зеркало из https://github.com/mozilla/gecko-dev.git
624 строки
19 KiB
C++
624 строки
19 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "nsCOMArray.h"
|
|
#include "ThreadDelay.h"
|
|
#include "nsThreadPool.h"
|
|
#include "nsThreadManager.h"
|
|
#include "nsThread.h"
|
|
#include "nsMemory.h"
|
|
#include "prinrval.h"
|
|
#include "mozilla/Logging.h"
|
|
#include "mozilla/SystemGroup.h"
|
|
#include "nsThreadSyncDispatch.h"
|
|
|
|
#include <mutex>
|
|
|
|
using namespace mozilla;
|
|
|
|
static LazyLogModule sThreadPoolLog("nsThreadPool");
|
|
#ifdef LOG
|
|
# undef LOG
|
|
#endif
|
|
#define LOG(args) MOZ_LOG(sThreadPoolLog, mozilla::LogLevel::Debug, args)
|
|
|
|
static MOZ_THREAD_LOCAL(nsThreadPool*) gCurrentThreadPool;
|
|
|
|
// DESIGN:
|
|
// o Allocate anonymous threads.
|
|
// o Use nsThreadPool::Run as the main routine for each thread.
|
|
// o Each thread waits on the event queue's monitor, checking for
|
|
// pending events and rescheduling itself as an idle thread.
|
|
|
|
#define DEFAULT_THREAD_LIMIT 4
|
|
#define DEFAULT_IDLE_THREAD_LIMIT 1
|
|
#define DEFAULT_IDLE_THREAD_TIMEOUT PR_SecondsToInterval(60)
|
|
|
|
NS_IMPL_ADDREF(nsThreadPool)
|
|
NS_IMPL_RELEASE(nsThreadPool)
|
|
NS_IMPL_QUERY_INTERFACE(nsThreadPool, nsIThreadPool, nsIEventTarget,
|
|
nsIRunnable)
|
|
|
|
nsThreadPool::nsThreadPool()
|
|
: mMutex("[nsThreadPool.mMutex]"),
|
|
mEventsAvailable(mMutex, "[nsThreadPool.mEventsAvailable]"),
|
|
mThreadLimit(DEFAULT_THREAD_LIMIT),
|
|
mIdleThreadLimit(DEFAULT_IDLE_THREAD_LIMIT),
|
|
mIdleThreadTimeout(DEFAULT_IDLE_THREAD_TIMEOUT),
|
|
mIdleCount(0),
|
|
mStackSize(nsIThreadManager::DEFAULT_STACK_SIZE),
|
|
mShutdown(false),
|
|
mRegressiveMaxIdleTime(false),
|
|
mIsAPoolThreadFree(true) {
|
|
static std::once_flag flag;
|
|
std::call_once(flag, [] { gCurrentThreadPool.infallibleInit(); });
|
|
|
|
LOG(("THRD-P(%p) constructor!!!\n", this));
|
|
}
|
|
|
|
nsThreadPool::~nsThreadPool() {
|
|
// Threads keep a reference to the nsThreadPool until they return from Run()
|
|
// after removing themselves from mThreads.
|
|
MOZ_ASSERT(mThreads.IsEmpty());
|
|
}
|
|
|
|
nsresult nsThreadPool::PutEvent(nsIRunnable* aEvent) {
|
|
nsCOMPtr<nsIRunnable> event(aEvent);
|
|
return PutEvent(event.forget(), 0);
|
|
}
|
|
|
|
nsresult nsThreadPool::PutEvent(already_AddRefed<nsIRunnable> aEvent,
|
|
uint32_t aFlags) {
|
|
// Avoid spawning a new thread while holding the event queue lock...
|
|
|
|
bool spawnThread = false;
|
|
uint32_t stackSize = 0;
|
|
{
|
|
MutexAutoLock lock(mMutex);
|
|
|
|
if (NS_WARN_IF(mShutdown)) {
|
|
return NS_ERROR_NOT_AVAILABLE;
|
|
}
|
|
LOG(("THRD-P(%p) put [%d %d %d]\n", this, mIdleCount, mThreads.Count(),
|
|
mThreadLimit));
|
|
MOZ_ASSERT(mIdleCount <= (uint32_t)mThreads.Count(), "oops");
|
|
|
|
// Make sure we have a thread to service this event.
|
|
if (mThreads.Count() < (int32_t)mThreadLimit &&
|
|
!(aFlags & NS_DISPATCH_AT_END) &&
|
|
// Spawn a new thread if we don't have enough idle threads to serve
|
|
// pending events immediately.
|
|
mEvents.Count(lock) >= mIdleCount) {
|
|
spawnThread = true;
|
|
}
|
|
|
|
mEvents.PutEvent(std::move(aEvent), EventQueuePriority::Normal, lock);
|
|
mEventsAvailable.Notify();
|
|
stackSize = mStackSize;
|
|
}
|
|
|
|
auto delay = MakeScopeExit([&]() {
|
|
// Delay to encourage the receiving task to run before we do work.
|
|
DelayForChaosMode(ChaosFeature::TaskDispatching, 1000);
|
|
});
|
|
|
|
LOG(("THRD-P(%p) put [spawn=%d]\n", this, spawnThread));
|
|
if (!spawnThread) {
|
|
return NS_OK;
|
|
}
|
|
|
|
nsCOMPtr<nsIThread> thread;
|
|
nsresult rv = NS_NewNamedThread(mThreadNaming.GetNextThreadName(mName),
|
|
getter_AddRefs(thread), nullptr, stackSize);
|
|
if (NS_WARN_IF(NS_FAILED(rv))) {
|
|
return NS_ERROR_UNEXPECTED;
|
|
}
|
|
|
|
bool killThread = false;
|
|
{
|
|
MutexAutoLock lock(mMutex);
|
|
if (mShutdown) {
|
|
killThread = true;
|
|
} else if (mThreads.Count() < (int32_t)mThreadLimit) {
|
|
mThreads.AppendObject(thread);
|
|
if (mThreads.Count() >= (int32_t)mThreadLimit) {
|
|
mIsAPoolThreadFree = false;
|
|
}
|
|
} else {
|
|
// Someone else may have also been starting a thread
|
|
killThread = true; // okay, we don't need this thread anymore
|
|
}
|
|
}
|
|
LOG(("THRD-P(%p) put [%p kill=%d]\n", this, thread.get(), killThread));
|
|
if (killThread) {
|
|
// We never dispatched any events to the thread, so we can shut it down
|
|
// asynchronously without worrying about anything.
|
|
ShutdownThread(thread);
|
|
} else {
|
|
thread->Dispatch(this, NS_DISPATCH_NORMAL);
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
void nsThreadPool::ShutdownThread(nsIThread* aThread) {
|
|
LOG(("THRD-P(%p) shutdown async [%p]\n", this, aThread));
|
|
|
|
// This is either called by a threadpool thread that is out of work, or
|
|
// a thread that attempted to create a threadpool thread and raced in
|
|
// such a way that the newly created thread is no longer necessary.
|
|
// In the first case, we must go to another thread to shut aThread down
|
|
// (because it is the current thread). In the second case, we cannot
|
|
// synchronously shut down the current thread (because then Dispatch() would
|
|
// spin the event loop, and that could blow up the world), and asynchronous
|
|
// shutdown requires this thread have an event loop (and it may not, see bug
|
|
// 10204784). The simplest way to cover all cases is to asynchronously
|
|
// shutdown aThread from the main thread.
|
|
SystemGroup::Dispatch(TaskCategory::Other,
|
|
NewRunnableMethod("nsIThread::AsyncShutdown", aThread,
|
|
&nsIThread::AsyncShutdown));
|
|
}
|
|
|
|
// This event 'runs' for the lifetime of the worker thread. The actual
|
|
// eventqueue is mEvents, and is shared by all the worker threads. This
|
|
// means that the set of threads together define the delay seen by a new
|
|
// event sent to the pool.
|
|
//
|
|
// To model the delay experienced by the pool, we can have each thread in
|
|
// the pool report 0 if it's idle OR if the pool is below the threadlimit;
|
|
// or otherwise the current event's queuing delay plus current running
|
|
// time.
|
|
//
|
|
// To reconstruct the delays for the pool, the profiler can look at all the
|
|
// threads that are part of a pool (pools have defined naming patterns that
|
|
// can be user to connect them). If all threads have delays at time X,
|
|
// that means that all threads saturated at that point and any event
|
|
// dispatched to the pool would get a delay.
|
|
//
|
|
// The delay experienced by an event dispatched when all pool threads are
|
|
// busy is based on the calculations shown in platform.cpp. Run that
|
|
// algorithm for each thread in the pool, and the delay at time X is the
|
|
// longest value for time X of any of the threads, OR the time from X until
|
|
// any one of the threads reports 0 (i.e. it's not busy), whichever is
|
|
// shorter.
|
|
|
|
// In order to record this when the profiler samples threads in the pool,
|
|
// each thread must (effectively) override GetRunnningEventDelay, by
|
|
// resetting the mLastEventDelay/Start values in the nsThread when we start
|
|
// to run an event (or when we run out of events to run). Note that handling
|
|
// the shutdown of a thread may be a little tricky.
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::Run() {
|
|
LOG(("THRD-P(%p) enter %s\n", this, mName.BeginReading()));
|
|
|
|
nsCOMPtr<nsIThread> current;
|
|
nsThreadManager::get().GetCurrentThread(getter_AddRefs(current));
|
|
|
|
bool shutdownThreadOnExit = false;
|
|
bool exitThread = false;
|
|
bool wasIdle = false;
|
|
TimeStamp idleSince;
|
|
|
|
// This thread is an nsThread created below with NS_NewNamedThread()
|
|
static_cast<nsThread*>(current.get())
|
|
->SetPoolThreadFreePtr(&mIsAPoolThreadFree);
|
|
|
|
nsCOMPtr<nsIThreadPoolListener> listener;
|
|
{
|
|
MutexAutoLock lock(mMutex);
|
|
listener = mListener;
|
|
}
|
|
|
|
if (listener) {
|
|
listener->OnThreadCreated();
|
|
}
|
|
|
|
MOZ_ASSERT(!gCurrentThreadPool.get());
|
|
gCurrentThreadPool.set(this);
|
|
|
|
do {
|
|
nsCOMPtr<nsIRunnable> event;
|
|
TimeDuration delay;
|
|
{
|
|
MutexAutoLock lock(mMutex);
|
|
|
|
event = mEvents.GetEvent(nullptr, lock, &delay);
|
|
if (!event) {
|
|
TimeStamp now = TimeStamp::Now();
|
|
uint32_t idleTimeoutDivider =
|
|
(mIdleCount && mRegressiveMaxIdleTime) ? mIdleCount : 1;
|
|
TimeDuration timeout = TimeDuration::FromMilliseconds(
|
|
static_cast<double>(mIdleThreadTimeout) / idleTimeoutDivider);
|
|
|
|
// If we are shutting down, then don't keep any idle threads
|
|
if (mShutdown) {
|
|
exitThread = true;
|
|
} else {
|
|
if (wasIdle) {
|
|
// if too many idle threads or idle for too long, then bail.
|
|
if (mIdleCount > mIdleThreadLimit ||
|
|
(mIdleThreadTimeout != UINT32_MAX &&
|
|
(now - idleSince) >= timeout)) {
|
|
exitThread = true;
|
|
}
|
|
} else {
|
|
// if would be too many idle threads...
|
|
if (mIdleCount == mIdleThreadLimit) {
|
|
exitThread = true;
|
|
} else {
|
|
++mIdleCount;
|
|
idleSince = now;
|
|
wasIdle = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (exitThread) {
|
|
if (wasIdle) {
|
|
--mIdleCount;
|
|
}
|
|
shutdownThreadOnExit = mThreads.RemoveObject(current);
|
|
|
|
// keep track if there are threads available to start
|
|
mIsAPoolThreadFree = (mThreads.Count() < (int32_t)mThreadLimit);
|
|
} else {
|
|
current->SetRunningEventDelay(TimeDuration(), TimeStamp());
|
|
|
|
AUTO_PROFILER_LABEL("nsThreadPool::Run::Wait", IDLE);
|
|
|
|
TimeDuration delta = timeout - (now - idleSince);
|
|
LOG(("THRD-P(%p) %s waiting [%f]\n", this, mName.BeginReading(),
|
|
delta.ToMilliseconds()));
|
|
{
|
|
AUTO_PROFILER_THREAD_SLEEP;
|
|
mEventsAvailable.Wait(delta);
|
|
}
|
|
LOG(("THRD-P(%p) done waiting\n", this));
|
|
}
|
|
} else if (wasIdle) {
|
|
wasIdle = false;
|
|
--mIdleCount;
|
|
}
|
|
}
|
|
if (event) {
|
|
LOG(("THRD-P(%p) %s running [%p]\n", this, mName.BeginReading(),
|
|
event.get()));
|
|
|
|
// Delay event processing to encourage whoever dispatched this event
|
|
// to run.
|
|
DelayForChaosMode(ChaosFeature::TaskRunning, 1000);
|
|
|
|
// We'll handle the case of unstarted threads available
|
|
// when we sample.
|
|
current->SetRunningEventDelay(delay, TimeStamp::Now());
|
|
|
|
event->Run();
|
|
}
|
|
} while (!exitThread);
|
|
|
|
if (listener) {
|
|
listener->OnThreadShuttingDown();
|
|
}
|
|
|
|
MOZ_ASSERT(gCurrentThreadPool.get() == this);
|
|
gCurrentThreadPool.set(nullptr);
|
|
|
|
if (shutdownThreadOnExit) {
|
|
ShutdownThread(current);
|
|
}
|
|
|
|
LOG(("THRD-P(%p) leave\n", this));
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::DispatchFromScript(nsIRunnable* aEvent, uint32_t aFlags) {
|
|
nsCOMPtr<nsIRunnable> event(aEvent);
|
|
return Dispatch(event.forget(), aFlags);
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::Dispatch(already_AddRefed<nsIRunnable> aEvent, uint32_t aFlags) {
|
|
LOG(("THRD-P(%p) dispatch [%p %x]\n", this, /* XXX aEvent*/ nullptr, aFlags));
|
|
|
|
if (NS_WARN_IF(mShutdown)) {
|
|
return NS_ERROR_NOT_AVAILABLE;
|
|
}
|
|
|
|
if (aFlags & DISPATCH_SYNC) {
|
|
nsCOMPtr<nsIThread> thread;
|
|
nsThreadManager::get().GetCurrentThread(getter_AddRefs(thread));
|
|
if (NS_WARN_IF(!thread)) {
|
|
return NS_ERROR_NOT_AVAILABLE;
|
|
}
|
|
|
|
RefPtr<nsThreadSyncDispatch> wrapper =
|
|
new nsThreadSyncDispatch(thread.forget(), std::move(aEvent));
|
|
PutEvent(wrapper);
|
|
|
|
SpinEventLoopUntil(
|
|
[&, wrapper]() -> bool { return !wrapper->IsPending(); });
|
|
} else {
|
|
NS_ASSERTION(aFlags == NS_DISPATCH_NORMAL || aFlags == NS_DISPATCH_AT_END,
|
|
"unexpected dispatch flags");
|
|
PutEvent(std::move(aEvent), aFlags);
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::DelayedDispatch(already_AddRefed<nsIRunnable>, uint32_t) {
|
|
return NS_ERROR_NOT_IMPLEMENTED;
|
|
}
|
|
|
|
NS_IMETHODIMP_(bool)
|
|
nsThreadPool::IsOnCurrentThreadInfallible() {
|
|
return gCurrentThreadPool.get() == this;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::IsOnCurrentThread(bool* aResult) {
|
|
MutexAutoLock lock(mMutex);
|
|
if (NS_WARN_IF(mShutdown)) {
|
|
return NS_ERROR_NOT_AVAILABLE;
|
|
}
|
|
|
|
*aResult = IsOnCurrentThreadInfallible();
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::Shutdown() {
|
|
nsCOMArray<nsIThread> threads;
|
|
nsCOMPtr<nsIThreadPoolListener> listener;
|
|
{
|
|
MutexAutoLock lock(mMutex);
|
|
mShutdown = true;
|
|
mEventsAvailable.NotifyAll();
|
|
|
|
threads.AppendObjects(mThreads);
|
|
mThreads.Clear();
|
|
|
|
// Swap in a null listener so that we release the listener at the end of
|
|
// this method. The listener will be kept alive as long as the other threads
|
|
// that were created when it was set.
|
|
mListener.swap(listener);
|
|
}
|
|
|
|
// It's important that we shutdown the threads while outside the event queue
|
|
// monitor. Otherwise, we could end up dead-locking.
|
|
|
|
for (int32_t i = 0; i < threads.Count(); ++i) {
|
|
threads[i]->Shutdown();
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
template <typename Pred>
|
|
static void SpinMTEventLoopUntil(Pred&& aPredicate, nsIThread* aThread,
|
|
TimeDuration aTimeout) {
|
|
MOZ_ASSERT(NS_IsMainThread(), "Must be run on the main thread");
|
|
|
|
// From a latency perspective, spinning the event loop is like leaving script
|
|
// and returning to the event loop. Tell the watchdog we stopped running
|
|
// script (until we return).
|
|
mozilla::Maybe<xpc::AutoScriptActivity> asa;
|
|
asa.emplace(false);
|
|
|
|
TimeStamp deadline = TimeStamp::Now() + aTimeout;
|
|
while (!aPredicate() && TimeStamp::Now() < deadline) {
|
|
if (!NS_ProcessNextEvent(aThread, false)) {
|
|
PR_Sleep(PR_MillisecondsToInterval(1));
|
|
}
|
|
}
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::ShutdownWithTimeout(int32_t aTimeoutMs) {
|
|
if (!NS_IsMainThread()) {
|
|
return NS_ERROR_NOT_AVAILABLE;
|
|
}
|
|
|
|
nsCOMArray<nsIThread> threads;
|
|
nsCOMPtr<nsIThreadPoolListener> listener;
|
|
{
|
|
MutexAutoLock lock(mMutex);
|
|
mShutdown = true;
|
|
mEventsAvailable.NotifyAll();
|
|
|
|
threads.AppendObjects(mThreads);
|
|
mThreads.Clear();
|
|
|
|
// Swap in a null listener so that we release the listener at the end of
|
|
// this method. The listener will be kept alive as long as the other threads
|
|
// that were created when it was set.
|
|
mListener.swap(listener);
|
|
}
|
|
|
|
// IMPORTANT! Never dereference these pointers, as the objects may go away at
|
|
// any time. We just use the pointers values for comparison, to check if the
|
|
// thread has been shut down or not.
|
|
nsTArray<nsThreadShutdownContext*> contexts;
|
|
|
|
// It's important that we shutdown the threads while outside the event queue
|
|
// monitor. Otherwise, we could end up dead-locking.
|
|
for (int32_t i = 0; i < threads.Count(); ++i) {
|
|
// Shutdown async
|
|
nsThreadShutdownContext* maybeContext =
|
|
static_cast<nsThread*>(threads[i])->ShutdownInternal(false);
|
|
contexts.AppendElement(maybeContext);
|
|
}
|
|
|
|
NotNull<nsThread*> currentThread =
|
|
WrapNotNull(nsThreadManager::get().GetCurrentThread());
|
|
|
|
// We spin the event loop until all of the threads in the thread pool
|
|
// have shut down, or the timeout expires.
|
|
SpinMTEventLoopUntil(
|
|
[&]() {
|
|
for (nsIThread* thread : threads) {
|
|
if (static_cast<nsThread*>(thread)->mThread) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
},
|
|
currentThread, TimeDuration::FromMilliseconds(aTimeoutMs));
|
|
|
|
// For any threads that have not shutdown yet, we need to remove them from
|
|
// mRequestedShutdownContexts so the thread manager does not wait for them
|
|
// at shutdown.
|
|
static const nsThread::ShutdownContextsComp comparator{};
|
|
for (int32_t i = 0; i < threads.Count(); ++i) {
|
|
nsThread* thread = static_cast<nsThread*>(threads[i]);
|
|
// If mThread is not null on the thread it means that it hasn't shutdown
|
|
// context[i] corresponds to thread[i]
|
|
if (thread->mThread && contexts[i]) {
|
|
auto index = currentThread->mRequestedShutdownContexts.IndexOf(
|
|
contexts[i], 0, comparator);
|
|
if (index != nsThread::ShutdownContexts::NoIndex) {
|
|
// We must leak the shutdown context just in case the leaked thread
|
|
// does get unstuck and completes before the main thread is done.
|
|
Unused << currentThread->mRequestedShutdownContexts[index].release();
|
|
currentThread->mRequestedShutdownContexts.RemoveElementsAt(index, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::GetThreadLimit(uint32_t* aValue) {
|
|
*aValue = mThreadLimit;
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::SetThreadLimit(uint32_t aValue) {
|
|
MutexAutoLock lock(mMutex);
|
|
LOG(("THRD-P(%p) thread limit [%u]\n", this, aValue));
|
|
mThreadLimit = aValue;
|
|
if (mIdleThreadLimit > mThreadLimit) {
|
|
mIdleThreadLimit = mThreadLimit;
|
|
}
|
|
|
|
if (static_cast<uint32_t>(mThreads.Count()) > mThreadLimit) {
|
|
mEventsAvailable
|
|
.NotifyAll(); // wake up threads so they observe this change
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::GetIdleThreadLimit(uint32_t* aValue) {
|
|
*aValue = mIdleThreadLimit;
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::SetIdleThreadLimit(uint32_t aValue) {
|
|
MutexAutoLock lock(mMutex);
|
|
LOG(("THRD-P(%p) idle thread limit [%u]\n", this, aValue));
|
|
mIdleThreadLimit = aValue;
|
|
if (mIdleThreadLimit > mThreadLimit) {
|
|
mIdleThreadLimit = mThreadLimit;
|
|
}
|
|
|
|
// Do we need to kill some idle threads?
|
|
if (mIdleCount > mIdleThreadLimit) {
|
|
mEventsAvailable
|
|
.NotifyAll(); // wake up threads so they observe this change
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::GetIdleThreadTimeout(uint32_t* aValue) {
|
|
*aValue = mIdleThreadTimeout;
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::SetIdleThreadTimeout(uint32_t aValue) {
|
|
MutexAutoLock lock(mMutex);
|
|
uint32_t oldTimeout = mIdleThreadTimeout;
|
|
mIdleThreadTimeout = aValue;
|
|
|
|
// Do we need to notify any idle threads that their sleep time has shortened?
|
|
if (mIdleThreadTimeout < oldTimeout && mIdleCount > 0) {
|
|
mEventsAvailable
|
|
.NotifyAll(); // wake up threads so they observe this change
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::GetIdleThreadTimeoutRegressive(bool* aValue) {
|
|
*aValue = mRegressiveMaxIdleTime;
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::SetIdleThreadTimeoutRegressive(bool aValue) {
|
|
MutexAutoLock lock(mMutex);
|
|
bool oldRegressive = mRegressiveMaxIdleTime;
|
|
mRegressiveMaxIdleTime = aValue;
|
|
|
|
// Would setting regressive timeout effect idle threads?
|
|
if (mRegressiveMaxIdleTime > oldRegressive && mIdleCount > 1) {
|
|
mEventsAvailable
|
|
.NotifyAll(); // wake up threads so they observe this change
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::GetThreadStackSize(uint32_t* aValue) {
|
|
MutexAutoLock lock(mMutex);
|
|
*aValue = mStackSize;
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::SetThreadStackSize(uint32_t aValue) {
|
|
MutexAutoLock lock(mMutex);
|
|
mStackSize = aValue;
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::GetListener(nsIThreadPoolListener** aListener) {
|
|
MutexAutoLock lock(mMutex);
|
|
NS_IF_ADDREF(*aListener = mListener);
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::SetListener(nsIThreadPoolListener* aListener) {
|
|
nsCOMPtr<nsIThreadPoolListener> swappedListener(aListener);
|
|
{
|
|
MutexAutoLock lock(mMutex);
|
|
mListener.swap(swappedListener);
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::SetName(const nsACString& aName) {
|
|
{
|
|
MutexAutoLock lock(mMutex);
|
|
if (mThreads.Count()) {
|
|
return NS_ERROR_NOT_AVAILABLE;
|
|
}
|
|
}
|
|
|
|
mName = aName;
|
|
return NS_OK;
|
|
}
|