gecko-dev/servo/components/util/geometry.rs

328 строки
8.4 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
use geom::length::Length;
use geom::point::Point2D;
use geom::rect::Rect;
use geom::size::Size2D;
use serialize::{Encodable, Encoder};
use std::default::Default;
use std::i32;
use std::num::{Float, NumCast, Zero};
use std::fmt;
// Units for use with geom::length and geom::scale_factor.
/// A normalized "pixel" at the default resolution for the display.
///
/// Like the CSS "px" unit, the exact physical size of this unit may vary between devices, but it
/// should approximate a device-independent reference length. This unit corresponds to Android's
/// "density-independent pixel" (dip), Mac OS X's "point", and Windows "device-independent pixel."
///
/// The relationship between DevicePixel and ScreenPx is defined by the OS. On most low-dpi
/// screens, one ScreenPx is equal to one DevicePixel. But on high-density screens it can be
/// some larger number. For example, by default on Apple "retina" displays, one ScreenPx equals
/// two DevicePixels. On Android "MDPI" displays, one ScreenPx equals 1.5 device pixels.
///
/// The ratio between ScreenPx and DevicePixel for a given display be found by calling
/// `servo::windowing::WindowMethods::hidpi_factor`.
#[deriving(Show)]
pub enum ScreenPx {}
/// One CSS "px" in the coordinate system of the "initial viewport":
/// http://www.w3.org/TR/css-device-adapt/#initial-viewport
///
/// ViewportPx is equal to ScreenPx times a "page zoom" factor controlled by the user. This is
/// the desktop-style "full page" zoom that enlarges content but then reflows the layout viewport
/// so it still exactly fits the visible area.
///
/// At the default zoom level of 100%, one PagePx is equal to one ScreenPx. However, if the
/// document is zoomed in or out then this scale may be larger or smaller.
#[deriving(Encodable, Show)]
pub enum ViewportPx {}
/// One CSS "px" in the root coordinate system for the content document.
///
/// PagePx is equal to ViewportPx multiplied by a "viewport zoom" factor controlled by the user.
/// This is the mobile-style "pinch zoom" that enlarges content without reflowing it. When the
/// viewport zoom is not equal to 1.0, then the layout viewport is no longer the same physical size
/// as the viewable area.
#[deriving(Encodable, Show)]
pub enum PagePx {}
// In summary, the hierarchy of pixel units and the factors to convert from one to the next:
//
// DevicePixel
// / hidpi_ratio => ScreenPx
// / desktop_zoom => ViewportPx
// / pinch_zoom => PagePx
// An Au is an "App Unit" and represents 1/60th of a CSS pixel. It was
// originally proposed in 2002 as a standard unit of measure in Gecko.
// See https://bugzilla.mozilla.org/show_bug.cgi?id=177805 for more info.
//
// FIXME: Implement Au using Length and ScaleFactor instead of a custom type.
#[deriving(Clone, Hash, PartialEq, PartialOrd, Eq, Ord, Zero)]
pub struct Au(pub i32);
impl Default for Au {
#[inline]
fn default() -> Au {
Au(0)
}
}
pub static ZERO_POINT: Point2D<Au> = Point2D {
x: Au(0),
y: Au(0),
};
pub static ZERO_RECT: Rect<Au> = Rect {
origin: Point2D {
x: Au(0),
y: Au(0),
},
size: Size2D {
width: Au(0),
height: Au(0),
}
};
pub static MAX_RECT: Rect<Au> = Rect {
origin: Point2D {
x: Au(i32::MIN / 2),
y: Au(i32::MIN / 2),
},
size: Size2D {
width: MAX_AU,
height: MAX_AU,
}
};
pub const MIN_AU: Au = Au(i32::MIN);
pub const MAX_AU: Au = Au(i32::MAX);
impl<E, S: Encoder<E>> Encodable<S, E> for Au {
fn encode(&self, e: &mut S) -> Result<(), E> {
e.emit_f64(to_frac_px(*self))
}
}
impl fmt::Show for Au {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}px", to_frac_px(*self))
}}
impl Add<Au,Au> for Au {
#[inline]
fn add(&self, other: &Au) -> Au {
let Au(s) = *self;
let Au(o) = *other;
Au(s + o)
}
}
impl Sub<Au,Au> for Au {
#[inline]
fn sub(&self, other: &Au) -> Au {
let Au(s) = *self;
let Au(o) = *other;
Au(s - o)
}
}
impl Mul<i32, Au> for Au {
#[inline]
fn mul(&self, other: &i32) -> Au {
let Au(s) = *self;
Au(s * *other)
}
}
impl Div<i32, Au> for Au {
#[inline]
fn div(&self, other: &i32) -> Au {
let Au(s) = *self;
Au(s / *other)
}
}
impl Rem<i32, Au> for Au {
#[inline]
fn rem(&self, other: &i32) -> Au {
let Au(s) = *self;
Au(s % *other)
}
}
impl Neg<Au> for Au {
#[inline]
fn neg(&self) -> Au {
let Au(s) = *self;
Au(-s)
}
}
impl NumCast for Au {
#[inline]
fn from<T:ToPrimitive>(n: T) -> Option<Au> {
Some(Au(n.to_i32().unwrap()))
}
}
impl ToPrimitive for Au {
#[inline]
fn to_i64(&self) -> Option<i64> {
let Au(s) = *self;
Some(s as i64)
}
#[inline]
fn to_u64(&self) -> Option<u64> {
let Au(s) = *self;
Some(s as u64)
}
#[inline]
fn to_f32(&self) -> Option<f32> {
let Au(s) = *self;
s.to_f32()
}
#[inline]
fn to_f64(&self) -> Option<f64> {
let Au(s) = *self;
s.to_f64()
}
}
impl Au {
/// FIXME(pcwalton): Workaround for lack of cross crate inlining of newtype structs!
#[inline]
pub fn new(value: i32) -> Au {
Au(value)
}
#[inline]
pub fn scale_by(self, factor: f64) -> Au {
let Au(s) = self;
Au(((s as f64) * factor) as i32)
}
#[inline]
pub fn from_px(px: int) -> Au {
NumCast::from(px * 60).unwrap()
}
#[inline]
pub fn from_page_px(px: Length<PagePx, f32>) -> Au {
NumCast::from(px.get() * 60f32).unwrap()
}
#[inline]
pub fn to_nearest_px(&self) -> int {
let Au(s) = *self;
((s as f64) / 60f64).round() as int
}
#[inline]
pub fn to_subpx(&self) -> f64 {
let Au(s) = *self;
(s as f64) / 60f64
}
#[inline]
pub fn to_snapped(&self) -> Au {
let Au(s) = *self;
let res = s % 60i32;
return if res >= 30i32 { return Au(s - res + 60i32) }
else { return Au(s - res) };
}
#[inline]
pub fn from_frac32_px(px: f32) -> Au {
Au((px * 60f32) as i32)
}
#[inline]
pub fn from_pt(pt: f64) -> Au {
from_frac_px(pt_to_px(pt))
}
#[inline]
pub fn from_frac_px(px: f64) -> Au {
Au((px * 60f64) as i32)
}
#[inline]
pub fn min(x: Au, y: Au) -> Au {
let Au(xi) = x;
let Au(yi) = y;
if xi < yi { x } else { y }
}
#[inline]
pub fn max(x: Au, y: Au) -> Au {
let Au(xi) = x;
let Au(yi) = y;
if xi > yi { x } else { y }
}
}
// assumes 72 points per inch, and 96 px per inch
pub fn pt_to_px(pt: f64) -> f64 {
pt / 72f64 * 96f64
}
// assumes 72 points per inch, and 96 px per inch
pub fn px_to_pt(px: f64) -> f64 {
px / 96f64 * 72f64
}
pub fn from_frac_px(px: f64) -> Au {
Au((px * 60f64) as i32)
}
pub fn from_px(px: int) -> Au {
NumCast::from(px * 60).unwrap()
}
pub fn to_px(au: Au) -> int {
let Au(a) = au;
(a / 60) as int
}
pub fn to_frac_px(au: Au) -> f64 {
let Au(a) = au;
(a as f64) / 60f64
}
// assumes 72 points per inch, and 96 px per inch
pub fn from_pt(pt: f64) -> Au {
from_px((pt / 72f64 * 96f64) as int)
}
// assumes 72 points per inch, and 96 px per inch
pub fn to_pt(au: Au) -> f64 {
let Au(a) = au;
(a as f64) / 60f64 * 72f64 / 96f64
}
/// Returns true if the rect contains the given point. Points on the top or left sides of the rect
/// are considered inside the rectangle, while points on the right or bottom sides of the rect are
/// not considered inside the rectangle.
pub fn rect_contains_point<T:PartialOrd + Add<T,T>>(rect: Rect<T>, point: Point2D<T>) -> bool {
point.x >= rect.origin.x && point.x < rect.origin.x + rect.size.width &&
point.y >= rect.origin.y && point.y < rect.origin.y + rect.size.height
}
/// A helper function to convert a rect of `f32` pixels to a rect of app units.
pub fn f32_rect_to_au_rect(rect: Rect<f32>) -> Rect<Au> {
Rect(Point2D(Au::from_frac32_px(rect.origin.x), Au::from_frac32_px(rect.origin.y)),
Size2D(Au::from_frac32_px(rect.size.width), Au::from_frac32_px(rect.size.height)))
}