gecko-dev/dom/media/MediaData.cpp

523 строки
18 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "MediaData.h"
#include "ImageContainer.h"
#include "MediaInfo.h"
#include "VideoUtils.h"
#include "YCbCrUtils.h"
#include "mozilla/layers/ImageBridgeChild.h"
#include "mozilla/layers/KnowsCompositor.h"
#include "mozilla/layers/SharedRGBImage.h"
#include <stdint.h>
#ifdef XP_WIN
# include "mozilla/WindowsVersion.h"
# include "mozilla/layers/D3D11YCbCrImage.h"
#endif
namespace mozilla {
using namespace mozilla::gfx;
using layers::ImageContainer;
using layers::PlanarYCbCrData;
using layers::PlanarYCbCrImage;
using media::TimeUnit;
const char* AudioData::sTypeName = "audio";
const char* VideoData::sTypeName = "video";
bool IsDataLoudnessHearable(const AudioDataValue aData) {
// We can transfer the digital value to dBFS via following formula. According
// to American SMPTE standard, 0 dBu equals -20 dBFS. In theory 0 dBu is still
// hearable, so we choose a smaller value as our threshold. If the loudness
// is under this threshold, it might not be hearable.
return 20.0f * std::log10(AudioSampleToFloat(aData)) > -100;
}
AudioData::AudioData(int64_t aOffset, const media::TimeUnit& aTime,
AlignedAudioBuffer&& aData, uint32_t aChannels,
uint32_t aRate, uint32_t aChannelMap)
: MediaData(sType, aOffset, aTime,
FramesToTimeUnit(aData.Length() / aChannels, aRate)),
mChannels(aChannels),
mChannelMap(aChannelMap),
mRate(aRate),
mOriginalTime(aTime),
mAudioData(std::move(aData)),
mFrames(mAudioData.Length() / aChannels) {}
Span<AudioDataValue> AudioData::Data() const {
return MakeSpan(GetAdjustedData(), mFrames * mChannels);
}
bool AudioData::AdjustForStartTime(int64_t aStartTime) {
const TimeUnit startTimeOffset =
media::TimeUnit::FromMicroseconds(aStartTime);
mOriginalTime -= startTimeOffset;
if (mTrimWindow) {
*mTrimWindow -= startTimeOffset;
}
return MediaData::AdjustForStartTime(aStartTime);
}
bool AudioData::SetTrimWindow(const media::TimeInterval& aTrim) {
MOZ_DIAGNOSTIC_ASSERT(aTrim.mStart.IsValid() && aTrim.mEnd.IsValid(),
"An overflow occurred on the provided TimeInterval");
if (!mAudioData) {
// MoveableData got called. Can no longer work on it.
return false;
}
const size_t originalFrames = mAudioData.Length() / mChannels;
const TimeUnit originalDuration = FramesToTimeUnit(originalFrames, mRate);
if (aTrim.mStart < mOriginalTime ||
aTrim.mEnd > mOriginalTime + originalDuration) {
return false;
}
auto trimBefore = TimeUnitToFrames(aTrim.mStart - mOriginalTime, mRate);
auto trimAfter = aTrim.mEnd == GetEndTime()
? originalFrames
: TimeUnitToFrames(aTrim.mEnd - mOriginalTime, mRate);
if (!trimBefore.isValid() || !trimAfter.isValid()) {
// Overflow.
return false;
}
MOZ_DIAGNOSTIC_ASSERT(trimAfter.value() >= trimBefore.value(),
"Something went wrong with trimming value");
if (!mTrimWindow && trimBefore == 0 && trimAfter == originalFrames) {
// Nothing to change, abort early to prevent rounding errors.
return true;
}
mTrimWindow = Some(aTrim);
mDataOffset = trimBefore.value() * mChannels;
MOZ_DIAGNOSTIC_ASSERT(mDataOffset <= mAudioData.Length(),
"Data offset outside original buffer");
mFrames = (trimAfter - trimBefore).value();
MOZ_DIAGNOSTIC_ASSERT(mFrames <= originalFrames,
"More frames than found in container");
mTime = mOriginalTime + FramesToTimeUnit(trimBefore.value(), mRate);
mDuration = FramesToTimeUnit(mFrames, mRate);
return true;
}
AudioDataValue* AudioData::GetAdjustedData() const {
if (!mAudioData) {
return nullptr;
}
return mAudioData.Data() + mDataOffset;
}
void AudioData::EnsureAudioBuffer() {
if (mAudioBuffer || !mAudioData) {
return;
}
const AudioDataValue* srcData = GetAdjustedData();
mAudioBuffer =
SharedBuffer::Create(mFrames * mChannels * sizeof(AudioDataValue));
AudioDataValue* destData = static_cast<AudioDataValue*>(mAudioBuffer->Data());
for (uint32_t i = 0; i < mFrames; ++i) {
for (uint32_t j = 0; j < mChannels; ++j) {
destData[j * mFrames + i] = srcData[i * mChannels + j];
}
}
}
size_t AudioData::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
size_t size =
aMallocSizeOf(this) + mAudioData.SizeOfExcludingThis(aMallocSizeOf);
if (mAudioBuffer) {
size += mAudioBuffer->SizeOfIncludingThis(aMallocSizeOf);
}
return size;
}
bool AudioData::IsAudible() const {
if (!mAudioData) {
return false;
}
const AudioDataValue* data = GetAdjustedData();
for (uint32_t frame = 0; frame < mFrames; ++frame) {
for (uint32_t channel = 0; channel < mChannels; ++channel) {
if (IsDataLoudnessHearable(data[frame * mChannels + channel])) {
return true;
}
}
}
return false;
}
AlignedAudioBuffer AudioData::MoveableData() {
// Trim buffer according to trimming mask.
mAudioData.PopFront(mDataOffset);
mAudioData.SetLength(mFrames * mChannels);
mDataOffset = 0;
mFrames = 0;
mTrimWindow.reset();
return std::move(mAudioData);
}
static bool ValidatePlane(const VideoData::YCbCrBuffer::Plane& aPlane) {
return aPlane.mWidth <= PlanarYCbCrImage::MAX_DIMENSION &&
aPlane.mHeight <= PlanarYCbCrImage::MAX_DIMENSION &&
aPlane.mWidth * aPlane.mHeight < MAX_VIDEO_WIDTH * MAX_VIDEO_HEIGHT &&
aPlane.mStride > 0 && aPlane.mWidth <= aPlane.mStride;
}
static bool ValidateBufferAndPicture(const VideoData::YCbCrBuffer& aBuffer,
const IntRect& aPicture) {
// The following situation should never happen unless there is a bug
// in the decoder
if (aBuffer.mPlanes[1].mWidth != aBuffer.mPlanes[2].mWidth ||
aBuffer.mPlanes[1].mHeight != aBuffer.mPlanes[2].mHeight) {
NS_ERROR("C planes with different sizes");
return false;
}
// The following situations could be triggered by invalid input
if (aPicture.width <= 0 || aPicture.height <= 0) {
// In debug mode, makes the error more noticeable
MOZ_ASSERT(false, "Empty picture rect");
return false;
}
if (!ValidatePlane(aBuffer.mPlanes[0]) ||
!ValidatePlane(aBuffer.mPlanes[1]) ||
!ValidatePlane(aBuffer.mPlanes[2])) {
NS_WARNING("Invalid plane size");
return false;
}
// Ensure the picture size specified in the headers can be extracted out of
// the frame we've been supplied without indexing out of bounds.
CheckedUint32 xLimit = aPicture.x + CheckedUint32(aPicture.width);
CheckedUint32 yLimit = aPicture.y + CheckedUint32(aPicture.height);
if (!xLimit.isValid() || xLimit.value() > aBuffer.mPlanes[0].mStride ||
!yLimit.isValid() || yLimit.value() > aBuffer.mPlanes[0].mHeight) {
// The specified picture dimensions can't be contained inside the video
// frame, we'll stomp memory if we try to copy it. Fail.
NS_WARNING("Overflowing picture rect");
return false;
}
return true;
}
VideoData::VideoData(int64_t aOffset, const TimeUnit& aTime,
const TimeUnit& aDuration, bool aKeyframe,
const TimeUnit& aTimecode, IntSize aDisplay,
layers::ImageContainer::FrameID aFrameID)
: MediaData(Type::VIDEO_DATA, aOffset, aTime, aDuration),
mDisplay(aDisplay),
mFrameID(aFrameID),
mSentToCompositor(false),
mNextKeyFrameTime(TimeUnit::Invalid()) {
MOZ_ASSERT(!mDuration.IsNegative(), "Frame must have non-negative duration.");
mKeyframe = aKeyframe;
mTimecode = aTimecode;
}
VideoData::~VideoData() {}
void VideoData::SetListener(UniquePtr<Listener> aListener) {
MOZ_ASSERT(!mSentToCompositor,
"Listener should be registered before sending data");
mListener = std::move(aListener);
}
void VideoData::MarkSentToCompositor() {
if (mSentToCompositor) {
return;
}
mSentToCompositor = true;
if (mListener != nullptr) {
mListener->OnSentToCompositor();
mListener = nullptr;
}
}
size_t VideoData::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
size_t size = aMallocSizeOf(this);
// Currently only PLANAR_YCBCR has a well defined function for determining
// it's size, so reporting is limited to that type.
if (mImage && mImage->GetFormat() == ImageFormat::PLANAR_YCBCR) {
const mozilla::layers::PlanarYCbCrImage* img =
static_cast<const mozilla::layers::PlanarYCbCrImage*>(mImage.get());
size += img->SizeOfIncludingThis(aMallocSizeOf);
}
return size;
}
void VideoData::UpdateDuration(const TimeUnit& aDuration) {
MOZ_ASSERT(!aDuration.IsNegative());
mDuration = aDuration;
}
void VideoData::UpdateTimestamp(const TimeUnit& aTimestamp) {
MOZ_ASSERT(!aTimestamp.IsNegative());
auto updatedDuration = GetEndTime() - aTimestamp;
MOZ_ASSERT(!updatedDuration.IsNegative());
mTime = aTimestamp;
mDuration = updatedDuration;
}
PlanarYCbCrData ConstructPlanarYCbCrData(const VideoInfo& aInfo,
const VideoData::YCbCrBuffer& aBuffer,
const IntRect& aPicture) {
const VideoData::YCbCrBuffer::Plane& Y = aBuffer.mPlanes[0];
const VideoData::YCbCrBuffer::Plane& Cb = aBuffer.mPlanes[1];
const VideoData::YCbCrBuffer::Plane& Cr = aBuffer.mPlanes[2];
PlanarYCbCrData data;
data.mYChannel = Y.mData + Y.mOffset;
data.mYSize = IntSize(Y.mWidth, Y.mHeight);
data.mYStride = Y.mStride;
data.mYSkip = Y.mSkip;
data.mCbChannel = Cb.mData + Cb.mOffset;
data.mCrChannel = Cr.mData + Cr.mOffset;
data.mCbCrSize = IntSize(Cb.mWidth, Cb.mHeight);
data.mCbCrStride = Cb.mStride;
data.mCbSkip = Cb.mSkip;
data.mCrSkip = Cr.mSkip;
data.mPicX = aPicture.x;
data.mPicY = aPicture.y;
data.mPicSize = aPicture.Size();
data.mStereoMode = aInfo.mStereoMode;
data.mYUVColorSpace = aBuffer.mYUVColorSpace;
data.mColorDepth = aBuffer.mColorDepth;
return data;
}
/* static */
bool VideoData::SetVideoDataToImage(PlanarYCbCrImage* aVideoImage,
const VideoInfo& aInfo,
const YCbCrBuffer& aBuffer,
const IntRect& aPicture, bool aCopyData) {
if (!aVideoImage) {
return false;
}
PlanarYCbCrData data = ConstructPlanarYCbCrData(aInfo, aBuffer, aPicture);
aVideoImage->SetDelayedConversion(true);
if (aCopyData) {
return aVideoImage->CopyData(data);
} else {
return aVideoImage->AdoptData(data);
}
}
/* static */
already_AddRefed<VideoData> VideoData::CreateAndCopyData(
const VideoInfo& aInfo, ImageContainer* aContainer, int64_t aOffset,
const TimeUnit& aTime, const TimeUnit& aDuration,
const YCbCrBuffer& aBuffer, bool aKeyframe, const TimeUnit& aTimecode,
const IntRect& aPicture, layers::KnowsCompositor* aAllocator) {
if (!aContainer) {
// Create a dummy VideoData with no image. This gives us something to
// send to media streams if necessary.
RefPtr<VideoData> v(new VideoData(aOffset, aTime, aDuration, aKeyframe,
aTimecode, aInfo.mDisplay, 0));
return v.forget();
}
if (!ValidateBufferAndPicture(aBuffer, aPicture)) {
return nullptr;
}
RefPtr<VideoData> v(new VideoData(aOffset, aTime, aDuration, aKeyframe,
aTimecode, aInfo.mDisplay, 0));
// Currently our decoder only knows how to output to ImageFormat::PLANAR_YCBCR
// format.
#if XP_WIN
// We disable this code path on Windows version earlier of Windows 8 due to
// intermittent crashes with old drivers. See bug 1405110.
// D3D11YCbCrImage can only handle YCbCr images using 3 non-interleaved planes
// non-zero mSkip value indicates that one of the plane would be interleaved.
if (IsWin8OrLater() && !XRE_IsParentProcess() && aAllocator &&
aAllocator->SupportsD3D11() && aBuffer.mPlanes[0].mSkip == 0 &&
aBuffer.mPlanes[1].mSkip == 0 && aBuffer.mPlanes[2].mSkip == 0) {
RefPtr<layers::D3D11YCbCrImage> d3d11Image = new layers::D3D11YCbCrImage();
PlanarYCbCrData data = ConstructPlanarYCbCrData(aInfo, aBuffer, aPicture);
if (d3d11Image->SetData(layers::ImageBridgeChild::GetSingleton()
? layers::ImageBridgeChild::GetSingleton().get()
: aAllocator,
aContainer, data)) {
v->mImage = d3d11Image;
return v.forget();
}
}
#endif
if (!v->mImage) {
v->mImage = aContainer->CreatePlanarYCbCrImage();
}
if (!v->mImage) {
return nullptr;
}
NS_ASSERTION(v->mImage->GetFormat() == ImageFormat::PLANAR_YCBCR,
"Wrong format?");
PlanarYCbCrImage* videoImage = v->mImage->AsPlanarYCbCrImage();
MOZ_ASSERT(videoImage);
if (!VideoData::SetVideoDataToImage(videoImage, aInfo, aBuffer, aPicture,
true /* aCopyData */)) {
return nullptr;
}
return v.forget();
}
/* static */
already_AddRefed<VideoData> VideoData::CreateAndCopyData(
const VideoInfo& aInfo, ImageContainer* aContainer, int64_t aOffset,
const TimeUnit& aTime, const TimeUnit& aDuration,
const YCbCrBuffer& aBuffer, const YCbCrBuffer::Plane& aAlphaPlane,
bool aKeyframe, const TimeUnit& aTimecode, const IntRect& aPicture) {
if (!aContainer) {
// Create a dummy VideoData with no image. This gives us something to
// send to media streams if necessary.
RefPtr<VideoData> v(new VideoData(aOffset, aTime, aDuration, aKeyframe,
aTimecode, aInfo.mDisplay, 0));
return v.forget();
}
if (!ValidateBufferAndPicture(aBuffer, aPicture)) {
return nullptr;
}
RefPtr<VideoData> v(new VideoData(aOffset, aTime, aDuration, aKeyframe,
aTimecode, aInfo.mDisplay, 0));
// Convert from YUVA to BGRA format on the software side.
RefPtr<layers::SharedRGBImage> videoImage =
aContainer->CreateSharedRGBImage();
v->mImage = videoImage;
if (!v->mImage) {
return nullptr;
}
if (!videoImage->Allocate(
IntSize(aBuffer.mPlanes[0].mWidth, aBuffer.mPlanes[0].mHeight),
SurfaceFormat::B8G8R8A8)) {
return nullptr;
}
uint8_t* argb_buffer = videoImage->GetBuffer();
IntSize size = videoImage->GetSize();
// The naming convention for libyuv and associated utils is word-order.
// The naming convention in the gfx stack is byte-order.
ConvertYCbCrAToARGB(aBuffer.mPlanes[0].mData, aBuffer.mPlanes[1].mData,
aBuffer.mPlanes[2].mData, aAlphaPlane.mData,
aBuffer.mPlanes[0].mStride, aBuffer.mPlanes[1].mStride,
argb_buffer, size.width * 4, size.width, size.height);
return v.forget();
}
/* static */
already_AddRefed<VideoData> VideoData::CreateFromImage(
const IntSize& aDisplay, int64_t aOffset, const TimeUnit& aTime,
const TimeUnit& aDuration, const RefPtr<Image>& aImage, bool aKeyframe,
const TimeUnit& aTimecode) {
RefPtr<VideoData> v(new VideoData(aOffset, aTime, aDuration, aKeyframe,
aTimecode, aDisplay, 0));
v->mImage = aImage;
return v.forget();
}
MediaRawData::MediaRawData()
: MediaData(Type::RAW_DATA), mCrypto(mCryptoInternal) {}
MediaRawData::MediaRawData(const uint8_t* aData, size_t aSize)
: MediaData(Type::RAW_DATA),
mCrypto(mCryptoInternal),
mBuffer(aData, aSize) {}
MediaRawData::MediaRawData(const uint8_t* aData, size_t aSize,
const uint8_t* aAlphaData, size_t aAlphaSize)
: MediaData(Type::RAW_DATA),
mCrypto(mCryptoInternal),
mBuffer(aData, aSize),
mAlphaBuffer(aAlphaData, aAlphaSize) {}
already_AddRefed<MediaRawData> MediaRawData::Clone() const {
RefPtr<MediaRawData> s = new MediaRawData;
s->mTimecode = mTimecode;
s->mTime = mTime;
s->mDuration = mDuration;
s->mOffset = mOffset;
s->mKeyframe = mKeyframe;
s->mExtraData = mExtraData;
s->mCryptoInternal = mCryptoInternal;
s->mTrackInfo = mTrackInfo;
s->mEOS = mEOS;
s->mOriginalPresentationWindow = mOriginalPresentationWindow;
if (!s->mBuffer.Append(mBuffer.Data(), mBuffer.Length())) {
return nullptr;
}
if (!s->mAlphaBuffer.Append(mAlphaBuffer.Data(), mAlphaBuffer.Length())) {
return nullptr;
}
return s.forget();
}
MediaRawData::~MediaRawData() {}
size_t MediaRawData::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
size_t size = aMallocSizeOf(this);
size += mBuffer.SizeOfExcludingThis(aMallocSizeOf);
return size;
}
UniquePtr<MediaRawDataWriter> MediaRawData::CreateWriter() {
UniquePtr<MediaRawDataWriter> p(new MediaRawDataWriter(this));
return p;
}
MediaRawDataWriter::MediaRawDataWriter(MediaRawData* aMediaRawData)
: mCrypto(aMediaRawData->mCryptoInternal), mTarget(aMediaRawData) {}
bool MediaRawDataWriter::SetSize(size_t aSize) {
return mTarget->mBuffer.SetLength(aSize);
}
bool MediaRawDataWriter::Prepend(const uint8_t* aData, size_t aSize) {
return mTarget->mBuffer.Prepend(aData, aSize);
}
bool MediaRawDataWriter::Append(const uint8_t* aData, size_t aSize) {
return mTarget->mBuffer.Append(aData, aSize);
}
bool MediaRawDataWriter::Replace(const uint8_t* aData, size_t aSize) {
return mTarget->mBuffer.Replace(aData, aSize);
}
void MediaRawDataWriter::Clear() { mTarget->mBuffer.Clear(); }
uint8_t* MediaRawDataWriter::Data() { return mTarget->mBuffer.Data(); }
size_t MediaRawDataWriter::Size() { return mTarget->Size(); }
void MediaRawDataWriter::PopFront(size_t aSize) {
mTarget->mBuffer.PopFront(aSize);
}
} // namespace mozilla