зеркало из https://github.com/mozilla/gecko-dev.git
409 строки
16 KiB
Python
409 строки
16 KiB
Python
#!/usr/bin/env python
|
|
|
|
# This Source Code Form is subject to the terms of the Mozilla Public
|
|
# License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
import argparse
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import os
|
|
from os import path
|
|
import sys
|
|
import warnings
|
|
|
|
HB_LOG_IDX_START_TIME = 7
|
|
HB_LOG_IDX_END_TIME = HB_LOG_IDX_START_TIME + 1
|
|
HB_LOG_IDX_START_ENERGY = 14
|
|
HB_LOG_IDX_END_ENERGY = HB_LOG_IDX_START_ENERGY + 1
|
|
|
|
ENERGY_PROFILER_NAME = 'ApplicationHeartbeat'
|
|
SUMMARY_OUTPUT = "summary.txt"
|
|
SUMMARY_TIME_IDX = 8
|
|
SUMMARY_ENERGY_IDX = SUMMARY_TIME_IDX + 1
|
|
SUMMARY_POWER_IDX = SUMMARY_ENERGY_IDX + 1
|
|
|
|
|
|
def autolabel(rects, ax):
|
|
"""Attach some text labels.
|
|
"""
|
|
for rect in rects:
|
|
ax.text(rect.get_x() + rect.get_width() / 2., 1.05 * rect.get_height(), '', ha='center', va='bottom')
|
|
|
|
|
|
def plot_raw_totals(config, plot_data, max_time, max_time_std, max_energy, max_energy_std, output_dir, normalize):
|
|
"""Plot the raw totals for a configuration.
|
|
|
|
Keyword arguments:
|
|
config -- configuration name
|
|
plot_data -- (profiler name, total_time, total_time_std, total_energy, total_energy_std)
|
|
max_time, max_time_std, max_energy, max_energy_std -- single values
|
|
normalize -- True/False
|
|
"""
|
|
plot_data = sorted(plot_data)
|
|
keys = [p for (p, tt, tts, te, tes) in plot_data]
|
|
total_times = [tt for (p, tt, tts, te, tes) in plot_data]
|
|
total_times_std = [tts for (p, tt, tts, te, tes) in plot_data]
|
|
total_energies = [te for (p, tt, tts, te, tes) in plot_data]
|
|
total_energies_std = [tes for (p, tt, tts, te, tes) in plot_data]
|
|
|
|
fig, ax1 = plt.subplots()
|
|
ind = np.arange(len(keys)) # the x locations for the groups
|
|
width = 0.35 # the width of the bars
|
|
# add some text for labels, title and axes ticks
|
|
ax1.set_title('Time/Energy Data for Configuration ' + config)
|
|
ax1.set_xticks(ind + width)
|
|
ax1.set_xticklabels(keys, rotation=45)
|
|
fig.set_tight_layout(True)
|
|
fig.set_size_inches(len(plot_data) / 1.5, 8)
|
|
|
|
ax2 = ax1.twinx()
|
|
|
|
# Normalize
|
|
if normalize:
|
|
total_times_std /= np.sum(total_times)
|
|
total_times /= np.sum(total_times)
|
|
total_energies_std /= np.sum(total_energies)
|
|
total_energies /= np.sum(total_energies)
|
|
ax1.set_ylabel('Time (Normalized)')
|
|
ax2.set_ylabel('Energy (Normalized)')
|
|
else:
|
|
# set time in us instead of ns
|
|
total_times_std /= np.array(1000000.0)
|
|
total_times /= np.array(1000000.0)
|
|
total_energies_std /= np.array(1000000.0)
|
|
total_energies /= np.array(1000000.0)
|
|
ax1.set_ylabel('Time (ms)')
|
|
ax2.set_ylabel('Energy (Joules)')
|
|
|
|
rects1 = ax1.bar(ind, total_times, width, color='r', yerr=total_times_std)
|
|
rects2 = ax2.bar(ind + width, total_energies, width, color='y', yerr=total_energies_std)
|
|
ax1.legend([rects1[0], rects2[0]], ['Time', 'Energy'])
|
|
|
|
# set axis
|
|
x1, x2, y1, y2 = plt.axis()
|
|
if normalize:
|
|
ax1.set_ylim(ymin=0, ymax=1)
|
|
ax2.set_ylim(ymin=0, ymax=1)
|
|
else:
|
|
ax1.set_ylim(ymin=0, ymax=((max_time + max_time_std) * 1.25 / 1000000.0))
|
|
ax2.set_ylim(ymin=0, ymax=((max_energy + max_energy_std) * 1.25 / 1000000.0))
|
|
|
|
autolabel(rects1, ax1)
|
|
autolabel(rects2, ax2)
|
|
|
|
# plt.show()
|
|
plt.savefig(path.join(output_dir, config + ".png"))
|
|
plt.close(fig)
|
|
|
|
|
|
def create_raw_total_data(config_data):
|
|
"""Get the raw data to plot for a configuration
|
|
Return: [(profiler, time_mean, time_stddev, energy_mean, energy_stddev)]
|
|
|
|
Keyword arguments:
|
|
config_data -- (trial, trial_data)
|
|
"""
|
|
# We can't assume that the same number of heartbeats are always issued across trials
|
|
# key: profiler name; value: list of timing sums for each trial
|
|
profiler_total_times = {}
|
|
# key: profiler name; value: list of energy sums for each trial
|
|
profiler_total_energies = {}
|
|
for (t, td) in config_data:
|
|
for (profiler, ts, te, es, ee) in td:
|
|
# sum the total times and energies for each profiler in this trial
|
|
total_time = np.sum(te - ts)
|
|
total_energy = np.sum(ee - es)
|
|
# add to list to be averaged later
|
|
time_list = profiler_total_times.get(profiler, [])
|
|
time_list.append(total_time)
|
|
profiler_total_times[profiler] = time_list
|
|
energy_list = profiler_total_energies.get(profiler, [])
|
|
energy_list.append(total_energy)
|
|
profiler_total_energies[profiler] = energy_list
|
|
|
|
# Get mean and stddev for time and energy totals
|
|
return [(profiler,
|
|
np.mean(profiler_total_times[profiler]),
|
|
np.std(profiler_total_times[profiler]),
|
|
np.mean(profiler_total_energies[profiler]),
|
|
np.std(profiler_total_energies[profiler]))
|
|
for profiler in profiler_total_times.keys()]
|
|
|
|
|
|
def plot_all_raw_totals(config_list, output_dir):
|
|
"""Plot column charts of the raw total time/energy spent in each profiler category.
|
|
|
|
Keyword arguments:
|
|
config_list -- [(config, result of process_config_dir(...))]
|
|
output_dir -- where to write plots to
|
|
"""
|
|
raw_total_norm_out_dir = path.join(output_dir, 'raw_totals_normalized')
|
|
os.makedirs(raw_total_norm_out_dir)
|
|
raw_total_out_dir = path.join(output_dir, 'raw_totals')
|
|
os.makedirs(raw_total_out_dir)
|
|
|
|
# (name, (profiler, (time_mean, time_stddev, energy_mean, energy_stddev)))
|
|
raw_totals_data = [(config, create_raw_total_data(config_data)) for (config, config_data) in config_list]
|
|
|
|
mean_times = []
|
|
mean_times_std = []
|
|
mean_energies = []
|
|
mean_energies_std = []
|
|
for profiler_tup in [config_tup[1] for config_tup in raw_totals_data]:
|
|
for (p, tt, tts, te, tes) in profiler_tup:
|
|
mean_times.append(tt)
|
|
mean_times_std.append(tts)
|
|
mean_energies.append(te)
|
|
mean_energies_std.append(tes)
|
|
# get consistent max time/energy values across plots
|
|
max_t = np.max(mean_times)
|
|
max_t_std = np.max(mean_times_std)
|
|
max_e = np.max(mean_energies)
|
|
max_e_std = np.max(mean_energies_std)
|
|
[plot_raw_totals(data[0], data[1], max_t, max_t_std, max_e, max_e_std, raw_total_norm_out_dir, True)
|
|
for data in raw_totals_data]
|
|
[plot_raw_totals(data[0], data[1], max_t, max_t_std, max_e, max_e_std, raw_total_out_dir, False)
|
|
for data in raw_totals_data]
|
|
|
|
|
|
def plot_trial_time_series(config, trial, trial_data, max_end_time, max_power, output_dir):
|
|
"""Plot time series for a single trial.
|
|
|
|
Keyword arguments:
|
|
config -- the config name
|
|
trial -- the trial name
|
|
trial_data -- [(profiler, [start times], [end times], [start energies], [end energies])]
|
|
max_end_time -- single value to use as max X axis value (for consistency across trials)
|
|
output_dir -- the output directory
|
|
"""
|
|
# TODO: Some profilers may have parallel tasks - need to identify this on plots
|
|
max_end_time = max_end_time / 1000000.0
|
|
trial_data = sorted(trial_data)
|
|
fig, ax1 = plt.subplots()
|
|
keys = [p for (p, ts, te, es, ee) in trial_data]
|
|
# add some text for labels, title and axes ticks
|
|
ax1.set_title('Profiler Activity for ' + config + ', ' + trial)
|
|
ax1.set_xlabel('Time (ms)')
|
|
ax1.grid(True)
|
|
width = 8 # the width of the bars
|
|
ax1.set_yticks(10 * np.arange(1, len(keys) + 2))
|
|
ax1.set_yticklabels(keys)
|
|
ax1.set_ylim(ymin=0, ymax=((len(trial_data) + 1) * 10))
|
|
ax1.set_xlim(xmin=0, xmax=max_end_time)
|
|
fig.set_tight_layout(True)
|
|
fig.set_size_inches(16, len(trial_data) / 3)
|
|
|
|
i = 10
|
|
for (p, ts, te, es, ee) in trial_data:
|
|
xranges = [(ts[j] / 1000000.0, (te[j] - ts[j]) / 1000000.0) for j in xrange(len(ts))]
|
|
ax1.broken_barh(xranges, (i - 0.5 * width, width))
|
|
i += 10
|
|
# place a vbar at the final time for this trial
|
|
last_profiler_times = map(np.nanmax, filter(lambda x: len(x) > 0, [te for (p, ts, te, es, ee) in trial_data]))
|
|
plt.axvline(np.max(last_profiler_times) / 1000000.0, color='black')
|
|
|
|
power_times = []
|
|
power_values = []
|
|
for (p, ts, te, es, ee) in trial_data:
|
|
if p == ENERGY_PROFILER_NAME:
|
|
power_times = te / 1000000.0
|
|
power_values = (ee - es) / ((te - ts) / 1000.0)
|
|
ax2 = ax1.twinx()
|
|
ax2.set_xlim(xmin=0, xmax=max_end_time)
|
|
ax2.set_ylim(ymin=0, ymax=max_power)
|
|
ax2.set_ylabel('Power (Watts)')
|
|
ax2.plot(power_times, power_values, color='r')
|
|
|
|
# plt.show()
|
|
plt.savefig(path.join(output_dir, "ts_" + config + "_" + trial + ".png"))
|
|
plt.close(fig)
|
|
|
|
|
|
def hb_energy_times_to_power(es, ee, ts, te):
|
|
"""Compute power from start and end energy and times.
|
|
Return: power values
|
|
"""
|
|
return (ee - es) / ((te - ts) / 1000.0)
|
|
|
|
|
|
def plot_all_time_series(config_list, output_dir):
|
|
"""Plot column charts of the raw total time/energy spent in each profiler category.
|
|
|
|
Keyword arguments:
|
|
config_list -- [(config, result of process_config_dir(...))]
|
|
output_dir -- where to write plots to
|
|
"""
|
|
time_series_out_dir = path.join(output_dir, 'time_series')
|
|
os.makedirs(time_series_out_dir)
|
|
|
|
max_end_times = []
|
|
max_power_values = []
|
|
for (c, cd) in config_list:
|
|
for (t, td) in cd:
|
|
trial_max_end_times = map(np.nanmax, filter(lambda x: len(x) > 0, [te for (p, ts, te, es, ee) in td]))
|
|
max_end_times.append(np.nanmax(trial_max_end_times))
|
|
for (p, ts, te, es, ee) in td:
|
|
# We only care about the energy profiler (others aren't reliable for instant power anyway)
|
|
if p == ENERGY_PROFILER_NAME and len(te) > 0:
|
|
max_power_values.append(np.nanmax(hb_energy_times_to_power(es, ee, ts, te)))
|
|
max_time = np.nanmax(max_end_times)
|
|
max_power = np.nanmax(np.array(max_power_values)) * 1.2 # leave a little space at the top
|
|
|
|
for (config, config_data) in config_list:
|
|
[plot_trial_time_series(config, trial, trial_data, max_time, max_power, time_series_out_dir)
|
|
for (trial, trial_data) in config_data]
|
|
|
|
|
|
def read_heartbeat_log(profiler_hb_log):
|
|
"""Read a heartbeat log file.
|
|
Return: (profiler name, [start times], [end times], [start energies], [end energies], [instant powers])
|
|
|
|
Keyword arguments:
|
|
profiler_hb_log -- the file to read
|
|
"""
|
|
with warnings.catch_warnings():
|
|
try:
|
|
warnings.simplefilter("ignore")
|
|
time_start, time_end, energy_start, energy_end = \
|
|
np.loadtxt(profiler_hb_log,
|
|
dtype=np.dtype('uint64'),
|
|
skiprows=1,
|
|
usecols=(HB_LOG_IDX_START_TIME,
|
|
HB_LOG_IDX_END_TIME,
|
|
HB_LOG_IDX_START_ENERGY,
|
|
HB_LOG_IDX_END_ENERGY),
|
|
unpack=True,
|
|
ndmin=1)
|
|
except ValueError:
|
|
time_start, time_end, energy_start, energy_end = [], [], [], []
|
|
name = path.split(profiler_hb_log)[1].split('-')[1].split('.')[0]
|
|
return (name,
|
|
np.atleast_1d(time_start),
|
|
np.atleast_1d(time_end),
|
|
np.atleast_1d(energy_start),
|
|
np.atleast_1d(energy_end))
|
|
|
|
|
|
def process_trial_dir(trial_dir):
|
|
"""Process trial directory.
|
|
Return: [(profiler name, [start times], [end times], [start energies], [end energies])]
|
|
Time and energy are normalized to 0 start values.
|
|
|
|
Keyword arguments:
|
|
trial_dir -- the directory for this trial
|
|
"""
|
|
log_data = map(lambda h: read_heartbeat_log(path.join(trial_dir, h)),
|
|
filter(lambda f: f.endswith(".log"), os.listdir(trial_dir)))
|
|
|
|
# Find the earliest timestamps and energy readings
|
|
min_t = np.nanmin(map(np.nanmin, filter(lambda x: len(x) > 0, [ts for (profiler, ts, te, es, ee) in log_data])))
|
|
min_e = np.nanmin(map(np.nanmin, filter(lambda x: len(x) > 0, [es for (profiler, ts, te, es, ee) in log_data])))
|
|
|
|
# Normalize timing/energy data to start values of 0
|
|
return [(profiler, ts - min_t, te - min_t, es - min_e, ee - min_e) for (profiler, ts, te, es, ee) in log_data]
|
|
|
|
|
|
def process_config_dir(config_dir):
|
|
"""Process a configuration directory.
|
|
Return: [(trial, [(profiler name, [start times], [end times], [start energies], [end energies])])]
|
|
|
|
Keyword arguments:
|
|
config_dir -- the directory for this configuration - contains subdirectories for each trial
|
|
"""
|
|
return [(trial_dir, process_trial_dir(path.join(config_dir, trial_dir))) for trial_dir in os.listdir(config_dir)]
|
|
|
|
|
|
def process_logs(log_dir):
|
|
"""Process log directory.
|
|
Return: [(config, [(trial, [(profiler name, [start times], [end times], [start energies], [end energies])])])]
|
|
|
|
Keyword arguments:
|
|
log_dir -- the log directory to process - contains subdirectories for each configuration
|
|
"""
|
|
return [((config_dir.split('_')[1], process_config_dir(path.join(log_dir, config_dir))))
|
|
for config_dir in os.listdir(log_dir)]
|
|
|
|
|
|
def find_best_executions(log_dir):
|
|
"""Get the best time, energy, and power from the characterization summaries.
|
|
Return: ((config, trial, min_time), (config, trial, min_energy), (config, trial, min_power))
|
|
|
|
Keyword arguments:
|
|
results -- the results from process_logs(...).
|
|
"""
|
|
DEFAULT = ('', '', 1000000000.0)
|
|
min_time = DEFAULT
|
|
min_energy = DEFAULT
|
|
min_power = DEFAULT
|
|
for config_dir in os.listdir(log_dir):
|
|
for trial_dir in os.listdir(path.join(log_dir, config_dir)):
|
|
with open(path.join(log_dir, config_dir, trial_dir, SUMMARY_OUTPUT), "r") as s:
|
|
lines = s.readlines()
|
|
time = float(lines[SUMMARY_TIME_IDX].split(':')[1])
|
|
energy = int(lines[SUMMARY_ENERGY_IDX].split(':')[1])
|
|
power = float(lines[SUMMARY_POWER_IDX].split(':')[1])
|
|
if time < min_time[2]:
|
|
min_time = (config_dir, trial_dir, time)
|
|
if energy < min_energy[2]:
|
|
min_energy = (config_dir, trial_dir, energy)
|
|
if power < min_power:
|
|
min_power = (config_dir, trial_dir, power)
|
|
return (min_time, min_energy, min_power)
|
|
|
|
|
|
def main():
|
|
"""This script processes the log files from the "characterize.py" script and produces visualizations.
|
|
"""
|
|
# Default log directory
|
|
directory = 'heartbeat_logs'
|
|
# Default output directory
|
|
output_dir = 'plots'
|
|
# Default android
|
|
android = False
|
|
|
|
# Parsing the input of the script
|
|
parser = argparse.ArgumentParser(description="Process Heartbeat log files from characterization")
|
|
parser.add_argument("-d", "--directory",
|
|
default=directory,
|
|
help="Heartbeat log directory \"-d heartbeat_logs\"")
|
|
parser.add_argument("-o", "--output",
|
|
default=output_dir,
|
|
help="Specify the log output directory, for example \"-o plots\"")
|
|
parser.add_argument("--android",
|
|
action="store_true",
|
|
dest="android",
|
|
default=False,
|
|
help="Specify if processing results from Android")
|
|
|
|
args = parser.parse_args()
|
|
if args.directory:
|
|
directory = args.directory
|
|
if args.output:
|
|
output_dir = args.output
|
|
if args.android:
|
|
android = args.android
|
|
|
|
if not os.path.exists(directory):
|
|
print "Input directory does not exist: " + directory
|
|
sys.exit(1)
|
|
|
|
if os.path.exists(output_dir):
|
|
print "Output directory already exists: " + output_dir
|
|
sys.exit(1)
|
|
|
|
res = process_logs(directory)
|
|
|
|
if not android:
|
|
best = find_best_executions(directory)
|
|
print 'Best time:', best[0]
|
|
print 'Best energy:', best[1]
|
|
print 'Best power:', best[2]
|
|
|
|
os.makedirs(output_dir)
|
|
plot_all_raw_totals(res, output_dir)
|
|
plot_all_time_series(res, output_dir)
|
|
|
|
if __name__ == "__main__":
|
|
main()
|