gecko-dev/security/nss/gtests/ssl_gtest/ssl_ecdh_unittest.cc

754 строки
28 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <functional>
#include <memory>
#include "secerr.h"
#include "ssl.h"
#include "sslerr.h"
#include "sslproto.h"
extern "C" {
// This is not something that should make you happy.
#include "libssl_internals.h"
}
#include "gtest_utils.h"
#include "nss_scoped_ptrs.h"
#include "tls_connect.h"
#include "tls_filter.h"
#include "tls_parser.h"
namespace nss_test {
TEST_P(TlsConnectGenericPre13, ConnectEcdh) {
SetExpectedVersion(std::get<1>(GetParam()));
Reset(TlsAgent::kServerEcdhEcdsa);
DisableAllCiphers();
EnableSomeEcdhCiphers();
Connect();
CheckKeys(ssl_kea_ecdh, ssl_grp_ec_secp256r1, ssl_auth_ecdh_ecdsa,
ssl_sig_none);
}
TEST_P(TlsConnectGenericPre13, ConnectEcdhWithoutDisablingSuites) {
SetExpectedVersion(std::get<1>(GetParam()));
Reset(TlsAgent::kServerEcdhEcdsa);
EnableSomeEcdhCiphers();
Connect();
CheckKeys(ssl_kea_ecdh, ssl_grp_ec_secp256r1, ssl_auth_ecdh_ecdsa,
ssl_sig_none);
}
TEST_P(TlsConnectGeneric, ConnectEcdhe) {
Connect();
CheckKeys();
}
// If we pick a 256-bit cipher suite and use a P-384 certificate, the server
// should choose P-384 for key exchange too. Only valid for TLS == 1.2 because
// we don't have 256-bit ciphers before then and 1.3 doesn't try to couple
// DHE size to symmetric size.
TEST_P(TlsConnectTls12, ConnectEcdheP384) {
Reset(TlsAgent::kServerEcdsa384);
ConnectWithCipherSuite(TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256);
CheckKeys(ssl_kea_ecdh, ssl_grp_ec_secp384r1, ssl_auth_ecdsa,
ssl_sig_ecdsa_secp256r1_sha256);
}
TEST_P(TlsConnectGeneric, ConnectEcdheP384Client) {
EnsureTlsSetup();
const std::vector<SSLNamedGroup> groups = {ssl_grp_ec_secp384r1,
ssl_grp_ffdhe_2048};
client_->ConfigNamedGroups(groups);
server_->ConfigNamedGroups(groups);
Connect();
CheckKeys(ssl_kea_ecdh, ssl_grp_ec_secp384r1, ssl_auth_rsa_sign,
ssl_sig_rsa_pss_rsae_sha256);
}
// This causes a HelloRetryRequest in TLS 1.3. Earlier versions don't care.
TEST_P(TlsConnectGeneric, ConnectEcdheP384Server) {
EnsureTlsSetup();
auto hrr_capture = MakeTlsFilter<TlsHandshakeRecorder>(
server_, kTlsHandshakeHelloRetryRequest);
const std::vector<SSLNamedGroup> groups = {ssl_grp_ec_secp384r1};
server_->ConfigNamedGroups(groups);
Connect();
CheckKeys(ssl_kea_ecdh, ssl_grp_ec_secp384r1, ssl_auth_rsa_sign,
ssl_sig_rsa_pss_rsae_sha256);
EXPECT_EQ(version_ == SSL_LIBRARY_VERSION_TLS_1_3,
hrr_capture->buffer().len() != 0);
}
// This enables only P-256 on the client and disables it on the server.
// This test will fail when we add other groups that identify as ECDHE.
TEST_P(TlsConnectGeneric, ConnectEcdheGroupMismatch) {
EnsureTlsSetup();
const std::vector<SSLNamedGroup> client_groups = {ssl_grp_ec_secp256r1,
ssl_grp_ffdhe_2048};
const std::vector<SSLNamedGroup> server_groups = {ssl_grp_ffdhe_2048};
client_->ConfigNamedGroups(client_groups);
server_->ConfigNamedGroups(server_groups);
Connect();
CheckKeys(ssl_kea_dh, ssl_auth_rsa_sign);
}
TEST_P(TlsKeyExchangeTest, P384Priority) {
// P256, P384 and P521 are enabled. Both prefer P384.
const std::vector<SSLNamedGroup> groups = {
ssl_grp_ec_secp384r1, ssl_grp_ec_secp256r1, ssl_grp_ec_secp521r1};
EnsureKeyShareSetup();
ConfigNamedGroups(groups);
client_->DisableAllCiphers();
client_->EnableCiphersByKeyExchange(ssl_kea_ecdh);
Connect();
CheckKeys(ssl_kea_ecdh, ssl_grp_ec_secp384r1, ssl_auth_rsa_sign,
ssl_sig_rsa_pss_rsae_sha256);
std::vector<SSLNamedGroup> shares = {ssl_grp_ec_secp384r1};
CheckKEXDetails(groups, shares);
}
TEST_P(TlsKeyExchangeTest, DuplicateGroupConfig) {
const std::vector<SSLNamedGroup> groups = {
ssl_grp_ec_secp384r1, ssl_grp_ec_secp384r1, ssl_grp_ec_secp384r1,
ssl_grp_ec_secp256r1, ssl_grp_ec_secp256r1};
EnsureKeyShareSetup();
ConfigNamedGroups(groups);
client_->DisableAllCiphers();
client_->EnableCiphersByKeyExchange(ssl_kea_ecdh);
Connect();
CheckKeys(ssl_kea_ecdh, ssl_grp_ec_secp384r1, ssl_auth_rsa_sign,
ssl_sig_rsa_pss_rsae_sha256);
std::vector<SSLNamedGroup> shares = {ssl_grp_ec_secp384r1};
std::vector<SSLNamedGroup> expectedGroups = {ssl_grp_ec_secp384r1,
ssl_grp_ec_secp256r1};
CheckKEXDetails(expectedGroups, shares);
}
TEST_P(TlsKeyExchangeTest, P384PriorityDHEnabled) {
// P256, P384, P521, and FFDHE2048 are enabled. Both prefer P384.
const std::vector<SSLNamedGroup> groups = {
ssl_grp_ec_secp384r1, ssl_grp_ffdhe_2048, ssl_grp_ec_secp256r1,
ssl_grp_ec_secp521r1};
EnsureKeyShareSetup();
ConfigNamedGroups(groups);
Connect();
CheckKeys(ssl_kea_ecdh, ssl_grp_ec_secp384r1, ssl_auth_rsa_sign,
ssl_sig_rsa_pss_rsae_sha256);
if (version_ >= SSL_LIBRARY_VERSION_TLS_1_3) {
std::vector<SSLNamedGroup> shares = {ssl_grp_ec_secp384r1};
CheckKEXDetails(groups, shares);
} else {
std::vector<SSLNamedGroup> oldtlsgroups = {
ssl_grp_ec_secp384r1, ssl_grp_ec_secp256r1, ssl_grp_ec_secp521r1};
CheckKEXDetails(oldtlsgroups, std::vector<SSLNamedGroup>());
}
}
TEST_P(TlsConnectGenericPre13, P384PriorityOnServer) {
EnsureTlsSetup();
client_->DisableAllCiphers();
client_->EnableCiphersByKeyExchange(ssl_kea_ecdh);
// The server prefers P384. It has to win.
const std::vector<SSLNamedGroup> server_groups = {
ssl_grp_ec_secp384r1, ssl_grp_ec_secp256r1, ssl_grp_ec_secp521r1};
server_->ConfigNamedGroups(server_groups);
Connect();
CheckKeys(ssl_kea_ecdh, ssl_grp_ec_secp384r1, ssl_auth_rsa_sign,
ssl_sig_rsa_pss_rsae_sha256);
}
TEST_P(TlsConnectGenericPre13, P384PriorityFromModelSocket) {
EnsureModelSockets();
/* Both prefer P384, set on the model socket. */
const std::vector<SSLNamedGroup> groups = {
ssl_grp_ec_secp384r1, ssl_grp_ec_secp256r1, ssl_grp_ec_secp521r1,
ssl_grp_ffdhe_2048};
client_model_->ConfigNamedGroups(groups);
server_model_->ConfigNamedGroups(groups);
Connect();
CheckKeys(ssl_kea_ecdh, ssl_grp_ec_secp384r1, ssl_auth_rsa_sign,
ssl_sig_rsa_pss_rsae_sha256);
}
class TlsKeyExchangeGroupCapture : public TlsHandshakeFilter {
public:
TlsKeyExchangeGroupCapture(const std::shared_ptr<TlsAgent> &a)
: TlsHandshakeFilter(a, {kTlsHandshakeServerKeyExchange}),
group_(ssl_grp_none) {}
SSLNamedGroup group() const { return group_; }
protected:
virtual PacketFilter::Action FilterHandshake(const HandshakeHeader &header,
const DataBuffer &input,
DataBuffer *output) {
uint32_t value = 0;
EXPECT_TRUE(input.Read(0, 1, &value));
EXPECT_EQ(3U, value) << "curve type has to be 3";
EXPECT_TRUE(input.Read(1, 2, &value));
group_ = static_cast<SSLNamedGroup>(value);
return KEEP;
}
private:
SSLNamedGroup group_;
};
// If we strip the client's supported groups extension, the server should assume
// P-256 is supported by the client (<= 1.2 only).
TEST_P(TlsConnectGenericPre13, DropSupportedGroupExtensionP256) {
EnsureTlsSetup();
MakeTlsFilter<TlsExtensionDropper>(client_, ssl_supported_groups_xtn);
auto group_capture = MakeTlsFilter<TlsKeyExchangeGroupCapture>(server_);
ConnectExpectAlert(server_, kTlsAlertDecryptError);
client_->CheckErrorCode(SSL_ERROR_DECRYPT_ERROR_ALERT);
server_->CheckErrorCode(SSL_ERROR_BAD_HANDSHAKE_HASH_VALUE);
EXPECT_EQ(ssl_grp_ec_secp256r1, group_capture->group());
}
// Supported groups is mandatory in TLS 1.3.
TEST_P(TlsConnectTls13, DropSupportedGroupExtension) {
EnsureTlsSetup();
MakeTlsFilter<TlsExtensionDropper>(client_, ssl_supported_groups_xtn);
ConnectExpectAlert(server_, kTlsAlertMissingExtension);
client_->CheckErrorCode(SSL_ERROR_MISSING_EXTENSION_ALERT);
server_->CheckErrorCode(SSL_ERROR_MISSING_SUPPORTED_GROUPS_EXTENSION);
}
// If we only have a lame group, we fall back to static RSA.
TEST_P(TlsConnectGenericPre13, UseLameGroup) {
const std::vector<SSLNamedGroup> groups = {ssl_grp_ec_secp192r1};
client_->ConfigNamedGroups(groups);
server_->ConfigNamedGroups(groups);
Connect();
CheckKeys(ssl_kea_rsa, ssl_grp_none, ssl_auth_rsa_decrypt, ssl_sig_none);
}
// In TLS 1.3, we can't generate the ClientHello.
TEST_P(TlsConnectTls13, UseLameGroup) {
const std::vector<SSLNamedGroup> groups = {ssl_grp_ec_sect283k1};
client_->ConfigNamedGroups(groups);
server_->ConfigNamedGroups(groups);
client_->StartConnect();
client_->Handshake();
client_->CheckErrorCode(SSL_ERROR_NO_CIPHERS_SUPPORTED);
}
TEST_P(TlsConnectStreamPre13, ConfiguredGroupsRenegotiate) {
EnsureTlsSetup();
client_->DisableAllCiphers();
client_->EnableCiphersByKeyExchange(ssl_kea_ecdh);
const std::vector<SSLNamedGroup> client_groups = {ssl_grp_ec_secp256r1};
const std::vector<SSLNamedGroup> server_groups = {ssl_grp_ec_secp256r1,
ssl_grp_ec_secp256r1};
client_->ConfigNamedGroups(client_groups);
server_->ConfigNamedGroups(server_groups);
Connect();
CheckKeys(ssl_kea_ecdh, ssl_grp_ec_secp256r1, ssl_auth_rsa_sign,
ssl_sig_rsa_pss_rsae_sha256);
CheckConnected();
// The renegotiation has to use the same preferences as the original session.
server_->PrepareForRenegotiate();
client_->StartRenegotiate();
Handshake();
CheckKeys(ssl_kea_ecdh, ssl_grp_ec_secp256r1, ssl_auth_rsa_sign,
ssl_sig_rsa_pss_rsae_sha256);
}
TEST_P(TlsKeyExchangeTest, Curve25519) {
Reset(TlsAgent::kServerEcdsa256);
const std::vector<SSLNamedGroup> groups = {
ssl_grp_ec_curve25519, ssl_grp_ec_secp256r1, ssl_grp_ec_secp521r1};
EnsureKeyShareSetup();
ConfigNamedGroups(groups);
Connect();
CheckKeys(ssl_kea_ecdh, ssl_grp_ec_curve25519, ssl_auth_ecdsa,
ssl_sig_ecdsa_secp256r1_sha256);
const std::vector<SSLNamedGroup> shares = {ssl_grp_ec_curve25519};
CheckKEXDetails(groups, shares);
}
TEST_P(TlsConnectGenericPre13, GroupPreferenceServerPriority) {
EnsureTlsSetup();
client_->DisableAllCiphers();
client_->EnableCiphersByKeyExchange(ssl_kea_ecdh);
// The client prefers P256 while the server prefers 25519.
// The server's preference has to win.
const std::vector<SSLNamedGroup> client_groups = {ssl_grp_ec_secp256r1,
ssl_grp_ec_curve25519};
const std::vector<SSLNamedGroup> server_groups = {ssl_grp_ec_curve25519,
ssl_grp_ec_secp256r1};
client_->ConfigNamedGroups(client_groups);
server_->ConfigNamedGroups(server_groups);
Connect();
CheckKeys(ssl_kea_ecdh, ssl_grp_ec_curve25519, ssl_auth_rsa_sign,
ssl_sig_rsa_pss_rsae_sha256);
}
#ifndef NSS_DISABLE_TLS_1_3
TEST_P(TlsKeyExchangeTest13, Curve25519P256EqualPriorityClient13) {
EnsureKeyShareSetup();
// The client sends a P256 key share while the server prefers 25519.
// We have to accept P256 without retry.
const std::vector<SSLNamedGroup> client_groups = {ssl_grp_ec_secp256r1,
ssl_grp_ec_curve25519};
const std::vector<SSLNamedGroup> server_groups = {ssl_grp_ec_curve25519,
ssl_grp_ec_secp256r1};
client_->ConfigNamedGroups(client_groups);
server_->ConfigNamedGroups(server_groups);
Connect();
CheckKeys(ssl_kea_ecdh, ssl_grp_ec_secp256r1, ssl_auth_rsa_sign,
ssl_sig_rsa_pss_rsae_sha256);
const std::vector<SSLNamedGroup> shares = {ssl_grp_ec_secp256r1};
CheckKEXDetails(client_groups, shares);
}
TEST_P(TlsKeyExchangeTest13, Curve25519P256EqualPriorityServer13) {
EnsureKeyShareSetup();
// The client sends a 25519 key share while the server prefers P256.
// We have to accept 25519 without retry.
const std::vector<SSLNamedGroup> client_groups = {ssl_grp_ec_curve25519,
ssl_grp_ec_secp256r1};
const std::vector<SSLNamedGroup> server_groups = {ssl_grp_ec_secp256r1,
ssl_grp_ec_curve25519};
client_->ConfigNamedGroups(client_groups);
server_->ConfigNamedGroups(server_groups);
Connect();
CheckKeys(ssl_kea_ecdh, ssl_grp_ec_curve25519, ssl_auth_rsa_sign,
ssl_sig_rsa_pss_rsae_sha256);
const std::vector<SSLNamedGroup> shares = {ssl_grp_ec_curve25519};
CheckKEXDetails(client_groups, shares);
}
TEST_P(TlsKeyExchangeTest13, EqualPriorityTestRetryECServer13) {
EnsureKeyShareSetup();
// The client sends a 25519 key share while the server prefers P256.
// The server prefers P-384 over x25519, so it must not consider P-256 and
// x25519 to be equivalent. It will therefore request a P-256 share
// with a HelloRetryRequest.
const std::vector<SSLNamedGroup> client_groups = {
ssl_grp_ec_curve25519, ssl_grp_ec_secp256r1, ssl_grp_ec_secp384r1};
const std::vector<SSLNamedGroup> server_groups = {
ssl_grp_ec_secp256r1, ssl_grp_ec_secp384r1, ssl_grp_ec_curve25519};
client_->ConfigNamedGroups(client_groups);
server_->ConfigNamedGroups(server_groups);
Connect();
CheckKeys(ssl_kea_ecdh, ssl_grp_ec_secp256r1, ssl_auth_rsa_sign,
ssl_sig_rsa_pss_rsae_sha256);
const std::vector<SSLNamedGroup> shares = {ssl_grp_ec_curve25519};
CheckKEXDetails(client_groups, shares, ssl_grp_ec_secp256r1);
}
TEST_P(TlsKeyExchangeTest13, NotEqualPriorityWithIntermediateGroup13) {
EnsureKeyShareSetup();
// The client sends a 25519 key share while the server prefers P256.
// The server prefers ffdhe_2048 over x25519, so it must not consider the
// P-256 and x25519 to be equivalent. It will therefore request a P-256 share
// with a HelloRetryRequest.
const std::vector<SSLNamedGroup> client_groups = {
ssl_grp_ec_curve25519, ssl_grp_ec_secp256r1, ssl_grp_ffdhe_2048};
const std::vector<SSLNamedGroup> server_groups = {
ssl_grp_ec_secp256r1, ssl_grp_ffdhe_2048, ssl_grp_ec_curve25519};
client_->ConfigNamedGroups(client_groups);
server_->ConfigNamedGroups(server_groups);
Connect();
CheckKeys(ssl_kea_ecdh, ssl_grp_ec_secp256r1, ssl_auth_rsa_sign,
ssl_sig_rsa_pss_rsae_sha256);
const std::vector<SSLNamedGroup> shares = {ssl_grp_ec_curve25519};
CheckKEXDetails(client_groups, shares, ssl_grp_ec_secp256r1);
}
TEST_P(TlsKeyExchangeTest13,
NotEqualPriorityWithUnsupportedFFIntermediateGroup13) {
EnsureKeyShareSetup();
// As in the previous test, the server prefers ffdhe_2048. Thus, even though
// the client doesn't support this group, the server must not regard x25519 as
// equivalent to P-256.
const std::vector<SSLNamedGroup> client_groups = {ssl_grp_ec_curve25519,
ssl_grp_ec_secp256r1};
const std::vector<SSLNamedGroup> server_groups = {
ssl_grp_ec_secp256r1, ssl_grp_ffdhe_2048, ssl_grp_ec_curve25519};
client_->ConfigNamedGroups(client_groups);
server_->ConfigNamedGroups(server_groups);
Connect();
CheckKeys(ssl_kea_ecdh, ssl_grp_ec_secp256r1, ssl_auth_rsa_sign,
ssl_sig_rsa_pss_rsae_sha256);
const std::vector<SSLNamedGroup> shares = {ssl_grp_ec_curve25519};
CheckKEXDetails(client_groups, shares, ssl_grp_ec_secp256r1);
}
TEST_P(TlsKeyExchangeTest13,
NotEqualPriorityWithUnsupportedECIntermediateGroup13) {
EnsureKeyShareSetup();
// As in the previous test, the server prefers P-384. Thus, even though
// the client doesn't support this group, the server must not regard x25519 as
// equivalent to P-256. The server sends a HelloRetryRequest.
const std::vector<SSLNamedGroup> client_groups = {ssl_grp_ec_curve25519,
ssl_grp_ec_secp256r1};
const std::vector<SSLNamedGroup> server_groups = {
ssl_grp_ec_secp256r1, ssl_grp_ec_secp384r1, ssl_grp_ec_curve25519};
client_->ConfigNamedGroups(client_groups);
server_->ConfigNamedGroups(server_groups);
Connect();
CheckKeys(ssl_kea_ecdh, ssl_grp_ec_secp256r1, ssl_auth_rsa_sign,
ssl_sig_rsa_pss_rsae_sha256);
const std::vector<SSLNamedGroup> shares = {ssl_grp_ec_curve25519};
CheckKEXDetails(client_groups, shares, ssl_grp_ec_secp256r1);
}
TEST_P(TlsKeyExchangeTest13, EqualPriority13) {
EnsureKeyShareSetup();
// The client sends a 25519 key share while the server prefers P256.
// We have to accept 25519 without retry because it's considered equivalent to
// P256 by the server.
const std::vector<SSLNamedGroup> client_groups = {
ssl_grp_ec_curve25519, ssl_grp_ffdhe_2048, ssl_grp_ec_secp256r1};
const std::vector<SSLNamedGroup> server_groups = {ssl_grp_ec_secp256r1,
ssl_grp_ec_curve25519};
client_->ConfigNamedGroups(client_groups);
server_->ConfigNamedGroups(server_groups);
Connect();
CheckKeys();
const std::vector<SSLNamedGroup> shares = {ssl_grp_ec_curve25519};
CheckKEXDetails(client_groups, shares);
}
#endif
TEST_P(TlsConnectGeneric, P256ClientAndCurve25519Server) {
EnsureTlsSetup();
client_->DisableAllCiphers();
client_->EnableCiphersByKeyExchange(ssl_kea_ecdh);
// The client sends a P256 key share while the server prefers 25519.
const std::vector<SSLNamedGroup> client_groups = {ssl_grp_ec_secp256r1};
const std::vector<SSLNamedGroup> server_groups = {ssl_grp_ec_curve25519};
client_->ConfigNamedGroups(client_groups);
server_->ConfigNamedGroups(server_groups);
ConnectExpectAlert(server_, kTlsAlertHandshakeFailure);
client_->CheckErrorCode(SSL_ERROR_NO_CYPHER_OVERLAP);
server_->CheckErrorCode(SSL_ERROR_NO_CYPHER_OVERLAP);
}
TEST_P(TlsKeyExchangeTest13, MultipleClientShares) {
EnsureKeyShareSetup();
// The client sends 25519 and P256 key shares. The server prefers P256,
// which must be chosen here.
const std::vector<SSLNamedGroup> client_groups = {ssl_grp_ec_curve25519,
ssl_grp_ec_secp256r1};
const std::vector<SSLNamedGroup> server_groups = {ssl_grp_ec_secp256r1,
ssl_grp_ec_curve25519};
client_->ConfigNamedGroups(client_groups);
server_->ConfigNamedGroups(server_groups);
// Generate a key share on the client for both curves.
EXPECT_EQ(SECSuccess, SSL_SendAdditionalKeyShares(client_->ssl_fd(), 1));
Connect();
// The server would accept 25519 but its preferred group (P256) has to win.
CheckKeys(ssl_kea_ecdh, ssl_grp_ec_secp256r1, ssl_auth_rsa_sign,
ssl_sig_rsa_pss_rsae_sha256);
const std::vector<SSLNamedGroup> shares = {ssl_grp_ec_curve25519,
ssl_grp_ec_secp256r1};
CheckKEXDetails(client_groups, shares);
}
// Replace the point in the client key exchange message with an empty one
class ECCClientKEXFilter : public TlsHandshakeFilter {
public:
ECCClientKEXFilter(const std::shared_ptr<TlsAgent> &client)
: TlsHandshakeFilter(client, {kTlsHandshakeClientKeyExchange}) {}
protected:
virtual PacketFilter::Action FilterHandshake(const HandshakeHeader &header,
const DataBuffer &input,
DataBuffer *output) {
// Replace the client key exchange message with an empty point
output->Allocate(1);
output->Write(0, 0U, 1); // set point length 0
return CHANGE;
}
};
// Replace the point in the server key exchange message with an empty one
class ECCServerKEXFilter : public TlsHandshakeFilter {
public:
ECCServerKEXFilter(const std::shared_ptr<TlsAgent> &server)
: TlsHandshakeFilter(server, {kTlsHandshakeServerKeyExchange}) {}
protected:
virtual PacketFilter::Action FilterHandshake(const HandshakeHeader &header,
const DataBuffer &input,
DataBuffer *output) {
// Replace the server key exchange message with an empty point
output->Allocate(4);
output->Write(0, 3U, 1); // named curve
uint32_t curve = 0;
EXPECT_TRUE(input.Read(1, 2, &curve)); // get curve id
output->Write(1, curve, 2); // write curve id
output->Write(3, 0U, 1); // point length 0
return CHANGE;
}
};
TEST_P(TlsConnectGenericPre13, ConnectECDHEmptyServerPoint) {
MakeTlsFilter<ECCServerKEXFilter>(server_);
ConnectExpectAlert(client_, kTlsAlertIllegalParameter);
client_->CheckErrorCode(SSL_ERROR_RX_MALFORMED_SERVER_KEY_EXCH);
}
TEST_P(TlsConnectGenericPre13, ConnectECDHEmptyClientPoint) {
MakeTlsFilter<ECCClientKEXFilter>(client_);
ConnectExpectAlert(server_, kTlsAlertIllegalParameter);
server_->CheckErrorCode(SSL_ERROR_RX_MALFORMED_CLIENT_KEY_EXCH);
}
// Damage ECParams/ECPoint of a SKE.
class ECCServerKEXDamager : public TlsHandshakeFilter {
public:
ECCServerKEXDamager(const std::shared_ptr<TlsAgent> &server, ECType ec_type,
SSLNamedGroup named_curve)
: TlsHandshakeFilter(server, {kTlsHandshakeServerKeyExchange}),
ec_type_(ec_type),
named_curve_(named_curve) {}
protected:
virtual PacketFilter::Action FilterHandshake(const HandshakeHeader &header,
const DataBuffer &input,
DataBuffer *output) {
size_t offset = 0;
output->Allocate(5);
offset = output->Write(offset, ec_type_, 1);
offset = output->Write(offset, named_curve_, 2);
// Write a point with fmt != EC_POINT_FORM_UNCOMPRESSED.
offset = output->Write(offset, 1U, 1);
(void)output->Write(offset, 0x02, 1); // EC_POINT_FORM_COMPRESSED_Y0
return CHANGE;
}
private:
ECType ec_type_;
SSLNamedGroup named_curve_;
};
TEST_P(TlsConnectGenericPre13, ConnectUnsupportedCurveType) {
EnsureTlsSetup();
client_->DisableAllCiphers();
client_->EnableCiphersByKeyExchange(ssl_kea_ecdh);
MakeTlsFilter<ECCServerKEXDamager>(server_, ec_type_explicitPrime,
ssl_grp_none);
ConnectExpectAlert(client_, kTlsAlertHandshakeFailure);
client_->CheckErrorCode(SEC_ERROR_UNSUPPORTED_ELLIPTIC_CURVE);
}
TEST_P(TlsConnectGenericPre13, ConnectUnsupportedCurve) {
EnsureTlsSetup();
client_->DisableAllCiphers();
client_->EnableCiphersByKeyExchange(ssl_kea_ecdh);
MakeTlsFilter<ECCServerKEXDamager>(server_, ec_type_named,
ssl_grp_ffdhe_2048);
ConnectExpectAlert(client_, kTlsAlertHandshakeFailure);
client_->CheckErrorCode(SEC_ERROR_UNSUPPORTED_ELLIPTIC_CURVE);
}
TEST_P(TlsConnectGenericPre13, ConnectUnsupportedPointFormat) {
EnsureTlsSetup();
client_->DisableAllCiphers();
client_->EnableCiphersByKeyExchange(ssl_kea_ecdh);
MakeTlsFilter<ECCServerKEXDamager>(server_, ec_type_named,
ssl_grp_ec_secp256r1);
ConnectExpectAlert(client_, kTlsAlertHandshakeFailure);
client_->CheckErrorCode(SEC_ERROR_UNSUPPORTED_EC_POINT_FORM);
}
// Replace SignatureAndHashAlgorithm of a SKE.
class ECCServerKEXSigAlgReplacer : public TlsHandshakeFilter {
public:
ECCServerKEXSigAlgReplacer(const std::shared_ptr<TlsAgent> &server,
SSLSignatureScheme sig_scheme)
: TlsHandshakeFilter(server, {kTlsHandshakeServerKeyExchange}),
sig_scheme_(sig_scheme) {}
protected:
virtual PacketFilter::Action FilterHandshake(const HandshakeHeader &header,
const DataBuffer &input,
DataBuffer *output) {
*output = input;
uint32_t point_len;
EXPECT_TRUE(output->Read(3, 1, &point_len));
output->Write(4 + point_len, sig_scheme_, 2);
return CHANGE;
}
private:
SSLSignatureScheme sig_scheme_;
};
TEST_P(TlsConnectTls12, ConnectUnsupportedSigAlg) {
EnsureTlsSetup();
client_->DisableAllCiphers();
client_->EnableCiphersByKeyExchange(ssl_kea_ecdh);
MakeTlsFilter<ECCServerKEXSigAlgReplacer>(server_, ssl_sig_none);
ConnectExpectAlert(client_, kTlsAlertIllegalParameter);
client_->CheckErrorCode(SSL_ERROR_UNSUPPORTED_SIGNATURE_ALGORITHM);
}
TEST_P(TlsConnectTls12, ConnectIncorrectSigAlg) {
EnsureTlsSetup();
client_->DisableAllCiphers();
client_->EnableCiphersByKeyExchange(ssl_kea_ecdh);
MakeTlsFilter<ECCServerKEXSigAlgReplacer>(server_,
ssl_sig_ecdsa_secp256r1_sha256);
ConnectExpectAlert(client_, kTlsAlertIllegalParameter);
client_->CheckErrorCode(SSL_ERROR_INCORRECT_SIGNATURE_ALGORITHM);
}
static void CheckSkeSigScheme(
std::shared_ptr<TlsHandshakeRecorder> &capture_ske,
uint16_t expected_scheme) {
TlsParser parser(capture_ske->buffer());
uint32_t tmp = 0;
EXPECT_TRUE(parser.Read(&tmp, 1)) << " read curve_type";
EXPECT_EQ(3U, tmp) << "curve type has to be 3";
EXPECT_TRUE(parser.Skip(2)) << " read namedcurve";
EXPECT_TRUE(parser.SkipVariable(1)) << " read public";
EXPECT_TRUE(parser.Read(&tmp, 2)) << " read sig_scheme";
EXPECT_EQ(expected_scheme, static_cast<uint16_t>(tmp));
}
TEST_P(TlsConnectTls12, ConnectSigAlgEnabledByPolicy) {
EnsureTlsSetup();
client_->DisableAllCiphers();
client_->EnableCiphersByKeyExchange(ssl_kea_ecdh);
const std::vector<SSLSignatureScheme> schemes = {ssl_sig_rsa_pkcs1_sha1,
ssl_sig_rsa_pkcs1_sha384};
client_->SetSignatureSchemes(schemes.data(), schemes.size());
server_->SetSignatureSchemes(schemes.data(), schemes.size());
auto capture_ske = MakeTlsFilter<TlsHandshakeRecorder>(
server_, kTlsHandshakeServerKeyExchange);
StartConnect();
client_->Handshake(); // Send ClientHello
// Enable SHA-1 by policy.
SECStatus rv = NSS_SetAlgorithmPolicy(SEC_OID_SHA1, NSS_USE_ALG_IN_SSL_KX, 0);
ASSERT_EQ(SECSuccess, rv);
rv = NSS_SetAlgorithmPolicy(SEC_OID_APPLY_SSL_POLICY, NSS_USE_POLICY_IN_SSL,
0);
ASSERT_EQ(SECSuccess, rv);
Handshake(); // Remainder of handshake
// The server should now report that it is connected
EXPECT_EQ(TlsAgent::STATE_CONNECTED, server_->state());
CheckSkeSigScheme(capture_ske, ssl_sig_rsa_pkcs1_sha1);
}
TEST_P(TlsConnectTls12, ConnectSigAlgDisabledByPolicy) {
EnsureTlsSetup();
client_->DisableAllCiphers();
client_->EnableCiphersByKeyExchange(ssl_kea_ecdh);
const std::vector<SSLSignatureScheme> schemes = {ssl_sig_rsa_pkcs1_sha1,
ssl_sig_rsa_pkcs1_sha384};
client_->SetSignatureSchemes(schemes.data(), schemes.size());
server_->SetSignatureSchemes(schemes.data(), schemes.size());
auto capture_ske = MakeTlsFilter<TlsHandshakeRecorder>(
server_, kTlsHandshakeServerKeyExchange);
StartConnect();
client_->Handshake(); // Send ClientHello
// Disable SHA-1 by policy.
SECStatus rv = NSS_SetAlgorithmPolicy(SEC_OID_SHA1, 0, NSS_USE_ALG_IN_SSL_KX);
ASSERT_EQ(SECSuccess, rv);
rv = NSS_SetAlgorithmPolicy(SEC_OID_APPLY_SSL_POLICY, NSS_USE_POLICY_IN_SSL,
0);
ASSERT_EQ(SECSuccess, rv);
Handshake(); // Remainder of handshake
// The server should now report that it is connected
EXPECT_EQ(TlsAgent::STATE_CONNECTED, server_->state());
CheckSkeSigScheme(capture_ske, ssl_sig_rsa_pkcs1_sha384);
}
INSTANTIATE_TEST_CASE_P(KeyExchangeTest, TlsKeyExchangeTest,
::testing::Combine(TlsConnectTestBase::kTlsVariantsAll,
TlsConnectTestBase::kTlsV11Plus));
#ifndef NSS_DISABLE_TLS_1_3
INSTANTIATE_TEST_CASE_P(KeyExchangeTest, TlsKeyExchangeTest13,
::testing::Combine(TlsConnectTestBase::kTlsVariantsAll,
TlsConnectTestBase::kTlsV13));
#endif
} // namespace nss_test