зеркало из https://github.com/mozilla/gecko-dev.git
790 строки
24 KiB
C++
790 строки
24 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "nsThreadManager.h"
|
|
#include "nsThread.h"
|
|
#include "nsThreadPool.h"
|
|
#include "nsThreadUtils.h"
|
|
#include "nsIClassInfoImpl.h"
|
|
#include "nsExceptionHandler.h"
|
|
#include "nsTArray.h"
|
|
#include "nsXULAppAPI.h"
|
|
#include "nsExceptionHandler.h"
|
|
#include "mozilla/AbstractThread.h"
|
|
#include "mozilla/AppShutdown.h"
|
|
#include "mozilla/ClearOnShutdown.h"
|
|
#include "mozilla/EventQueue.h"
|
|
#include "mozilla/InputTaskManager.h"
|
|
#include "mozilla/Mutex.h"
|
|
#include "mozilla/Preferences.h"
|
|
#include "mozilla/ProfilerMarkers.h"
|
|
#include "mozilla/SpinEventLoopUntil.h"
|
|
#include "mozilla/StaticPtr.h"
|
|
#include "mozilla/TaskQueue.h"
|
|
#include "mozilla/ThreadEventQueue.h"
|
|
#include "mozilla/ThreadLocal.h"
|
|
#include "TaskController.h"
|
|
#include "ThreadEventTarget.h"
|
|
#ifdef MOZ_CANARY
|
|
# include <fcntl.h>
|
|
# include <unistd.h>
|
|
#endif
|
|
|
|
#include "MainThreadIdlePeriod.h"
|
|
#include "InputEventStatistics.h"
|
|
|
|
using namespace mozilla;
|
|
|
|
static MOZ_THREAD_LOCAL(bool) sTLSIsMainThread;
|
|
|
|
bool NS_IsMainThreadTLSInitialized() { return sTLSIsMainThread.initialized(); }
|
|
|
|
class BackgroundEventTarget final : public nsIEventTarget {
|
|
public:
|
|
NS_DECL_THREADSAFE_ISUPPORTS
|
|
NS_DECL_NSIEVENTTARGET_FULL
|
|
|
|
BackgroundEventTarget();
|
|
|
|
nsresult Init();
|
|
|
|
already_AddRefed<nsISerialEventTarget> CreateBackgroundTaskQueue(
|
|
const char* aName);
|
|
|
|
using CancelPromise = TaskQueue::CancelPromise::AllPromiseType;
|
|
RefPtr<CancelPromise> CancelBackgroundDelayedRunnables();
|
|
|
|
void BeginShutdown(nsTArray<RefPtr<ShutdownPromise>>&);
|
|
void FinishShutdown();
|
|
|
|
private:
|
|
~BackgroundEventTarget() = default;
|
|
|
|
nsCOMPtr<nsIThreadPool> mPool;
|
|
nsCOMPtr<nsIThreadPool> mIOPool;
|
|
|
|
Mutex mMutex;
|
|
nsTArray<RefPtr<TaskQueue>> mTaskQueues;
|
|
bool mIsBackgroundDelayedRunnablesCanceled;
|
|
};
|
|
|
|
NS_IMPL_ISUPPORTS(BackgroundEventTarget, nsIEventTarget)
|
|
|
|
BackgroundEventTarget::BackgroundEventTarget()
|
|
: mMutex("BackgroundEventTarget::mMutex") {}
|
|
|
|
nsresult BackgroundEventTarget::Init() {
|
|
nsCOMPtr<nsIThreadPool> pool(new nsThreadPool());
|
|
NS_ENSURE_TRUE(pool, NS_ERROR_FAILURE);
|
|
|
|
nsresult rv = pool->SetName("BackgroundThreadPool"_ns);
|
|
NS_ENSURE_SUCCESS(rv, rv);
|
|
|
|
// Use potentially more conservative stack size.
|
|
rv = pool->SetThreadStackSize(nsIThreadManager::kThreadPoolStackSize);
|
|
NS_ENSURE_SUCCESS(rv, rv);
|
|
|
|
// Thread limit of 2 makes deadlock during synchronous dispatch less likely.
|
|
rv = pool->SetThreadLimit(2);
|
|
NS_ENSURE_SUCCESS(rv, rv);
|
|
|
|
rv = pool->SetIdleThreadLimit(1);
|
|
NS_ENSURE_SUCCESS(rv, rv);
|
|
|
|
// Leave threads alive for up to 5 minutes
|
|
rv = pool->SetIdleThreadTimeout(300000);
|
|
NS_ENSURE_SUCCESS(rv, rv);
|
|
|
|
// Initialize the background I/O event target.
|
|
nsCOMPtr<nsIThreadPool> ioPool(new nsThreadPool());
|
|
NS_ENSURE_TRUE(pool, NS_ERROR_FAILURE);
|
|
|
|
rv = ioPool->SetName("BgIOThreadPool"_ns);
|
|
NS_ENSURE_SUCCESS(rv, rv);
|
|
|
|
// Use potentially more conservative stack size.
|
|
rv = ioPool->SetThreadStackSize(nsIThreadManager::kThreadPoolStackSize);
|
|
NS_ENSURE_SUCCESS(rv, rv);
|
|
|
|
// Thread limit of 4 makes deadlock during synchronous dispatch less likely.
|
|
rv = ioPool->SetThreadLimit(4);
|
|
NS_ENSURE_SUCCESS(rv, rv);
|
|
|
|
rv = ioPool->SetIdleThreadLimit(1);
|
|
NS_ENSURE_SUCCESS(rv, rv);
|
|
|
|
// Leave threads alive for up to 5 minutes
|
|
rv = ioPool->SetIdleThreadTimeout(300000);
|
|
NS_ENSURE_SUCCESS(rv, rv);
|
|
|
|
pool.swap(mPool);
|
|
ioPool.swap(mIOPool);
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP_(bool)
|
|
BackgroundEventTarget::IsOnCurrentThreadInfallible() {
|
|
return mPool->IsOnCurrentThread() || mIOPool->IsOnCurrentThread();
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
BackgroundEventTarget::IsOnCurrentThread(bool* aValue) {
|
|
bool value = false;
|
|
if (NS_SUCCEEDED(mPool->IsOnCurrentThread(&value)) && value) {
|
|
*aValue = value;
|
|
return NS_OK;
|
|
}
|
|
return mIOPool->IsOnCurrentThread(aValue);
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
BackgroundEventTarget::Dispatch(already_AddRefed<nsIRunnable> aRunnable,
|
|
uint32_t aFlags) {
|
|
// We need to be careful here, because if an event is getting dispatched here
|
|
// from within TaskQueue::Runner::Run, it will be dispatched with
|
|
// NS_DISPATCH_AT_END, but we might not be running the event on the same
|
|
// pool, depending on which pool we were on and the dispatch flags. If we
|
|
// dispatch an event with NS_DISPATCH_AT_END to the wrong pool, the pool
|
|
// may not process the event in a timely fashion, which can lead to deadlock.
|
|
uint32_t flags = aFlags & ~NS_DISPATCH_EVENT_MAY_BLOCK;
|
|
bool mayBlock = bool(aFlags & NS_DISPATCH_EVENT_MAY_BLOCK);
|
|
nsCOMPtr<nsIThreadPool>& pool = mayBlock ? mIOPool : mPool;
|
|
|
|
// If we're already running on the pool we want to dispatch to, we can
|
|
// unconditionally add NS_DISPATCH_AT_END to indicate that we shouldn't spin
|
|
// up a new thread.
|
|
//
|
|
// Otherwise, we should remove NS_DISPATCH_AT_END so we don't run into issues
|
|
// like those in the above comment.
|
|
if (pool->IsOnCurrentThread()) {
|
|
flags |= NS_DISPATCH_AT_END;
|
|
} else {
|
|
flags &= ~NS_DISPATCH_AT_END;
|
|
}
|
|
|
|
return pool->Dispatch(std::move(aRunnable), flags);
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
BackgroundEventTarget::DispatchFromScript(nsIRunnable* aRunnable,
|
|
uint32_t aFlags) {
|
|
nsCOMPtr<nsIRunnable> runnable(aRunnable);
|
|
return Dispatch(runnable.forget(), aFlags);
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
BackgroundEventTarget::DelayedDispatch(already_AddRefed<nsIRunnable> aRunnable,
|
|
uint32_t) {
|
|
nsCOMPtr<nsIRunnable> dropRunnable(aRunnable);
|
|
return NS_ERROR_NOT_IMPLEMENTED;
|
|
}
|
|
|
|
void BackgroundEventTarget::BeginShutdown(
|
|
nsTArray<RefPtr<ShutdownPromise>>& promises) {
|
|
for (auto& queue : mTaskQueues) {
|
|
promises.AppendElement(queue->BeginShutdown());
|
|
}
|
|
}
|
|
|
|
void BackgroundEventTarget::FinishShutdown() {
|
|
mPool->Shutdown();
|
|
mIOPool->Shutdown();
|
|
}
|
|
|
|
already_AddRefed<nsISerialEventTarget>
|
|
BackgroundEventTarget::CreateBackgroundTaskQueue(const char* aName) {
|
|
MutexAutoLock lock(mMutex);
|
|
|
|
RefPtr<TaskQueue> queue = new TaskQueue(do_AddRef(this), aName);
|
|
mTaskQueues.AppendElement(queue);
|
|
|
|
return queue.forget();
|
|
}
|
|
|
|
auto BackgroundEventTarget::CancelBackgroundDelayedRunnables()
|
|
-> RefPtr<CancelPromise> {
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
MutexAutoLock lock(mMutex);
|
|
mIsBackgroundDelayedRunnablesCanceled = true;
|
|
nsTArray<RefPtr<TaskQueue::CancelPromise>> promises;
|
|
for (const auto& tq : mTaskQueues) {
|
|
promises.AppendElement(tq->CancelDelayedRunnables());
|
|
}
|
|
return TaskQueue::CancelPromise::All(GetMainThreadSerialEventTarget(),
|
|
promises);
|
|
}
|
|
|
|
extern "C" {
|
|
// This uses the C language linkage because it's exposed to Rust
|
|
// via the xpcom/rust/moz_task crate.
|
|
bool NS_IsMainThread() { return sTLSIsMainThread.get(); }
|
|
}
|
|
|
|
void NS_SetMainThread() {
|
|
if (!sTLSIsMainThread.init()) {
|
|
MOZ_CRASH();
|
|
}
|
|
sTLSIsMainThread.set(true);
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
// We initialize the SerialEventTargetGuard's TLS here for simplicity as it
|
|
// needs to be initialized around the same time you would initialize
|
|
// sTLSIsMainThread.
|
|
SerialEventTargetGuard::InitTLS();
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
|
|
namespace mozilla {
|
|
|
|
void AssertIsOnMainThread() { MOZ_ASSERT(NS_IsMainThread(), "Wrong thread!"); }
|
|
|
|
} // namespace mozilla
|
|
|
|
#endif
|
|
|
|
typedef nsTArray<NotNull<RefPtr<nsThread>>> nsThreadArray;
|
|
|
|
static Atomic<bool> sShutdownComplete;
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
/* static */
|
|
void nsThreadManager::ReleaseThread(void* aData) {
|
|
if (sShutdownComplete) {
|
|
// We've already completed shutdown and released the references to all or
|
|
// our TLS wrappers. Don't try to release them again.
|
|
return;
|
|
}
|
|
|
|
auto* thread = static_cast<nsThread*>(aData);
|
|
|
|
if (thread->mHasTLSEntry) {
|
|
thread->mHasTLSEntry = false;
|
|
thread->Release();
|
|
}
|
|
}
|
|
|
|
// statically allocated instance
|
|
NS_IMETHODIMP_(MozExternalRefCountType)
|
|
nsThreadManager::AddRef() { return 2; }
|
|
NS_IMETHODIMP_(MozExternalRefCountType)
|
|
nsThreadManager::Release() { return 1; }
|
|
NS_IMPL_CLASSINFO(nsThreadManager, nullptr,
|
|
nsIClassInfo::THREADSAFE | nsIClassInfo::SINGLETON,
|
|
NS_THREADMANAGER_CID)
|
|
NS_IMPL_QUERY_INTERFACE_CI(nsThreadManager, nsIThreadManager)
|
|
NS_IMPL_CI_INTERFACE_GETTER(nsThreadManager, nsIThreadManager)
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
/*static*/ nsThreadManager& nsThreadManager::get() {
|
|
static nsThreadManager sInstance;
|
|
return sInstance;
|
|
}
|
|
|
|
nsThreadManager::nsThreadManager()
|
|
: mCurThreadIndex(0), mMainPRThread(nullptr), mInitialized(false) {}
|
|
|
|
nsThreadManager::~nsThreadManager() = default;
|
|
|
|
nsresult nsThreadManager::Init() {
|
|
// Child processes need to initialize the thread manager before they
|
|
// initialize XPCOM in order to set up the crash reporter. This leads to
|
|
// situations where we get initialized twice.
|
|
if (mInitialized) {
|
|
return NS_OK;
|
|
}
|
|
|
|
if (PR_NewThreadPrivateIndex(&mCurThreadIndex, ReleaseThread) == PR_FAILURE) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
#ifdef MOZ_CANARY
|
|
const int flags = O_WRONLY | O_APPEND | O_CREAT | O_NONBLOCK;
|
|
const mode_t mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;
|
|
char* env_var_flag = getenv("MOZ_KILL_CANARIES");
|
|
sCanaryOutputFD =
|
|
env_var_flag
|
|
? (env_var_flag[0] ? open(env_var_flag, flags, mode) : STDERR_FILENO)
|
|
: 0;
|
|
#endif
|
|
|
|
TaskController::Initialize();
|
|
|
|
// Initialize idle handling.
|
|
nsCOMPtr<nsIIdlePeriod> idlePeriod = new MainThreadIdlePeriod();
|
|
TaskController::Get()->SetIdleTaskManager(
|
|
new IdleTaskManager(idlePeriod.forget()));
|
|
|
|
// Create main thread queue that forwards events to TaskController and
|
|
// construct main thread.
|
|
UniquePtr<EventQueue> queue = MakeUnique<EventQueue>(true);
|
|
|
|
RefPtr<ThreadEventQueue> synchronizedQueue =
|
|
new ThreadEventQueue(std::move(queue), true);
|
|
|
|
mMainThread =
|
|
new nsThread(WrapNotNull(synchronizedQueue), nsThread::MAIN_THREAD, 0);
|
|
|
|
nsresult rv = mMainThread->InitCurrentThread();
|
|
if (NS_FAILED(rv)) {
|
|
mMainThread = nullptr;
|
|
return rv;
|
|
}
|
|
|
|
// We need to keep a pointer to the current thread, so we can satisfy
|
|
// GetIsMainThread calls that occur post-Shutdown.
|
|
mMainThread->GetPRThread(&mMainPRThread);
|
|
|
|
// Init AbstractThread.
|
|
AbstractThread::InitTLS();
|
|
AbstractThread::InitMainThread();
|
|
|
|
// Initialize the background event target.
|
|
RefPtr<BackgroundEventTarget> target(new BackgroundEventTarget());
|
|
|
|
rv = target->Init();
|
|
NS_ENSURE_SUCCESS(rv, rv);
|
|
|
|
mBackgroundEventTarget = std::move(target);
|
|
|
|
mInitialized = true;
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
void nsThreadManager::Shutdown() {
|
|
MOZ_ASSERT(NS_IsMainThread(), "shutdown not called from main thread");
|
|
|
|
// Prevent further access to the thread manager (no more new threads!)
|
|
//
|
|
// What happens if shutdown happens before NewThread completes?
|
|
// We Shutdown() the new thread, and return error if we've started Shutdown
|
|
// between when NewThread started, and when the thread finished initializing
|
|
// and registering with ThreadManager.
|
|
//
|
|
mInitialized = false;
|
|
|
|
// Empty the main thread event queue before we begin shutting down threads.
|
|
NS_ProcessPendingEvents(mMainThread);
|
|
|
|
nsTArray<RefPtr<ShutdownPromise>> promises;
|
|
mBackgroundEventTarget->BeginShutdown(promises);
|
|
|
|
bool taskQueuesShutdown = false;
|
|
// It's fine to capture everything by reference in the Then handler since it
|
|
// runs before we exit the nested event loop, thanks to the SpinEventLoopUntil
|
|
// below.
|
|
ShutdownPromise::All(mMainThread, promises)->Then(mMainThread, __func__, [&] {
|
|
mBackgroundEventTarget->FinishShutdown();
|
|
taskQueuesShutdown = true;
|
|
});
|
|
|
|
// Wait for task queues to shutdown, so we don't shut down the underlying
|
|
// threads of the background event target in the block below, thereby
|
|
// preventing the task queues from emptying, preventing the shutdown promises
|
|
// from resolving, and prevent anything checking `taskQueuesShutdown` from
|
|
// working.
|
|
mozilla::SpinEventLoopUntil(
|
|
"nsThreadManager::Shutdown"_ns, [&]() { return taskQueuesShutdown; },
|
|
mMainThread);
|
|
|
|
{
|
|
// We gather the threads from the hashtable into a list, so that we avoid
|
|
// holding the enumerator lock while calling nsIThread::Shutdown.
|
|
nsTArray<RefPtr<nsThread>> threadsToShutdown;
|
|
for (auto* thread : nsThread::Enumerate()) {
|
|
if (thread->ShutdownRequired()) {
|
|
threadsToShutdown.AppendElement(thread);
|
|
}
|
|
}
|
|
|
|
// It's tempting to walk the list of threads here and tell them each to stop
|
|
// accepting new events, but that could lead to badness if one of those
|
|
// threads is stuck waiting for a response from another thread. To do it
|
|
// right, we'd need some way to interrupt the threads.
|
|
//
|
|
// Instead, we process events on the current thread while waiting for
|
|
// threads to shutdown. This means that we have to preserve a mostly
|
|
// functioning world until such time as the threads exit.
|
|
|
|
// Shutdown all threads that require it (join with threads that we created).
|
|
for (auto& thread : threadsToShutdown) {
|
|
thread->Shutdown();
|
|
}
|
|
}
|
|
|
|
// NB: It's possible that there are events in the queue that want to *start*
|
|
// an asynchronous shutdown. But we have already shutdown the threads above,
|
|
// so there's no need to worry about them. We only have to wait for all
|
|
// in-flight asynchronous thread shutdowns to complete.
|
|
mMainThread->WaitForAllAsynchronousShutdowns();
|
|
|
|
mMainThread->mEventTarget->NotifyShutdown();
|
|
|
|
// In case there are any more events somehow...
|
|
NS_ProcessPendingEvents(mMainThread);
|
|
|
|
// There are no more background threads at this point.
|
|
|
|
// Normally thread shutdown clears the observer for the thread, but since the
|
|
// main thread is special we do it manually here after we're sure all events
|
|
// have been processed.
|
|
mMainThread->SetObserver(nullptr);
|
|
|
|
mBackgroundEventTarget = nullptr;
|
|
|
|
// Release main thread object.
|
|
mMainThread = nullptr;
|
|
|
|
// Remove the TLS entry for the main thread.
|
|
PR_SetThreadPrivate(mCurThreadIndex, nullptr);
|
|
|
|
{
|
|
// Cleanup the last references to any threads which haven't shut down yet.
|
|
nsTArray<RefPtr<nsThread>> threads;
|
|
for (auto* thread : nsThread::Enumerate()) {
|
|
if (thread->mHasTLSEntry) {
|
|
threads.AppendElement(dont_AddRef(thread));
|
|
thread->mHasTLSEntry = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// xpcshell tests sometimes leak the main thread. They don't enable leak
|
|
// checking, so that doesn't cause the test to fail, but leaving the entry in
|
|
// the thread list triggers an assertion, which does.
|
|
nsThread::ClearThreadList();
|
|
|
|
sShutdownComplete = true;
|
|
}
|
|
|
|
void nsThreadManager::RegisterCurrentThread(nsThread& aThread) {
|
|
MOZ_ASSERT(aThread.GetPRThread() == PR_GetCurrentThread(), "bad aThread");
|
|
|
|
aThread.AddRef(); // for TLS entry
|
|
aThread.mHasTLSEntry = true;
|
|
PR_SetThreadPrivate(mCurThreadIndex, &aThread);
|
|
}
|
|
|
|
void nsThreadManager::UnregisterCurrentThread(nsThread& aThread) {
|
|
MOZ_ASSERT(aThread.GetPRThread() == PR_GetCurrentThread(), "bad aThread");
|
|
|
|
PR_SetThreadPrivate(mCurThreadIndex, nullptr);
|
|
// Ref-count balanced via ReleaseThread
|
|
}
|
|
|
|
nsThread* nsThreadManager::CreateCurrentThread(
|
|
SynchronizedEventQueue* aQueue, nsThread::MainThreadFlag aMainThread) {
|
|
// Make sure we don't have an nsThread yet.
|
|
MOZ_ASSERT(!PR_GetThreadPrivate(mCurThreadIndex));
|
|
|
|
if (!mInitialized) {
|
|
return nullptr;
|
|
}
|
|
|
|
RefPtr<nsThread> thread = new nsThread(WrapNotNull(aQueue), aMainThread, 0);
|
|
if (!thread || NS_FAILED(thread->InitCurrentThread())) {
|
|
return nullptr;
|
|
}
|
|
|
|
return thread.get(); // reference held in TLS
|
|
}
|
|
|
|
nsresult nsThreadManager::DispatchToBackgroundThread(nsIRunnable* aEvent,
|
|
uint32_t aDispatchFlags) {
|
|
if (!mInitialized) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
nsCOMPtr<nsIEventTarget> backgroundTarget(mBackgroundEventTarget);
|
|
return backgroundTarget->Dispatch(aEvent, aDispatchFlags);
|
|
}
|
|
|
|
already_AddRefed<nsISerialEventTarget>
|
|
nsThreadManager::CreateBackgroundTaskQueue(const char* aName) {
|
|
if (!mInitialized) {
|
|
return nullptr;
|
|
}
|
|
|
|
return mBackgroundEventTarget->CreateBackgroundTaskQueue(aName);
|
|
}
|
|
|
|
void nsThreadManager::CancelBackgroundDelayedRunnables() {
|
|
if (!mInitialized) {
|
|
return;
|
|
}
|
|
|
|
bool canceled = false;
|
|
mBackgroundEventTarget->CancelBackgroundDelayedRunnables()->Then(
|
|
GetMainThreadSerialEventTarget(), __func__, [&] { canceled = true; });
|
|
mozilla::SpinEventLoopUntil(
|
|
"nsThreadManager::CancelBackgroundDelayedRunnables"_ns,
|
|
[&]() { return canceled; });
|
|
}
|
|
|
|
nsThread* nsThreadManager::GetCurrentThread() {
|
|
// read thread local storage
|
|
void* data = PR_GetThreadPrivate(mCurThreadIndex);
|
|
if (data) {
|
|
return static_cast<nsThread*>(data);
|
|
}
|
|
|
|
if (!mInitialized) {
|
|
return nullptr;
|
|
}
|
|
|
|
// OK, that's fine. We'll dynamically create one :-)
|
|
//
|
|
// We assume that if we're implicitly creating a thread here that it doesn't
|
|
// want an event queue. Any thread which wants an event queue should
|
|
// explicitly create its nsThread wrapper.
|
|
RefPtr<nsThread> thread = new nsThread();
|
|
if (!thread || NS_FAILED(thread->InitCurrentThread())) {
|
|
return nullptr;
|
|
}
|
|
|
|
return thread.get(); // reference held in TLS
|
|
}
|
|
|
|
bool nsThreadManager::IsNSThread() const {
|
|
if (!mInitialized) {
|
|
return false;
|
|
}
|
|
if (auto* thread = (nsThread*)PR_GetThreadPrivate(mCurThreadIndex)) {
|
|
return thread->EventQueue();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadManager::NewNamedThread(const nsACString& aName, uint32_t aStackSize,
|
|
nsIThread** aResult) {
|
|
// Note: can be called from arbitrary threads
|
|
|
|
// No new threads during Shutdown
|
|
if (NS_WARN_IF(!mInitialized)) {
|
|
return NS_ERROR_NOT_INITIALIZED;
|
|
}
|
|
|
|
[[maybe_unused]] TimeStamp startTime = TimeStamp::Now();
|
|
|
|
RefPtr<ThreadEventQueue> queue =
|
|
new ThreadEventQueue(MakeUnique<EventQueue>());
|
|
RefPtr<nsThread> thr =
|
|
new nsThread(WrapNotNull(queue), nsThread::NOT_MAIN_THREAD, aStackSize);
|
|
nsresult rv =
|
|
thr->Init(aName); // Note: blocks until the new thread has been set up
|
|
if (NS_FAILED(rv)) {
|
|
return rv;
|
|
}
|
|
|
|
// At this point, we expect that the thread has been registered in
|
|
// mThreadByPRThread; however, it is possible that it could have also been
|
|
// replaced by now, so we cannot really assert that it was added. Instead,
|
|
// kill it if we entered Shutdown() during/before Init()
|
|
|
|
if (NS_WARN_IF(!mInitialized)) {
|
|
if (thr->ShutdownRequired()) {
|
|
thr->Shutdown(); // ok if it happens multiple times
|
|
}
|
|
return NS_ERROR_NOT_INITIALIZED;
|
|
}
|
|
|
|
PROFILER_MARKER_TEXT(
|
|
"NewThread", OTHER,
|
|
MarkerOptions(MarkerStack::Capture(),
|
|
MarkerTiming::IntervalUntilNowFrom(startTime)),
|
|
aName);
|
|
if (!NS_IsMainThread()) {
|
|
PROFILER_MARKER_TEXT(
|
|
"NewThread (non-main thread)", OTHER,
|
|
MarkerOptions(MarkerStack::Capture(), MarkerThreadId::MainThread(),
|
|
MarkerTiming::IntervalUntilNowFrom(startTime)),
|
|
aName);
|
|
}
|
|
|
|
thr.forget(aResult);
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadManager::GetMainThread(nsIThread** aResult) {
|
|
// Keep this functioning during Shutdown
|
|
if (!mMainThread) {
|
|
if (!NS_IsMainThread()) {
|
|
NS_WARNING(
|
|
"Called GetMainThread but there isn't a main thread and "
|
|
"we're not the main thread.");
|
|
}
|
|
return NS_ERROR_NOT_INITIALIZED;
|
|
}
|
|
NS_ADDREF(*aResult = mMainThread);
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadManager::GetCurrentThread(nsIThread** aResult) {
|
|
// Keep this functioning during Shutdown
|
|
if (!mMainThread) {
|
|
return NS_ERROR_NOT_INITIALIZED;
|
|
}
|
|
*aResult = GetCurrentThread();
|
|
if (!*aResult) {
|
|
return NS_ERROR_OUT_OF_MEMORY;
|
|
}
|
|
NS_ADDREF(*aResult);
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadManager::SpinEventLoopUntil(const nsACString& aVeryGoodReasonToDoThis,
|
|
nsINestedEventLoopCondition* aCondition) {
|
|
return SpinEventLoopUntilInternal(aVeryGoodReasonToDoThis, aCondition,
|
|
ShutdownPhase::NotInShutdown);
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadManager::SpinEventLoopUntilOrQuit(
|
|
const nsACString& aVeryGoodReasonToDoThis,
|
|
nsINestedEventLoopCondition* aCondition) {
|
|
return SpinEventLoopUntilInternal(aVeryGoodReasonToDoThis, aCondition,
|
|
ShutdownPhase::AppShutdownConfirmed);
|
|
}
|
|
|
|
// statics from SpinEventLoopUntil.h
|
|
AutoNestedEventLoopAnnotation* AutoNestedEventLoopAnnotation::sCurrent =
|
|
nullptr;
|
|
StaticMutex AutoNestedEventLoopAnnotation::sStackMutex;
|
|
|
|
// static from SpinEventLoopUntil.h
|
|
void AutoNestedEventLoopAnnotation::AnnotateXPCOMSpinEventLoopStack(
|
|
const nsACString& aStack) {
|
|
CrashReporter::AnnotateCrashReport(
|
|
CrashReporter::Annotation::XPCOMSpinEventLoopStack, aStack);
|
|
}
|
|
|
|
nsresult nsThreadManager::SpinEventLoopUntilInternal(
|
|
const nsACString& aVeryGoodReasonToDoThis,
|
|
nsINestedEventLoopCondition* aCondition,
|
|
ShutdownPhase aShutdownPhaseToCheck) {
|
|
// XXX: We would want to AssertIsOnMainThread(); but that breaks some GTest.
|
|
nsCOMPtr<nsINestedEventLoopCondition> condition(aCondition);
|
|
nsresult rv = NS_OK;
|
|
|
|
if (!mozilla::SpinEventLoopUntil(aVeryGoodReasonToDoThis, [&]() -> bool {
|
|
// Check if an ongoing shutdown reached our limits.
|
|
if (aShutdownPhaseToCheck > ShutdownPhase::NotInShutdown &&
|
|
AppShutdown::GetCurrentShutdownPhase() >= aShutdownPhaseToCheck) {
|
|
return true;
|
|
}
|
|
|
|
bool isDone = false;
|
|
rv = condition->IsDone(&isDone);
|
|
// JS failure should be unusual, but we need to stop and propagate
|
|
// the error back to the caller.
|
|
if (NS_FAILED(rv)) {
|
|
return true;
|
|
}
|
|
|
|
return isDone;
|
|
})) {
|
|
// We stopped early for some reason, which is unexpected.
|
|
return NS_ERROR_UNEXPECTED;
|
|
}
|
|
|
|
// If we exited when the condition told us to, we need to return whether
|
|
// the condition encountered failure when executing.
|
|
return rv;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadManager::SpinEventLoopUntilEmpty() {
|
|
nsIThread* thread = NS_GetCurrentThread();
|
|
|
|
while (NS_HasPendingEvents(thread)) {
|
|
(void)NS_ProcessNextEvent(thread, false);
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadManager::GetMainThreadEventTarget(nsIEventTarget** aTarget) {
|
|
nsCOMPtr<nsIEventTarget> target = GetMainThreadSerialEventTarget();
|
|
target.forget(aTarget);
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadManager::DispatchToMainThread(nsIRunnable* aEvent, uint32_t aPriority,
|
|
uint8_t aArgc) {
|
|
// Note: C++ callers should instead use NS_DispatchToMainThread.
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
|
|
// Keep this functioning during Shutdown
|
|
if (NS_WARN_IF(!mMainThread)) {
|
|
return NS_ERROR_NOT_INITIALIZED;
|
|
}
|
|
// If aPriority wasn't explicitly passed, that means it should be treated as
|
|
// PRIORITY_NORMAL.
|
|
if (aArgc > 0 && aPriority != nsIRunnablePriority::PRIORITY_NORMAL) {
|
|
nsCOMPtr<nsIRunnable> event(aEvent);
|
|
return mMainThread->DispatchFromScript(
|
|
new PrioritizableRunnable(event.forget(), aPriority), 0);
|
|
}
|
|
return mMainThread->DispatchFromScript(aEvent, 0);
|
|
}
|
|
|
|
void nsThreadManager::EnableMainThreadEventPrioritization() {
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
InputEventStatistics::Get().SetEnable(true);
|
|
InputTaskManager::Get()->EnableInputEventPrioritization();
|
|
}
|
|
|
|
void nsThreadManager::FlushInputEventPrioritization() {
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
InputTaskManager::Get()->FlushInputEventPrioritization();
|
|
}
|
|
|
|
void nsThreadManager::SuspendInputEventPrioritization() {
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
InputTaskManager::Get()->SuspendInputEventPrioritization();
|
|
}
|
|
|
|
void nsThreadManager::ResumeInputEventPrioritization() {
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
InputTaskManager::Get()->ResumeInputEventPrioritization();
|
|
}
|
|
|
|
// static
|
|
bool nsThreadManager::MainThreadHasPendingHighPriorityEvents() {
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
bool retVal = false;
|
|
if (get().mMainThread) {
|
|
get().mMainThread->HasPendingHighPriorityEvents(&retVal);
|
|
}
|
|
return retVal;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadManager::IdleDispatchToMainThread(nsIRunnable* aEvent,
|
|
uint32_t aTimeout) {
|
|
// Note: C++ callers should instead use NS_DispatchToThreadQueue or
|
|
// NS_DispatchToCurrentThreadQueue.
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
|
|
nsCOMPtr<nsIRunnable> event(aEvent);
|
|
if (aTimeout) {
|
|
return NS_DispatchToThreadQueue(event.forget(), aTimeout, mMainThread,
|
|
EventQueuePriority::Idle);
|
|
}
|
|
|
|
return NS_DispatchToThreadQueue(event.forget(), mMainThread,
|
|
EventQueuePriority::Idle);
|
|
}
|