestNodeForward(ForEachNodeType::Continue));
|
|
expectedSkippedNodeList.push_back(
|
|
new ForEachTestNodeForward(ForEachNodeType::Continue));
|
|
expectedSkippedNodeList.push_back(
|
|
new ForEachTestNodeForward(ForEachNodeType::Skip));
|
|
expectedSkippedNodeList.push_back(
|
|
new ForEachTestNodeForward(ForEachNodeType::Skip));
|
|
|
|
RefPtr<ForEachTestNodeForward> root = expectedVisitedNodeList[0];
|
|
expectedVisitedNodeList[0]->AddChild(expectedVisitedNodeList[1]);
|
|
expectedVisitedNodeList[0]->AddChild(expectedVisitedNodeList[2]);
|
|
expectedVisitedNodeList[1]->AddChild(expectedSkippedNodeList[0]);
|
|
expectedVisitedNodeList[1]->AddChild(expectedSkippedNodeList[1]);
|
|
expectedVisitedNodeList[2]->AddChild(expectedVisitedNodeList[3]);
|
|
expectedVisitedNodeList[3]->AddChild(expectedSkippedNodeList[2]);
|
|
expectedVisitedNodeList[3]->AddChild(expectedSkippedNodeList[3]);
|
|
|
|
ForEachNode<layers::ForwardIterator>(
|
|
root.get(), [&visitCount](ForEachTestNodeForward* aNode) {
|
|
aNode->SetActualTraversalRank(visitCount);
|
|
visitCount++;
|
|
return aNode->GetType() == ForEachNodeType::Continue
|
|
? TraversalFlag::Continue
|
|
: TraversalFlag::Skip;
|
|
});
|
|
|
|
for (size_t i = 0; i < expectedVisitedNodeList.size(); i++) {
|
|
ASSERT_EQ(expectedVisitedNodeList[i]->GetExpectedTraversalRank(),
|
|
expectedVisitedNodeList[i]->GetActualTraversalRank())
|
|
<< "Node at index " << i << " was hit out of order.";
|
|
}
|
|
|
|
for (size_t i = 0; i < expectedSkippedNodeList.size(); i++) {
|
|
ASSERT_EQ(expectedSkippedNodeList[i]->GetExpectedTraversalRank(),
|
|
expectedSkippedNodeList[i]->GetActualTraversalRank())
|
|
<< "Node at index " << i << "was not expected to be hit.";
|
|
}
|
|
}
|
|
|
|
TEST(TreeTraversal, ForEachNodeSomeIneligibleNodesReverse)
|
|
{
|
|
std::vector<RefPtr<ForEachTestNodeReverse>> expectedVisitedNodeList;
|
|
std::vector<RefPtr<ForEachTestNodeReverse>> expectedSkippedNodeList;
|
|
int visitCount = 0;
|
|
|
|
expectedVisitedNodeList.push_back(
|
|
new ForEachTestNodeReverse(ForEachNodeType::Continue, 0));
|
|
expectedVisitedNodeList.push_back(
|
|
new ForEachTestNodeReverse(ForEachNodeType::Skip, 1));
|
|
expectedVisitedNodeList.push_back(
|
|
new ForEachTestNodeReverse(ForEachNodeType::Continue, 2));
|
|
expectedVisitedNodeList.push_back(
|
|
new ForEachTestNodeReverse(ForEachNodeType::Skip, 3));
|
|
|
|
expectedSkippedNodeList.push_back(
|
|
new ForEachTestNodeReverse(ForEachNodeType::Continue));
|
|
expectedSkippedNodeList.push_back(
|
|
new ForEachTestNodeReverse(ForEachNodeType::Continue));
|
|
expectedSkippedNodeList.push_back(
|
|
new ForEachTestNodeReverse(ForEachNodeType::Skip));
|
|
expectedSkippedNodeList.push_back(
|
|
new ForEachTestNodeReverse(ForEachNodeType::Skip));
|
|
|
|
RefPtr<ForEachTestNodeReverse> root = expectedVisitedNodeList[0];
|
|
expectedVisitedNodeList[0]->AddChild(expectedVisitedNodeList[2]);
|
|
expectedVisitedNodeList[0]->AddChild(expectedVisitedNodeList[1]);
|
|
expectedVisitedNodeList[1]->AddChild(expectedSkippedNodeList[1]);
|
|
expectedVisitedNodeList[1]->AddChild(expectedSkippedNodeList[0]);
|
|
expectedVisitedNodeList[2]->AddChild(expectedVisitedNodeList[3]);
|
|
expectedVisitedNodeList[3]->AddChild(expectedSkippedNodeList[3]);
|
|
expectedVisitedNodeList[3]->AddChild(expectedSkippedNodeList[2]);
|
|
|
|
ForEachNode<layers::ReverseIterator>(
|
|
root.get(), [&visitCount](ForEachTestNodeReverse* aNode) {
|
|
aNode->SetActualTraversalRank(visitCount);
|
|
visitCount++;
|
|
return aNode->GetType() == ForEachNodeType::Continue
|
|
? TraversalFlag::Continue
|
|
: TraversalFlag::Skip;
|
|
});
|
|
|
|
for (size_t i = 0; i < expectedVisitedNodeList.size(); i++) {
|
|
ASSERT_EQ(expectedVisitedNodeList[i]->GetExpectedTraversalRank(),
|
|
expectedVisitedNodeList[i]->GetActualTraversalRank())
|
|
<< "Node at index " << i << " was hit out of order.";
|
|
}
|
|
|
|
for (size_t i = 0; i < expectedSkippedNodeList.size(); i++) {
|
|
ASSERT_EQ(expectedSkippedNodeList[i]->GetExpectedTraversalRank(),
|
|
expectedSkippedNodeList[i]->GetActualTraversalRank())
|
|
<< "Node at index " << i << "was not expected to be hit.";
|
|
}
|
|
}
|
|
|
|
TEST(TreeTraversal, ForEachNodeIneligibleRoot)
|
|
{
|
|
int visitCount = 0;
|
|
|
|
RefPtr<ForEachTestNodeReverse> root =
|
|
new ForEachTestNodeReverse(ForEachNodeType::Skip, 0);
|
|
RefPtr<ForEachTestNodeReverse> childNode1 =
|
|
new ForEachTestNodeReverse(ForEachNodeType::Continue);
|
|
RefPtr<ForEachTestNodeReverse> chlidNode2 =
|
|
new ForEachTestNodeReverse(ForEachNodeType::Skip);
|
|
|
|
ForEachNode<layers::ReverseIterator>(
|
|
root.get(), [&visitCount](ForEachTestNodeReverse* aNode) {
|
|
aNode->SetActualTraversalRank(visitCount);
|
|
visitCount++;
|
|
return aNode->GetType() == ForEachNodeType::Continue
|
|
? TraversalFlag::Continue
|
|
: TraversalFlag::Skip;
|
|
});
|
|
|
|
ASSERT_EQ(root->GetExpectedTraversalRank(), root->GetActualTraversalRank())
|
|
<< "Root was hit out of order.";
|
|
ASSERT_EQ(childNode1->GetExpectedTraversalRank(),
|
|
childNode1->GetActualTraversalRank())
|
|
<< "Eligible child was still hit.";
|
|
ASSERT_EQ(chlidNode2->GetExpectedTraversalRank(),
|
|
chlidNode2->GetActualTraversalRank())
|
|
<< "Ineligible child was still hit.";
|
|
}
|
|
|
|
TEST(TreeTraversal, ForEachNodeLeavesIneligible)
|
|
{
|
|
std::vector<RefPtr<ForEachTestNodeForward>> nodeList;
|
|
nodeList.reserve(10);
|
|
int visitCount = 0;
|
|
for (int i = 0; i < 10; i++) {
|
|
if (i == 1 || i == 9) {
|
|
nodeList.push_back(new ForEachTestNodeForward(ForEachNodeType::Skip, i));
|
|
} else {
|
|
nodeList.push_back(
|
|
new ForEachTestNodeForward(ForEachNodeType::Continue, i));
|
|
}
|
|
}
|
|
|
|
RefPtr<ForEachTestNodeForward> root = nodeList[0];
|
|
nodeList[0]->AddChild(nodeList[1]);
|
|
nodeList[0]->AddChild(nodeList[2]);
|
|
nodeList[2]->AddChild(nodeList[3]);
|
|
nodeList[2]->AddChild(nodeList[4]);
|
|
nodeList[4]->AddChild(nodeList[5]);
|
|
nodeList[4]->AddChild(nodeList[6]);
|
|
nodeList[6]->AddChild(nodeList[7]);
|
|
nodeList[7]->AddChild(nodeList[8]);
|
|
nodeList[7]->AddChild(nodeList[9]);
|
|
|
|
ForEachNode<layers::ForwardIterator>(
|
|
root.get(), [&visitCount](ForEachTestNodeForward* aNode) {
|
|
aNode->SetActualTraversalRank(visitCount);
|
|
visitCount++;
|
|
return aNode->GetType() == ForEachNodeType::Continue
|
|
? TraversalFlag::Continue
|
|
: TraversalFlag::Skip;
|
|
});
|
|
|
|
for (size_t i = 0; i < nodeList.size(); i++) {
|
|
ASSERT_EQ(nodeList[i]->GetExpectedTraversalRank(),
|
|
nodeList[i]->GetActualTraversalRank())
|
|
<< "Node at index " << i << " was hit out of order.";
|
|
}
|
|
}
|
|
|
|
TEST(TreeTraversal, ForEachNodeLeavesIneligibleReverse)
|
|
{
|
|
std::vector<RefPtr<ForEachTestNodeReverse>> nodeList;
|
|
nodeList.reserve(10);
|
|
int visitCount = 0;
|
|
for (int i = 0; i < 10; i++) {
|
|
if (i == 1 || i == 9) {
|
|
nodeList.push_back(new ForEachTestNodeReverse(ForEachNodeType::Skip, i));
|
|
} else {
|
|
nodeList.push_back(
|
|
new ForEachTestNodeReverse(ForEachNodeType::Continue, i));
|
|
}
|
|
}
|
|
|
|
RefPtr<ForEachTestNodeReverse> root = nodeList[0];
|
|
nodeList[0]->AddChild(nodeList[2]);
|
|
nodeList[0]->AddChild(nodeList[1]);
|
|
nodeList[2]->AddChild(nodeList[4]);
|
|
nodeList[2]->AddChild(nodeList[3]);
|
|
nodeList[4]->AddChild(nodeList[6]);
|
|
nodeList[4]->AddChild(nodeList[5]);
|
|
nodeList[6]->AddChild(nodeList[7]);
|
|
nodeList[7]->AddChild(nodeList[9]);
|
|
nodeList[7]->AddChild(nodeList[8]);
|
|
|
|
ForEachNode<layers::ReverseIterator>(
|
|
root.get(), [&visitCount](ForEachTestNodeReverse* aNode) {
|
|
aNode->SetActualTraversalRank(visitCount);
|
|
visitCount++;
|
|
return aNode->GetType() == ForEachNodeType::Continue
|
|
? TraversalFlag::Continue
|
|
: TraversalFlag::Skip;
|
|
});
|
|
|
|
for (size_t i = 0; i < nodeList.size(); i++) {
|
|
ASSERT_EQ(nodeList[i]->GetExpectedTraversalRank(),
|
|
nodeList[i]->GetActualTraversalRank())
|
|
<< "Node at index " << i << " was hit out of order.";
|
|
}
|
|
}
|
|
|
|
TEST(TreeTraversal, ForEachNodeLambdaReturnsVoid)
|
|
{
|
|
std::vector<RefPtr<ForEachTestNodeReverse>> nodeList;
|
|
nodeList.reserve(10);
|
|
int visitCount = 0;
|
|
for (int i = 0; i < 10; i++) {
|
|
nodeList.push_back(
|
|
new ForEachTestNodeReverse(ForEachNodeType::Continue, i));
|
|
}
|
|
|
|
RefPtr<ForEachTestNodeReverse> root = nodeList[0];
|
|
nodeList[0]->AddChild(nodeList[4]);
|
|
nodeList[0]->AddChild(nodeList[1]);
|
|
nodeList[1]->AddChild(nodeList[3]);
|
|
nodeList[1]->AddChild(nodeList[2]);
|
|
nodeList[4]->AddChild(nodeList[6]);
|
|
nodeList[4]->AddChild(nodeList[5]);
|
|
nodeList[6]->AddChild(nodeList[7]);
|
|
nodeList[7]->AddChild(nodeList[9]);
|
|
nodeList[7]->AddChild(nodeList[8]);
|
|
|
|
ForEachNode<layers::ReverseIterator>(
|
|
root.get(), [&visitCount](ForEachTestNodeReverse* aNode) {
|
|
aNode->SetActualTraversalRank(visitCount);
|
|
visitCount++;
|
|
});
|
|
|
|
for (size_t i = 0; i < nodeList.size(); i++) {
|
|
ASSERT_EQ(nodeList[i]->GetExpectedTraversalRank(),
|
|
nodeList[i]->GetActualTraversalRank())
|
|
<< "Node at index " << i << " was hit out of order.";
|
|
}
|
|
}
|
|
|
|
struct AssignSearchNodeTypesWithLastLeafAsNeedle {
|
|
RefPtr<SearchTestNodeForward>& node;
|
|
void operator()(SearchTestNodeForward* aNode) {
|
|
aNode->SetType(SearchNodeType::Hay);
|
|
if (aNode->IsLeaf()) {
|
|
node = aNode;
|
|
}
|
|
}
|
|
};
|
|
|
|
struct AssignSearchNodeTypesAllHay {
|
|
void operator()(SearchTestNode* aNode) {
|
|
aNode->SetType(SearchNodeType::Hay);
|
|
}
|
|
};
|
|
|
|
struct AssignSearchNodeTypesWithFirstLeafAsNeedle {
|
|
RefPtr<SearchTestNodeReverse>& needleNode;
|
|
void operator()(SearchTestNodeReverse* aNode) {
|
|
if (!needleNode && aNode->IsLeaf()) {
|
|
needleNode = aNode;
|
|
}
|
|
aNode->SetType(SearchNodeType::Hay);
|
|
}
|
|
};
|
|
|
|
struct AssignSearchNodeValuesAllFalseValuesReverse {
|
|
int falseValue;
|
|
RefPtr<SearchTestNodeReverse>& needleNode;
|
|
void operator()(SearchTestNodeReverse* aNode) {
|
|
aNode->SetValue(falseValue);
|
|
if (!needleNode && aNode->IsLeaf()) {
|
|
needleNode = aNode;
|
|
}
|
|
}
|
|
};
|
|
|
|
struct AssignSearchNodeValuesAllFalseValuesForward {
|
|
int falseValue;
|
|
RefPtr<SearchTestNodeForward>& needleNode;
|
|
void operator()(SearchTestNodeForward* aNode) {
|
|
aNode->SetValue(falseValue);
|
|
needleNode = aNode;
|
|
}
|
|
};
|
|
|
|
struct AllocateUnitRegionsToLeavesOnly {
|
|
int& xWrap;
|
|
int& squareCount;
|
|
void operator()(ForEachTestNode* aNode) {
|
|
if (aNode->IsLeaf()) {
|
|
int x = squareCount % xWrap;
|
|
int y = squareCount / xWrap;
|
|
aNode->SetRegion(nsRegion(nsRect(x, y, 1, 1)));
|
|
squareCount++;
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename Node>
|
|
static RefPtr<Node> DepthFirstSearchForwardRecursive(RefPtr<Node> aNode) {
|
|
if (aNode->GetType() == SearchNodeType::Needle) {
|
|
return aNode;
|
|
}
|
|
for (RefPtr<Node> node = aNode->GetFirstChild(); node != nullptr;
|
|
node = node->GetNextSibling()) {
|
|
if (RefPtr<Node> foundNode = DepthFirstSearchForwardRecursive(node)) {
|
|
return foundNode;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
template <typename Node>
|
|
static RefPtr<Node> DepthFirstSearchCaptureVariablesForwardRecursive(
|
|
RefPtr<Node> aNode, int a, int b, int c, int d, int e, int f, int g, int h,
|
|
int i, int j, int k, int l, int m, int& n, int& o, int& p, int& q, int& r,
|
|
int& s, int& t, int& u, int& v, int& w, int& x, int& y, int& z) {
|
|
if (aNode->GetValue() == a + b + c + d + e + f + g + h + i + j + k + l + m +
|
|
n + o + p + q + r + s + t + u + v + w + x + y +
|
|
z) {
|
|
return aNode;
|
|
}
|
|
for (RefPtr<Node> node = aNode->GetFirstChild(); node != nullptr;
|
|
node = node->GetNextSibling()) {
|
|
if (RefPtr<Node> foundNode =
|
|
DepthFirstSearchCaptureVariablesForwardRecursive(
|
|
node, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s,
|
|
t, u, v, w, x, y, z)) {
|
|
return foundNode;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
template <typename Node>
|
|
static RefPtr<Node> DepthFirstSearchPostOrderForwardRecursive(
|
|
RefPtr<Node> aNode) {
|
|
for (RefPtr<Node> node = aNode->GetFirstChild(); node != nullptr;
|
|
node = node->GetNextSibling()) {
|
|
if (RefPtr<Node> foundNode =
|
|
DepthFirstSearchPostOrderForwardRecursive(node)) {
|
|
return foundNode;
|
|
}
|
|
}
|
|
if (aNode->GetType() == SearchNodeType::Needle) {
|
|
return aNode;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
template <typename Node>
|
|
static RefPtr<Node> BreadthFirstSearchForwardQueue(RefPtr<Node> aNode) {
|
|
std::queue<RefPtr<Node>> nodes;
|
|
nodes.push(aNode);
|
|
while (!nodes.empty()) {
|
|
RefPtr<Node> node = nodes.front();
|
|
nodes.pop();
|
|
if (node->GetType() == SearchNodeType::Needle) {
|
|
return node;
|
|
}
|
|
for (RefPtr<Node> childNode = node->GetFirstChild(); childNode != nullptr;
|
|
childNode = childNode->GetNextSibling()) {
|
|
nodes.push(childNode);
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
template <typename Node>
|
|
static RefPtr<Node> DepthFirstSearchReverseRecursive(RefPtr<Node> aNode) {
|
|
if (aNode->GetType() == SearchNodeType::Needle) {
|
|
return aNode;
|
|
}
|
|
for (RefPtr<Node> node = aNode->GetLastChild(); node != nullptr;
|
|
node = node->GetPrevSibling()) {
|
|
if (RefPtr<Node> foundNode = DepthFirstSearchReverseRecursive(node)) {
|
|
return foundNode;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
template <typename Node>
|
|
static RefPtr<Node> DepthFirstSearchCaptureVariablesReverseRecursive(
|
|
RefPtr<Node> aNode, int a, int b, int c, int d, int e, int f, int g, int h,
|
|
int i, int j, int k, int l, int m, int& n, int& o, int& p, int& q, int& r,
|
|
int& s, int& t, int& u, int& v, int& w, int& x, int& y, int& z) {
|
|
if (aNode->GetValue() == a + b + c + d + e + f + g + h + i + j + k + l + m +
|
|
n + o + p + q + r + s + t + u + v + w + x + y +
|
|
z) {
|
|
return aNode;
|
|
}
|
|
for (RefPtr<Node> node = aNode->GetLastChild(); node != nullptr;
|
|
node = node->GetPrevSibling()) {
|
|
if (RefPtr<Node> foundNode =
|
|
DepthFirstSearchCaptureVariablesReverseRecursive(
|
|
node, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s,
|
|
t, u, v, w, x, y, z)) {
|
|
return foundNode;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
template <typename Node>
|
|
static RefPtr<Node> DepthFirstSearchPostOrderReverseRecursive(
|
|
RefPtr<Node> aNode) {
|
|
for (RefPtr<Node> node = aNode->GetLastChild(); node != nullptr;
|
|
node = node->GetPrevSibling()) {
|
|
if (RefPtr<Node> foundNode =
|
|
DepthFirstSearchPostOrderReverseRecursive(node)) {
|
|
return foundNode;
|
|
}
|
|
}
|
|
if (aNode->GetType() == SearchNodeType::Needle) {
|
|
return aNode;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
template <typename Node>
|
|
static RefPtr<Node> BreadthFirstSearchReverseQueue(RefPtr<Node> aNode) {
|
|
std::queue<RefPtr<Node>> nodes;
|
|
nodes.push(aNode);
|
|
while (!nodes.empty()) {
|
|
RefPtr<Node> node = nodes.front();
|
|
nodes.pop();
|
|
if (node->GetType() == SearchNodeType::Needle) {
|
|
return node;
|
|
}
|
|
for (RefPtr<Node> childNode = node->GetLastChild(); childNode != nullptr;
|
|
childNode = childNode->GetPrevSibling()) {
|
|
nodes.push(childNode);
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|