gecko-dev/js/public/HashTable.h

1917 строки
61 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef js_HashTable_h
#define js_HashTable_h
#include "mozilla/Alignment.h"
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/Casting.h"
#include "mozilla/HashFunctions.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/Move.h"
#include "mozilla/Opaque.h"
#include "mozilla/PodOperations.h"
#include "mozilla/ReentrancyGuard.h"
#include "mozilla/TemplateLib.h"
#include "mozilla/TypeTraits.h"
#include "mozilla/UniquePtr.h"
#include "js/Utility.h"
namespace js {
class TempAllocPolicy;
template <class> struct DefaultHasher;
template <class, class> class HashMapEntry;
namespace detail {
template <class T> class HashTableEntry;
template <class T, class HashPolicy, class AllocPolicy> class HashTable;
} // namespace detail
/*****************************************************************************/
// The "generation" of a hash table is an opaque value indicating the state of
// modification of the hash table through its lifetime. If the generation of
// a hash table compares equal at times T1 and T2, then lookups in the hash
// table, pointers to (or into) hash table entries, etc. at time T1 are valid
// at time T2. If the generation compares unequal, these computations are all
// invalid and must be performed again to be used.
//
// Generations are meaningfully comparable only with respect to a single hash
// table. It's always nonsensical to compare the generation of distinct hash
// tables H1 and H2.
using Generation = mozilla::Opaque<uint64_t>;
// A JS-friendly, STL-like container providing a hash-based map from keys to
// values. In particular, HashMap calls constructors and destructors of all
// objects added so non-PODs may be used safely.
//
// Key/Value requirements:
// - movable, destructible, assignable
// HashPolicy requirements:
// - see Hash Policy section below
// AllocPolicy:
// - see jsalloc.h
//
// Note:
// - HashMap is not reentrant: Key/Value/HashPolicy/AllocPolicy members
// called by HashMap must not call back into the same HashMap object.
// - Due to the lack of exception handling, the user must call |init()|.
template <class Key,
class Value,
class HashPolicy = DefaultHasher<Key>,
class AllocPolicy = TempAllocPolicy>
class HashMap
{
typedef HashMapEntry<Key, Value> TableEntry;
struct MapHashPolicy : HashPolicy
{
using Base = HashPolicy;
typedef Key KeyType;
static const Key& getKey(TableEntry& e) { return e.key(); }
static void setKey(TableEntry& e, Key& k) { HashPolicy::rekey(e.mutableKey(), k); }
};
typedef detail::HashTable<TableEntry, MapHashPolicy, AllocPolicy> Impl;
Impl impl;
public:
typedef typename HashPolicy::Lookup Lookup;
typedef TableEntry Entry;
// HashMap construction is fallible (due to OOM); thus the user must call
// init after constructing a HashMap and check the return value.
explicit HashMap(AllocPolicy a = AllocPolicy()) : impl(a) {}
MOZ_MUST_USE bool init(uint32_t len = 16) { return impl.init(len); }
bool initialized() const { return impl.initialized(); }
// Return whether the given lookup value is present in the map. E.g.:
//
// typedef HashMap<int,char> HM;
// HM h;
// if (HM::Ptr p = h.lookup(3)) {
// const HM::Entry& e = *p; // p acts like a pointer to Entry
// assert(p->key == 3); // Entry contains the key
// char val = p->value; // and value
// }
//
// Also see the definition of Ptr in HashTable above (with T = Entry).
typedef typename Impl::Ptr Ptr;
MOZ_ALWAYS_INLINE Ptr lookup(const Lookup& l) const { return impl.lookup(l); }
// Like lookup, but does not assert if two threads call lookup at the same
// time. Only use this method when none of the threads will modify the map.
MOZ_ALWAYS_INLINE Ptr readonlyThreadsafeLookup(const Lookup& l) const {
return impl.readonlyThreadsafeLookup(l);
}
// Assuming |p.found()|, remove |*p|.
void remove(Ptr p) { impl.remove(p); }
// Like |lookup(l)|, but on miss, |p = lookupForAdd(l)| allows efficient
// insertion of Key |k| (where |HashPolicy::match(k,l) == true|) using
// |add(p,k,v)|. After |add(p,k,v)|, |p| points to the new Entry. E.g.:
//
// typedef HashMap<int,char> HM;
// HM h;
// HM::AddPtr p = h.lookupForAdd(3);
// if (!p) {
// if (!h.add(p, 3, 'a'))
// return false;
// }
// const HM::Entry& e = *p; // p acts like a pointer to Entry
// assert(p->key == 3); // Entry contains the key
// char val = p->value; // and value
//
// Also see the definition of AddPtr in HashTable above (with T = Entry).
//
// N.B. The caller must ensure that no mutating hash table operations
// occur between a pair of |lookupForAdd| and |add| calls. To avoid
// looking up the key a second time, the caller may use the more efficient
// relookupOrAdd method. This method reuses part of the hashing computation
// to more efficiently insert the key if it has not been added. For
// example, a mutation-handling version of the previous example:
//
// HM::AddPtr p = h.lookupForAdd(3);
// if (!p) {
// call_that_may_mutate_h();
// if (!h.relookupOrAdd(p, 3, 'a'))
// return false;
// }
// const HM::Entry& e = *p;
// assert(p->key == 3);
// char val = p->value;
typedef typename Impl::AddPtr AddPtr;
MOZ_ALWAYS_INLINE AddPtr lookupForAdd(const Lookup& l) const {
return impl.lookupForAdd(l);
}
template<typename KeyInput, typename ValueInput>
MOZ_MUST_USE bool add(AddPtr& p, KeyInput&& k, ValueInput&& v) {
return impl.add(p,
mozilla::Forward<KeyInput>(k),
mozilla::Forward<ValueInput>(v));
}
template<typename KeyInput>
MOZ_MUST_USE bool add(AddPtr& p, KeyInput&& k) {
return impl.add(p, mozilla::Forward<KeyInput>(k), Value());
}
template<typename KeyInput, typename ValueInput>
MOZ_MUST_USE bool relookupOrAdd(AddPtr& p, KeyInput&& k, ValueInput&& v) {
return impl.relookupOrAdd(p, k,
mozilla::Forward<KeyInput>(k),
mozilla::Forward<ValueInput>(v));
}
// |all()| returns a Range containing |count()| elements. E.g.:
//
// typedef HashMap<int,char> HM;
// HM h;
// for (HM::Range r = h.all(); !r.empty(); r.popFront())
// char c = r.front().value();
//
// Also see the definition of Range in HashTable above (with T = Entry).
typedef typename Impl::Range Range;
Range all() const { return impl.all(); }
// Typedef for the enumeration class. An Enum may be used to examine and
// remove table entries:
//
// typedef HashMap<int,char> HM;
// HM s;
// for (HM::Enum e(s); !e.empty(); e.popFront())
// if (e.front().value() == 'l')
// e.removeFront();
//
// Table resize may occur in Enum's destructor. Also see the definition of
// Enum in HashTable above (with T = Entry).
typedef typename Impl::Enum Enum;
// Remove all entries. This does not shrink the table. For that consider
// using the finish() method.
void clear() { impl.clear(); }
// Remove all entries. Unlike clear() this method tries to shrink the table.
// Unlike finish() it does not require the map to be initialized again.
void clearAndShrink() { impl.clearAndShrink(); }
// Remove all the entries and release all internal buffers. The map must
// be initialized again before any use.
void finish() { impl.finish(); }
// Does the table contain any entries?
bool empty() const { return impl.empty(); }
// Number of live elements in the map.
uint32_t count() const { return impl.count(); }
// Total number of allocation in the dynamic table. Note: resize will
// happen well before count() == capacity().
size_t capacity() const { return impl.capacity(); }
// Don't just call |impl.sizeOfExcludingThis()| because there's no
// guarantee that |impl| is the first field in HashMap.
size_t sizeOfExcludingThis(mozilla::MallocSizeOf mallocSizeOf) const {
return impl.sizeOfExcludingThis(mallocSizeOf);
}
size_t sizeOfIncludingThis(mozilla::MallocSizeOf mallocSizeOf) const {
return mallocSizeOf(this) + impl.sizeOfExcludingThis(mallocSizeOf);
}
Generation generation() const {
return impl.generation();
}
/************************************************** Shorthand operations */
bool has(const Lookup& l) const {
return impl.lookup(l).found();
}
// Overwrite existing value with v. Return false on oom.
template<typename KeyInput, typename ValueInput>
MOZ_MUST_USE bool put(KeyInput&& k, ValueInput&& v) {
AddPtr p = lookupForAdd(k);
if (p) {
p->value() = mozilla::Forward<ValueInput>(v);
return true;
}
return add(p, mozilla::Forward<KeyInput>(k), mozilla::Forward<ValueInput>(v));
}
// Like put, but assert that the given key is not already present.
template<typename KeyInput, typename ValueInput>
MOZ_MUST_USE bool putNew(KeyInput&& k, ValueInput&& v) {
return impl.putNew(k, mozilla::Forward<KeyInput>(k), mozilla::Forward<ValueInput>(v));
}
// Only call this to populate an empty map after reserving space with init().
template<typename KeyInput, typename ValueInput>
void putNewInfallible(KeyInput&& k, ValueInput&& v) {
impl.putNewInfallible(k, mozilla::Forward<KeyInput>(k), mozilla::Forward<ValueInput>(v));
}
// Add (k,defaultValue) if |k| is not found. Return a false-y Ptr on oom.
Ptr lookupWithDefault(const Key& k, const Value& defaultValue) {
AddPtr p = lookupForAdd(k);
if (p)
return p;
bool ok = add(p, k, defaultValue);
MOZ_ASSERT_IF(!ok, !p); // p is left false-y on oom.
(void)ok;
return p;
}
// Remove if present.
void remove(const Lookup& l) {
if (Ptr p = lookup(l))
remove(p);
}
// Infallibly rekey one entry, if necessary.
// Requires template parameters Key and HashPolicy::Lookup to be the same type.
void rekeyIfMoved(const Key& old_key, const Key& new_key) {
if (old_key != new_key)
rekeyAs(old_key, new_key, new_key);
}
// Infallibly rekey one entry if present, and return whether that happened.
bool rekeyAs(const Lookup& old_lookup, const Lookup& new_lookup, const Key& new_key) {
if (Ptr p = lookup(old_lookup)) {
impl.rekeyAndMaybeRehash(p, new_lookup, new_key);
return true;
}
return false;
}
// HashMap is movable
HashMap(HashMap&& rhs) : impl(mozilla::Move(rhs.impl)) {}
void operator=(HashMap&& rhs) {
MOZ_ASSERT(this != &rhs, "self-move assignment is prohibited");
impl = mozilla::Move(rhs.impl);
}
private:
// HashMap is not copyable or assignable
HashMap(const HashMap& hm) = delete;
HashMap& operator=(const HashMap& hm) = delete;
friend class Impl::Enum;
};
/*****************************************************************************/
// A JS-friendly, STL-like container providing a hash-based set of values. In
// particular, HashSet calls constructors and destructors of all objects added
// so non-PODs may be used safely.
//
// T requirements:
// - movable, destructible, assignable
// HashPolicy requirements:
// - see Hash Policy section below
// AllocPolicy:
// - see jsalloc.h
//
// Note:
// - HashSet is not reentrant: T/HashPolicy/AllocPolicy members called by
// HashSet must not call back into the same HashSet object.
// - Due to the lack of exception handling, the user must call |init()|.
template <class T,
class HashPolicy = DefaultHasher<T>,
class AllocPolicy = TempAllocPolicy>
class HashSet
{
struct SetOps : HashPolicy
{
using Base = HashPolicy;
typedef T KeyType;
static const KeyType& getKey(const T& t) { return t; }
static void setKey(T& t, KeyType& k) { HashPolicy::rekey(t, k); }
};
typedef detail::HashTable<const T, SetOps, AllocPolicy> Impl;
Impl impl;
public:
typedef typename HashPolicy::Lookup Lookup;
typedef T Entry;
// HashSet construction is fallible (due to OOM); thus the user must call
// init after constructing a HashSet and check the return value.
explicit HashSet(AllocPolicy a = AllocPolicy()) : impl(a) {}
MOZ_MUST_USE bool init(uint32_t len = 16) { return impl.init(len); }
bool initialized() const { return impl.initialized(); }
// Return whether the given lookup value is present in the map. E.g.:
//
// typedef HashSet<int> HS;
// HS h;
// if (HS::Ptr p = h.lookup(3)) {
// assert(*p == 3); // p acts like a pointer to int
// }
//
// Also see the definition of Ptr in HashTable above.
typedef typename Impl::Ptr Ptr;
MOZ_ALWAYS_INLINE Ptr lookup(const Lookup& l) const { return impl.lookup(l); }
// Like lookup, but does not assert if two threads call lookup at the same
// time. Only use this method when none of the threads will modify the map.
MOZ_ALWAYS_INLINE Ptr readonlyThreadsafeLookup(const Lookup& l) const {
return impl.readonlyThreadsafeLookup(l);
}
// Assuming |p.found()|, remove |*p|.
void remove(Ptr p) { impl.remove(p); }
// Like |lookup(l)|, but on miss, |p = lookupForAdd(l)| allows efficient
// insertion of T value |t| (where |HashPolicy::match(t,l) == true|) using
// |add(p,t)|. After |add(p,t)|, |p| points to the new element. E.g.:
//
// typedef HashSet<int> HS;
// HS h;
// HS::AddPtr p = h.lookupForAdd(3);
// if (!p) {
// if (!h.add(p, 3))
// return false;
// }
// assert(*p == 3); // p acts like a pointer to int
//
// Also see the definition of AddPtr in HashTable above.
//
// N.B. The caller must ensure that no mutating hash table operations
// occur between a pair of |lookupForAdd| and |add| calls. To avoid
// looking up the key a second time, the caller may use the more efficient
// relookupOrAdd method. This method reuses part of the hashing computation
// to more efficiently insert the key if it has not been added. For
// example, a mutation-handling version of the previous example:
//
// HS::AddPtr p = h.lookupForAdd(3);
// if (!p) {
// call_that_may_mutate_h();
// if (!h.relookupOrAdd(p, 3, 3))
// return false;
// }
// assert(*p == 3);
//
// Note that relookupOrAdd(p,l,t) performs Lookup using |l| and adds the
// entry |t|, where the caller ensures match(l,t).
typedef typename Impl::AddPtr AddPtr;
MOZ_ALWAYS_INLINE AddPtr lookupForAdd(const Lookup& l) const {
return impl.lookupForAdd(l);
}
template <typename U>
MOZ_MUST_USE bool add(AddPtr& p, U&& u) {
return impl.add(p, mozilla::Forward<U>(u));
}
template <typename U>
MOZ_MUST_USE bool relookupOrAdd(AddPtr& p, const Lookup& l, U&& u) {
return impl.relookupOrAdd(p, l, mozilla::Forward<U>(u));
}
// |all()| returns a Range containing |count()| elements:
//
// typedef HashSet<int> HS;
// HS h;
// for (HS::Range r = h.all(); !r.empty(); r.popFront())
// int i = r.front();
//
// Also see the definition of Range in HashTable above.
typedef typename Impl::Range Range;
Range all() const { return impl.all(); }
// Typedef for the enumeration class. An Enum may be used to examine and
// remove table entries:
//
// typedef HashSet<int> HS;
// HS s;
// for (HS::Enum e(s); !e.empty(); e.popFront())
// if (e.front() == 42)
// e.removeFront();
//
// Table resize may occur in Enum's destructor. Also see the definition of
// Enum in HashTable above.
typedef typename Impl::Enum Enum;
// Remove all entries. This does not shrink the table. For that consider
// using the finish() method.
void clear() { impl.clear(); }
// Remove all entries. Unlike clear() this method tries to shrink the table.
// Unlike finish() it does not require the set to be initialized again.
void clearAndShrink() { impl.clearAndShrink(); }
// Remove all the entries and release all internal buffers. The set must
// be initialized again before any use.
void finish() { impl.finish(); }
// Does the table contain any entries?
bool empty() const { return impl.empty(); }
// Number of live elements in the map.
uint32_t count() const { return impl.count(); }
// Total number of allocation in the dynamic table. Note: resize will
// happen well before count() == capacity().
size_t capacity() const { return impl.capacity(); }
// Don't just call |impl.sizeOfExcludingThis()| because there's no
// guarantee that |impl| is the first field in HashSet.
size_t sizeOfExcludingThis(mozilla::MallocSizeOf mallocSizeOf) const {
return impl.sizeOfExcludingThis(mallocSizeOf);
}
size_t sizeOfIncludingThis(mozilla::MallocSizeOf mallocSizeOf) const {
return mallocSizeOf(this) + impl.sizeOfExcludingThis(mallocSizeOf);
}
Generation generation() const {
return impl.generation();
}
/************************************************** Shorthand operations */
bool has(const Lookup& l) const {
return impl.lookup(l).found();
}
// Add |u| if it is not present already. Return false on oom.
template <typename U>
MOZ_MUST_USE bool put(U&& u) {
AddPtr p = lookupForAdd(u);
return p ? true : add(p, mozilla::Forward<U>(u));
}
// Like put, but assert that the given key is not already present.
template <typename U>
MOZ_MUST_USE bool putNew(U&& u) {
return impl.putNew(u, mozilla::Forward<U>(u));
}
template <typename U>
MOZ_MUST_USE bool putNew(const Lookup& l, U&& u) {
return impl.putNew(l, mozilla::Forward<U>(u));
}
// Only call this to populate an empty set after reserving space with init().
template <typename U>
void putNewInfallible(const Lookup& l, U&& u) {
impl.putNewInfallible(l, mozilla::Forward<U>(u));
}
void remove(const Lookup& l) {
if (Ptr p = lookup(l))
remove(p);
}
// Infallibly rekey one entry, if present.
// Requires template parameters T and HashPolicy::Lookup to be the same type.
void rekeyIfMoved(const Lookup& old_value, const T& new_value) {
if (old_value != new_value)
rekeyAs(old_value, new_value, new_value);
}
// Infallibly rekey one entry if present, and return whether that happened.
bool rekeyAs(const Lookup& old_lookup, const Lookup& new_lookup, const T& new_value) {
if (Ptr p = lookup(old_lookup)) {
impl.rekeyAndMaybeRehash(p, new_lookup, new_value);
return true;
}
return false;
}
// Infallibly replace the current key at |p| with an equivalent key.
// Specifically, both HashPolicy::hash and HashPolicy::match must return
// identical results for the new and old key when applied against all
// possible matching values.
void replaceKey(Ptr p, const T& new_value) {
MOZ_ASSERT(p.found());
MOZ_ASSERT(*p != new_value);
MOZ_ASSERT(HashPolicy::hash(*p) == HashPolicy::hash(new_value));
MOZ_ASSERT(HashPolicy::match(*p, new_value));
const_cast<T&>(*p) = new_value;
}
// HashSet is movable
HashSet(HashSet&& rhs) : impl(mozilla::Move(rhs.impl)) {}
void operator=(HashSet&& rhs) {
MOZ_ASSERT(this != &rhs, "self-move assignment is prohibited");
impl = mozilla::Move(rhs.impl);
}
private:
// HashSet is not copyable or assignable
HashSet(const HashSet& hs) = delete;
HashSet& operator=(const HashSet& hs) = delete;
friend class Impl::Enum;
};
/*****************************************************************************/
// Hash Policy
//
// A hash policy P for a hash table with key-type Key must provide:
// - a type |P::Lookup| to use to lookup table entries;
// - a static member function |P::hash| with signature
//
// static js::HashNumber hash(Lookup)
//
// to use to hash the lookup type; and
// - a static member function |P::match| with signature
//
// static bool match(Key, Lookup)
//
// to use to test equality of key and lookup values.
//
// Normally, Lookup = Key. In general, though, different values and types of
// values can be used to lookup and store. If a Lookup value |l| is != to the
// added Key value |k|, the user must ensure that |P::match(k,l)|. E.g.:
//
// js::HashSet<Key, P>::AddPtr p = h.lookup(l);
// if (!p) {
// assert(P::match(k, l)); // must hold
// h.add(p, k);
// }
// Pointer hashing policy that strips the lowest zeroBits when calculating the
// hash to improve key distribution.
template <typename Key, size_t zeroBits>
struct PointerHasher
{
typedef Key Lookup;
static HashNumber hash(const Lookup& l) {
size_t word = reinterpret_cast<size_t>(l) >> zeroBits;
static_assert(sizeof(HashNumber) == 4,
"subsequent code assumes a four-byte hash");
#if JS_BITS_PER_WORD == 32
return HashNumber(word);
#else
static_assert(sizeof(word) == 8,
"unexpected word size, new hashing strategy required to "
"properly incorporate all bits");
return HashNumber((word >> 32) ^ word);
#endif
}
static bool match(const Key& k, const Lookup& l) {
return k == l;
}
static void rekey(Key& k, const Key& newKey) {
k = newKey;
}
};
// Default hash policy: just use the 'lookup' value. This of course only
// works if the lookup value is integral. HashTable applies ScrambleHashCode to
// the result of the 'hash' which means that it is 'ok' if the lookup value is
// not well distributed over the HashNumber domain.
template <class Key>
struct DefaultHasher
{
typedef Key Lookup;
static HashNumber hash(const Lookup& l) {
// Hash if can implicitly cast to hash number type.
return l;
}
static bool match(const Key& k, const Lookup& l) {
// Use builtin or overloaded operator==.
return k == l;
}
static void rekey(Key& k, const Key& newKey) {
k = newKey;
}
};
// Specialize hashing policy for pointer types. It assumes that the type is
// at least word-aligned. For types with smaller size use PointerHasher.
template <class T>
struct DefaultHasher<T*> : PointerHasher<T*, mozilla::tl::FloorLog2<sizeof(void*)>::value>
{};
// Specialize hashing policy for mozilla::UniquePtr to proxy the UniquePtr's
// raw pointer to PointerHasher.
template <class T, class D>
struct DefaultHasher<mozilla::UniquePtr<T, D>>
{
using Lookup = mozilla::UniquePtr<T, D>;
using PtrHasher = PointerHasher<T*, mozilla::tl::FloorLog2<sizeof(void*)>::value>;
static HashNumber hash(const Lookup& l) {
return PtrHasher::hash(l.get());
}
static bool match(const mozilla::UniquePtr<T, D>& k, const Lookup& l) {
return PtrHasher::match(k.get(), l.get());
}
static void rekey(mozilla::UniquePtr<T, D>& k, mozilla::UniquePtr<T, D>&& newKey) {
k = mozilla::Move(newKey);
}
};
// For doubles, we can xor the two uint32s.
template <>
struct DefaultHasher<double>
{
typedef double Lookup;
static HashNumber hash(double d) {
static_assert(sizeof(HashNumber) == 4,
"subsequent code assumes a four-byte hash");
uint64_t u = mozilla::BitwiseCast<uint64_t>(d);
return HashNumber(u ^ (u >> 32));
}
static bool match(double lhs, double rhs) {
return mozilla::BitwiseCast<uint64_t>(lhs) == mozilla::BitwiseCast<uint64_t>(rhs);
}
};
template <>
struct DefaultHasher<float>
{
typedef float Lookup;
static HashNumber hash(float f) {
static_assert(sizeof(HashNumber) == 4,
"subsequent code assumes a four-byte hash");
return HashNumber(mozilla::BitwiseCast<uint32_t>(f));
}
static bool match(float lhs, float rhs) {
return mozilla::BitwiseCast<uint32_t>(lhs) == mozilla::BitwiseCast<uint32_t>(rhs);
}
};
// A hash policy that compares C strings.
struct CStringHasher
{
typedef const char* Lookup;
static js::HashNumber hash(Lookup l) {
return mozilla::HashString(l);
}
static bool match(const char* key, Lookup lookup) {
return strcmp(key, lookup) == 0;
}
};
// Fallible hashing interface.
//
// Most of the time generating a hash code is infallible so this class provides
// default methods that always succeed. Specialize this class for your own hash
// policy to provide fallible hashing.
//
// This is used by MovableCellHasher to handle the fact that generating a unique
// ID for cell pointer may fail due to OOM.
template <typename HashPolicy>
struct FallibleHashMethods
{
// Return true if a hashcode is already available for its argument. Once
// this returns true for a specific argument it must continue to do so.
template <typename Lookup> static bool hasHash(Lookup&& l) { return true; }
// Fallible method to ensure a hashcode exists for its argument and create
// one if not. Returns false on error, e.g. out of memory.
template <typename Lookup> static bool ensureHash(Lookup&& l) { return true; }
};
template <typename HashPolicy, typename Lookup>
static bool
HasHash(Lookup&& l) {
return FallibleHashMethods<typename HashPolicy::Base>::hasHash(mozilla::Forward<Lookup>(l));
}
template <typename HashPolicy, typename Lookup>
static bool
EnsureHash(Lookup&& l) {
return FallibleHashMethods<typename HashPolicy::Base>::ensureHash(mozilla::Forward<Lookup>(l));
}
/*****************************************************************************/
// Both HashMap and HashSet are implemented by a single HashTable that is even
// more heavily parameterized than the other two. This leaves HashTable gnarly
// and extremely coupled to HashMap and HashSet; thus code should not use
// HashTable directly.
template <class Key, class Value>
class HashMapEntry
{
Key key_;
Value value_;
template <class, class, class> friend class detail::HashTable;
template <class> friend class detail::HashTableEntry;
template <class, class, class, class> friend class HashMap;
public:
template<typename KeyInput, typename ValueInput>
HashMapEntry(KeyInput&& k, ValueInput&& v)
: key_(mozilla::Forward<KeyInput>(k)),
value_(mozilla::Forward<ValueInput>(v))
{}
HashMapEntry(HashMapEntry&& rhs)
: key_(mozilla::Move(rhs.key_)),
value_(mozilla::Move(rhs.value_))
{}
void operator=(HashMapEntry&& rhs) {
key_ = mozilla::Move(rhs.key_);
value_ = mozilla::Move(rhs.value_);
}
typedef Key KeyType;
typedef Value ValueType;
const Key& key() const { return key_; }
Key& mutableKey() { return key_; }
const Value& value() const { return value_; }
Value& value() { return value_; }
private:
HashMapEntry(const HashMapEntry&) = delete;
void operator=(const HashMapEntry&) = delete;
};
} // namespace js
namespace mozilla {
template <typename T>
struct IsPod<js::detail::HashTableEntry<T> > : IsPod<T> {};
template <typename K, typename V>
struct IsPod<js::HashMapEntry<K, V> >
: IntegralConstant<bool, IsPod<K>::value && IsPod<V>::value>
{};
} // namespace mozilla
namespace js {
namespace detail {
template <class T, class HashPolicy, class AllocPolicy>
class HashTable;
template <class T>
class HashTableEntry
{
template <class, class, class> friend class HashTable;
typedef typename mozilla::RemoveConst<T>::Type NonConstT;
HashNumber keyHash;
mozilla::AlignedStorage2<NonConstT> mem;
static const HashNumber sFreeKey = 0;
static const HashNumber sRemovedKey = 1;
static const HashNumber sCollisionBit = 1;
static bool isLiveHash(HashNumber hash)
{
return hash > sRemovedKey;
}
HashTableEntry(const HashTableEntry&) = delete;
void operator=(const HashTableEntry&) = delete;
~HashTableEntry() = delete;
public:
// NB: HashTableEntry is treated as a POD: no constructor or destructor calls.
void destroyIfLive() {
if (isLive())
mem.addr()->~T();
}
void destroy() {
MOZ_ASSERT(isLive());
mem.addr()->~T();
}
void swap(HashTableEntry* other) {
if (this == other)
return;
MOZ_ASSERT(isLive());
if (other->isLive()) {
mozilla::Swap(*mem.addr(), *other->mem.addr());
} else {
*other->mem.addr() = mozilla::Move(*mem.addr());
destroy();
}
mozilla::Swap(keyHash, other->keyHash);
}
T& get() { MOZ_ASSERT(isLive()); return *mem.addr(); }
NonConstT& getMutable() { MOZ_ASSERT(isLive()); return *mem.addr(); }
bool isFree() const { return keyHash == sFreeKey; }
void clearLive() { MOZ_ASSERT(isLive()); keyHash = sFreeKey; mem.addr()->~T(); }
void clear() { if (isLive()) mem.addr()->~T(); keyHash = sFreeKey; }
bool isRemoved() const { return keyHash == sRemovedKey; }
void removeLive() { MOZ_ASSERT(isLive()); keyHash = sRemovedKey; mem.addr()->~T(); }
bool isLive() const { return isLiveHash(keyHash); }
void setCollision() { MOZ_ASSERT(isLive()); keyHash |= sCollisionBit; }
void unsetCollision() { keyHash &= ~sCollisionBit; }
bool hasCollision() const { return keyHash & sCollisionBit; }
bool matchHash(HashNumber hn) { return (keyHash & ~sCollisionBit) == hn; }
HashNumber getKeyHash() const { return keyHash & ~sCollisionBit; }
template <typename... Args>
void setLive(HashNumber hn, Args&&... args)
{
MOZ_ASSERT(!isLive());
keyHash = hn;
new(mem.addr()) T(mozilla::Forward<Args>(args)...);
MOZ_ASSERT(isLive());
}
};
template <class T, class HashPolicy, class AllocPolicy>
class HashTable : private AllocPolicy
{
friend class mozilla::ReentrancyGuard;
typedef typename mozilla::RemoveConst<T>::Type NonConstT;
typedef typename HashPolicy::KeyType Key;
typedef typename HashPolicy::Lookup Lookup;
public:
typedef HashTableEntry<T> Entry;
// A nullable pointer to a hash table element. A Ptr |p| can be tested
// either explicitly |if (p.found()) p->...| or using boolean conversion
// |if (p) p->...|. Ptr objects must not be used after any mutating hash
// table operations unless |generation()| is tested.
class Ptr
{
friend class HashTable;
Entry* entry_;
#ifdef JS_DEBUG
const HashTable* table_;
Generation generation;
#endif
protected:
Ptr(Entry& entry, const HashTable& tableArg)
: entry_(&entry)
#ifdef JS_DEBUG
, table_(&tableArg)
, generation(tableArg.generation())
#endif
{}
public:
Ptr()
: entry_(nullptr)
#ifdef JS_DEBUG
, table_(nullptr)
, generation(0)
#endif
{}
bool isValid() const {
return !!entry_;
}
bool found() const {
if (!isValid())
return false;
#ifdef JS_DEBUG
MOZ_ASSERT(generation == table_->generation());
#endif
return entry_->isLive();
}
explicit operator bool() const {
return found();
}
bool operator==(const Ptr& rhs) const {
MOZ_ASSERT(found() && rhs.found());
return entry_ == rhs.entry_;
}
bool operator!=(const Ptr& rhs) const {
#ifdef JS_DEBUG
MOZ_ASSERT(generation == table_->generation());
#endif
return !(*this == rhs);
}
T& operator*() const {
#ifdef JS_DEBUG
MOZ_ASSERT(found());
MOZ_ASSERT(generation == table_->generation());
#endif
return entry_->get();
}
T* operator->() const {
#ifdef JS_DEBUG
MOZ_ASSERT(found());
MOZ_ASSERT(generation == table_->generation());
#endif
return &entry_->get();
}
};
// A Ptr that can be used to add a key after a failed lookup.
class AddPtr : public Ptr
{
friend class HashTable;
HashNumber keyHash;
#ifdef JS_DEBUG
uint64_t mutationCount;
#endif
AddPtr(Entry& entry, const HashTable& tableArg, HashNumber hn)
: Ptr(entry, tableArg)
, keyHash(hn)
#ifdef JS_DEBUG
, mutationCount(tableArg.mutationCount)
#endif
{}
public:
AddPtr() : keyHash(0) {}
};
// A collection of hash table entries. The collection is enumerated by
// calling |front()| followed by |popFront()| as long as |!empty()|. As
// with Ptr/AddPtr, Range objects must not be used after any mutating hash
// table operation unless the |generation()| is tested.
class Range
{
protected:
friend class HashTable;
Range(const HashTable& tableArg, Entry* c, Entry* e)
: cur(c)
, end(e)
#ifdef JS_DEBUG
, table_(&tableArg)
, mutationCount(tableArg.mutationCount)
, generation(tableArg.generation())
, validEntry(true)
#endif
{
while (cur < end && !cur->isLive())
++cur;
}
Entry* cur;
Entry* end;
#ifdef JS_DEBUG
const HashTable* table_;
uint64_t mutationCount;
Generation generation;
bool validEntry;
#endif
public:
Range()
: cur(nullptr)
, end(nullptr)
#ifdef JS_DEBUG
, table_(nullptr)
, mutationCount(0)
, generation(0)
, validEntry(false)
#endif
{}
bool empty() const {
#ifdef JS_DEBUG
MOZ_ASSERT(generation == table_->generation());
MOZ_ASSERT(mutationCount == table_->mutationCount);
#endif
return cur == end;
}
T& front() const {
MOZ_ASSERT(!empty());
#ifdef JS_DEBUG
MOZ_ASSERT(validEntry);
MOZ_ASSERT(generation == table_->generation());
MOZ_ASSERT(mutationCount == table_->mutationCount);
#endif
return cur->get();
}
void popFront() {
MOZ_ASSERT(!empty());
#ifdef JS_DEBUG
MOZ_ASSERT(generation == table_->generation());
MOZ_ASSERT(mutationCount == table_->mutationCount);
#endif
while (++cur < end && !cur->isLive())
continue;
#ifdef JS_DEBUG
validEntry = true;
#endif
}
};
// A Range whose lifetime delimits a mutating enumeration of a hash table.
// Since rehashing when elements were removed during enumeration would be
// bad, it is postponed until the Enum is destructed. Since the Enum's
// destructor touches the hash table, the user must ensure that the hash
// table is still alive when the destructor runs.
class Enum : public Range
{
friend class HashTable;
HashTable& table_;
bool rekeyed;
bool removed;
// Enum is movable but not copyable.
Enum(const Enum&) = delete;
void operator=(const Enum&) = delete;
public:
template<class Map>
explicit Enum(Map& map)
: Range(map.all()), table_(map.impl), rekeyed(false), removed(false) {}
MOZ_IMPLICIT Enum(Enum&& other)
: Range(other), table_(other.table_), rekeyed(other.rekeyed), removed(other.removed)
{
other.rekeyed = false;
other.removed = false;
}
// Removes the |front()| element from the table, leaving |front()|
// invalid until the next call to |popFront()|. For example:
//
// HashSet<int> s;
// for (HashSet<int>::Enum e(s); !e.empty(); e.popFront())
// if (e.front() == 42)
// e.removeFront();
void removeFront() {
table_.remove(*this->cur);
removed = true;
#ifdef JS_DEBUG
this->validEntry = false;
this->mutationCount = table_.mutationCount;
#endif
}
NonConstT& mutableFront() {
MOZ_ASSERT(!this->empty());
#ifdef JS_DEBUG
MOZ_ASSERT(this->validEntry);
MOZ_ASSERT(this->generation == this->Range::table_->generation());
MOZ_ASSERT(this->mutationCount == this->Range::table_->mutationCount);
#endif
return this->cur->getMutable();
}
// Removes the |front()| element and re-inserts it into the table with
// a new key at the new Lookup position. |front()| is invalid after
// this operation until the next call to |popFront()|.
void rekeyFront(const Lookup& l, const Key& k) {
MOZ_ASSERT(&k != &HashPolicy::getKey(this->cur->get()));
Ptr p(*this->cur, table_);
table_.rekeyWithoutRehash(p, l, k);
rekeyed = true;
#ifdef JS_DEBUG
this->validEntry = false;
this->mutationCount = table_.mutationCount;
#endif
}
void rekeyFront(const Key& k) {
rekeyFront(k, k);
}
// Potentially rehashes the table.
~Enum() {
if (rekeyed) {
table_.gen++;
table_.checkOverRemoved();
}
if (removed)
table_.compactIfUnderloaded();
}
};
// HashTable is movable
HashTable(HashTable&& rhs)
: AllocPolicy(rhs)
{
mozilla::PodAssign(this, &rhs);
rhs.table = nullptr;
}
void operator=(HashTable&& rhs) {
MOZ_ASSERT(this != &rhs, "self-move assignment is prohibited");
if (table)
destroyTable(*this, table, capacity());
mozilla::PodAssign(this, &rhs);
rhs.table = nullptr;
}
private:
// HashTable is not copyable or assignable
HashTable(const HashTable&) = delete;
void operator=(const HashTable&) = delete;
private:
static const size_t CAP_BITS = 30;
public:
uint64_t gen:56; // entry storage generation number
uint64_t hashShift:8; // multiplicative hash shift
Entry* table; // entry storage
uint32_t entryCount; // number of entries in table
uint32_t removedCount; // removed entry sentinels in table
#ifdef JS_DEBUG
uint64_t mutationCount;
mutable bool mEntered;
// Note that some updates to these stats are not thread-safe. See the
// comment on the three-argument overloading of HashTable::lookup().
mutable struct Stats
{
uint32_t searches; // total number of table searches
uint32_t steps; // hash chain links traversed
uint32_t hits; // searches that found key
uint32_t misses; // searches that didn't find key
uint32_t addOverRemoved; // adds that recycled a removed entry
uint32_t removes; // calls to remove
uint32_t removeFrees; // calls to remove that freed the entry
uint32_t grows; // table expansions
uint32_t shrinks; // table contractions
uint32_t compresses; // table compressions
uint32_t rehashes; // tombstone decontaminations
} stats;
# define METER(x) x
#else
# define METER(x)
#endif
// The default initial capacity is 32 (enough to hold 16 elements), but it
// can be as low as 4.
static const unsigned sMinCapacityLog2 = 2;
static const unsigned sMinCapacity = 1 << sMinCapacityLog2;
static const unsigned sMaxInit = JS_BIT(CAP_BITS - 1);
static const unsigned sMaxCapacity = JS_BIT(CAP_BITS);
static const unsigned sHashBits = mozilla::tl::BitSize<HashNumber>::value;
// Hash-table alpha is conceptually a fraction, but to avoid floating-point
// math we implement it as a ratio of integers.
static const uint8_t sAlphaDenominator = 4;
static const uint8_t sMinAlphaNumerator = 1; // min alpha: 1/4
static const uint8_t sMaxAlphaNumerator = 3; // max alpha: 3/4
static const HashNumber sFreeKey = Entry::sFreeKey;
static const HashNumber sRemovedKey = Entry::sRemovedKey;
static const HashNumber sCollisionBit = Entry::sCollisionBit;
void setTableSizeLog2(unsigned sizeLog2)
{
hashShift = sHashBits - sizeLog2;
}
static bool isLiveHash(HashNumber hash)
{
return Entry::isLiveHash(hash);
}
static HashNumber prepareHash(const Lookup& l)
{
HashNumber keyHash = ScrambleHashCode(HashPolicy::hash(l));
// Avoid reserved hash codes.
if (!isLiveHash(keyHash))
keyHash -= (sRemovedKey + 1);
return keyHash & ~sCollisionBit;
}
enum FailureBehavior { DontReportFailure = false, ReportFailure = true };
static Entry* createTable(AllocPolicy& alloc, uint32_t capacity,
FailureBehavior reportFailure = ReportFailure)
{
static_assert(sFreeKey == 0,
"newly-calloc'd tables have to be considered empty");
if (reportFailure)
return alloc.template pod_calloc<Entry>(capacity);
return alloc.template maybe_pod_calloc<Entry>(capacity);
}
static Entry* maybeCreateTable(AllocPolicy& alloc, uint32_t capacity)
{
static_assert(sFreeKey == 0,
"newly-calloc'd tables have to be considered empty");
return alloc.template maybe_pod_calloc<Entry>(capacity);
}
static void destroyTable(AllocPolicy& alloc, Entry* oldTable, uint32_t capacity)
{
Entry* end = oldTable + capacity;
for (Entry* e = oldTable; e < end; ++e)
e->destroyIfLive();
alloc.free_(oldTable);
}
public:
explicit HashTable(AllocPolicy ap)
: AllocPolicy(ap)
, gen(0)
, hashShift(sHashBits)
, table(nullptr)
, entryCount(0)
, removedCount(0)
#ifdef JS_DEBUG
, mutationCount(0)
, mEntered(false)
#endif
{}
MOZ_MUST_USE bool init(uint32_t length)
{
MOZ_ASSERT(!initialized());
// Reject all lengths whose initial computed capacity would exceed
// sMaxCapacity. Round that maximum length down to the nearest power
// of two for speedier code.
if (MOZ_UNLIKELY(length > sMaxInit)) {
this->reportAllocOverflow();
return false;
}
static_assert((sMaxInit * sAlphaDenominator) / sAlphaDenominator == sMaxInit,
"multiplication in numerator below could overflow");
static_assert(sMaxInit * sAlphaDenominator <= UINT32_MAX - sMaxAlphaNumerator,
"numerator calculation below could potentially overflow");
// Compute the smallest capacity allowing |length| elements to be
// inserted without rehashing: ceil(length / max-alpha). (Ceiling
// integral division: <http://stackoverflow.com/a/2745086>.)
uint32_t newCapacity =
(length * sAlphaDenominator + sMaxAlphaNumerator - 1) / sMaxAlphaNumerator;
if (newCapacity < sMinCapacity)
newCapacity = sMinCapacity;
// FIXME: use JS_CEILING_LOG2 when PGO stops crashing (bug 543034).
uint32_t roundUp = sMinCapacity, roundUpLog2 = sMinCapacityLog2;
while (roundUp < newCapacity) {
roundUp <<= 1;
++roundUpLog2;
}
newCapacity = roundUp;
MOZ_ASSERT(newCapacity >= length);
MOZ_ASSERT(newCapacity <= sMaxCapacity);
table = createTable(*this, newCapacity);
if (!table)
return false;
setTableSizeLog2(roundUpLog2);
METER(memset(&stats, 0, sizeof(stats)));
return true;
}
bool initialized() const
{
return !!table;
}
~HashTable()
{
if (table)
destroyTable(*this, table, capacity());
}
private:
HashNumber hash1(HashNumber hash0) const
{
return hash0 >> hashShift;
}
struct DoubleHash
{
HashNumber h2;
HashNumber sizeMask;
};
DoubleHash hash2(HashNumber curKeyHash) const
{
unsigned sizeLog2 = sHashBits - hashShift;
DoubleHash dh = {
((curKeyHash << sizeLog2) >> hashShift) | 1,
(HashNumber(1) << sizeLog2) - 1
};
return dh;
}
static HashNumber applyDoubleHash(HashNumber h1, const DoubleHash& dh)
{
return (h1 - dh.h2) & dh.sizeMask;
}
bool overloaded()
{
static_assert(sMaxCapacity <= UINT32_MAX / sMaxAlphaNumerator,
"multiplication below could overflow");
return entryCount + removedCount >=
capacity() * sMaxAlphaNumerator / sAlphaDenominator;
}
// Would the table be underloaded if it had the given capacity and entryCount?
static bool wouldBeUnderloaded(uint32_t capacity, uint32_t entryCount)
{
static_assert(sMaxCapacity <= UINT32_MAX / sMinAlphaNumerator,
"multiplication below could overflow");
return capacity > sMinCapacity &&
entryCount <= capacity * sMinAlphaNumerator / sAlphaDenominator;
}
bool underloaded()
{
return wouldBeUnderloaded(capacity(), entryCount);
}
static MOZ_ALWAYS_INLINE bool match(Entry& e, const Lookup& l)
{
return HashPolicy::match(HashPolicy::getKey(e.get()), l);
}
// Warning: in order for readonlyThreadsafeLookup() to be safe this
// function must not modify the table in any way when |collisionBit| is 0.
// (The use of the METER() macro to increment stats violates this
// restriction but we will live with that for now because it's enabled so
// rarely.)
MOZ_ALWAYS_INLINE Entry&
lookup(const Lookup& l, HashNumber keyHash, unsigned collisionBit) const
{
MOZ_ASSERT(isLiveHash(keyHash));
MOZ_ASSERT(!(keyHash & sCollisionBit));
MOZ_ASSERT(collisionBit == 0 || collisionBit == sCollisionBit);
MOZ_ASSERT(table);
METER(stats.searches++);
// Compute the primary hash address.
HashNumber h1 = hash1(keyHash);
Entry* entry = &table[h1];
// Miss: return space for a new entry.
if (entry->isFree()) {
METER(stats.misses++);
return *entry;
}
// Hit: return entry.
if (entry->matchHash(keyHash) && match(*entry, l)) {
METER(stats.hits++);
return *entry;
}
// Collision: double hash.
DoubleHash dh = hash2(keyHash);
// Save the first removed entry pointer so we can recycle later.
Entry* firstRemoved = nullptr;
while (true) {
if (MOZ_UNLIKELY(entry->isRemoved())) {
if (!firstRemoved)
firstRemoved = entry;
} else {
if (collisionBit == sCollisionBit)
entry->setCollision();
}
METER(stats.steps++);
h1 = applyDoubleHash(h1, dh);
entry = &table[h1];
if (entry->isFree()) {
METER(stats.misses++);
return firstRemoved ? *firstRemoved : *entry;
}
if (entry->matchHash(keyHash) && match(*entry, l)) {
METER(stats.hits++);
return *entry;
}
}
}
// This is a copy of lookup hardcoded to the assumptions:
// 1. the lookup is a lookupForAdd
// 2. the key, whose |keyHash| has been passed is not in the table,
// 3. no entries have been removed from the table.
// This specialized search avoids the need for recovering lookup values
// from entries, which allows more flexible Lookup/Key types.
Entry& findFreeEntry(HashNumber keyHash)
{
MOZ_ASSERT(!(keyHash & sCollisionBit));
MOZ_ASSERT(table);
METER(stats.searches++);
// We assume 'keyHash' has already been distributed.
// Compute the primary hash address.
HashNumber h1 = hash1(keyHash);
Entry* entry = &table[h1];
// Miss: return space for a new entry.
if (!entry->isLive()) {
METER(stats.misses++);
return *entry;
}
// Collision: double hash.
DoubleHash dh = hash2(keyHash);
while (true) {
MOZ_ASSERT(!entry->isRemoved());
entry->setCollision();
METER(stats.steps++);
h1 = applyDoubleHash(h1, dh);
entry = &table[h1];
if (!entry->isLive()) {
METER(stats.misses++);
return *entry;
}
}
}
enum RebuildStatus { NotOverloaded, Rehashed, RehashFailed };
RebuildStatus changeTableSize(int deltaLog2, FailureBehavior reportFailure = ReportFailure)
{
// Look, but don't touch, until we succeed in getting new entry store.
Entry* oldTable = table;
uint32_t oldCap = capacity();
uint32_t newLog2 = sHashBits - hashShift + deltaLog2;
uint32_t newCapacity = JS_BIT(newLog2);
if (MOZ_UNLIKELY(newCapacity > sMaxCapacity)) {
if (reportFailure)
this->reportAllocOverflow();
return RehashFailed;
}
Entry* newTable = createTable(*this, newCapacity, reportFailure);
if (!newTable)
return RehashFailed;
// We can't fail from here on, so update table parameters.
setTableSizeLog2(newLog2);
removedCount = 0;
gen++;
table = newTable;
// Copy only live entries, leaving removed ones behind.
Entry* end = oldTable + oldCap;
for (Entry* src = oldTable; src < end; ++src) {
if (src->isLive()) {
HashNumber hn = src->getKeyHash();
findFreeEntry(hn).setLive(
hn, mozilla::Move(const_cast<typename Entry::NonConstT&>(src->get())));
src->destroy();
}
}
// All entries have been destroyed, no need to destroyTable.
this->free_(oldTable);
return Rehashed;
}
bool shouldCompressTable()
{
// Compress if a quarter or more of all entries are removed.
return removedCount >= (capacity() >> 2);
}
RebuildStatus checkOverloaded(FailureBehavior reportFailure = ReportFailure)
{
if (!overloaded())
return NotOverloaded;
int deltaLog2;
if (shouldCompressTable()) {
METER(stats.compresses++);
deltaLog2 = 0;
} else {
METER(stats.grows++);
deltaLog2 = 1;
}
return changeTableSize(deltaLog2, reportFailure);
}
// Infallibly rehash the table if we are overloaded with removals.
void checkOverRemoved()
{
if (overloaded()) {
if (checkOverloaded(DontReportFailure) == RehashFailed)
rehashTableInPlace();
}
}
void remove(Entry& e)
{
MOZ_ASSERT(table);
METER(stats.removes++);
if (e.hasCollision()) {
e.removeLive();
removedCount++;
} else {
METER(stats.removeFrees++);
e.clearLive();
}
entryCount--;
#ifdef JS_DEBUG
mutationCount++;
#endif
}
void checkUnderloaded()
{
if (underloaded()) {
METER(stats.shrinks++);
(void) changeTableSize(-1, DontReportFailure);
}
}
// Resize the table down to the largest capacity which doesn't underload the
// table. Since we call checkUnderloaded() on every remove, you only need
// to call this after a bulk removal of items done without calling remove().
void compactIfUnderloaded()
{
int32_t resizeLog2 = 0;
uint32_t newCapacity = capacity();
while (wouldBeUnderloaded(newCapacity, entryCount)) {
newCapacity = newCapacity >> 1;
resizeLog2--;
}
if (resizeLog2 != 0)
(void) changeTableSize(resizeLog2, DontReportFailure);
}
// This is identical to changeTableSize(currentSize), but without requiring
// a second table. We do this by recycling the collision bits to tell us if
// the element is already inserted or still waiting to be inserted. Since
// already-inserted elements win any conflicts, we get the same table as we
// would have gotten through random insertion order.
void rehashTableInPlace()
{
METER(stats.rehashes++);
removedCount = 0;
gen++;
for (size_t i = 0; i < capacity(); ++i)
table[i].unsetCollision();
for (size_t i = 0; i < capacity();) {
Entry* src = &table[i];
if (!src->isLive() || src->hasCollision()) {
++i;
continue;
}
HashNumber keyHash = src->getKeyHash();
HashNumber h1 = hash1(keyHash);
DoubleHash dh = hash2(keyHash);
Entry* tgt = &table[h1];
while (true) {
if (!tgt->hasCollision()) {
src->swap(tgt);
tgt->setCollision();
break;
}
h1 = applyDoubleHash(h1, dh);
tgt = &table[h1];
}
}
// TODO: this algorithm leaves collision bits on *all* elements, even if
// they are on no collision path. We have the option of setting the
// collision bits correctly on a subsequent pass or skipping the rehash
// unless we are totally filled with tombstones: benchmark to find out
// which approach is best.
}
// Note: |l| may be a reference to a piece of |u|, so this function
// must take care not to use |l| after moving |u|.
//
// Prefer to use putNewInfallible; this function does not check
// invariants.
template <typename... Args>
void putNewInfallibleInternal(const Lookup& l, Args&&... args)
{
MOZ_ASSERT(table);
HashNumber keyHash = prepareHash(l);
Entry* entry = &findFreeEntry(keyHash);
MOZ_ASSERT(entry);
if (entry->isRemoved()) {
METER(stats.addOverRemoved++);
removedCount--;
keyHash |= sCollisionBit;
}
entry->setLive(keyHash, mozilla::Forward<Args>(args)...);
entryCount++;
#ifdef JS_DEBUG
mutationCount++;
#endif
}
public:
void clear()
{
if (mozilla::IsPod<Entry>::value) {
memset(table, 0, sizeof(*table) * capacity());
} else {
uint32_t tableCapacity = capacity();
Entry* end = table + tableCapacity;
for (Entry* e = table; e < end; ++e)
e->clear();
}
removedCount = 0;
entryCount = 0;
#ifdef JS_DEBUG
mutationCount++;
#endif
}
void clearAndShrink()
{
clear();
compactIfUnderloaded();
}
void finish()
{
#ifdef JS_DEBUG
MOZ_ASSERT(!mEntered);
#endif
if (!table)
return;
destroyTable(*this, table, capacity());
table = nullptr;
gen++;
entryCount = 0;
removedCount = 0;
#ifdef JS_DEBUG
mutationCount++;
#endif
}
Range all() const
{
MOZ_ASSERT(table);
return Range(*this, table, table + capacity());
}
bool empty() const
{
MOZ_ASSERT(table);
return !entryCount;
}
uint32_t count() const
{
MOZ_ASSERT(table);
return entryCount;
}
uint32_t capacity() const
{
MOZ_ASSERT(table);
return JS_BIT(sHashBits - hashShift);
}
Generation generation() const
{
MOZ_ASSERT(table);
return Generation(gen);
}
size_t sizeOfExcludingThis(mozilla::MallocSizeOf mallocSizeOf) const
{
return mallocSizeOf(table);
}
size_t sizeOfIncludingThis(mozilla::MallocSizeOf mallocSizeOf) const
{
return mallocSizeOf(this) + sizeOfExcludingThis(mallocSizeOf);
}
MOZ_ALWAYS_INLINE Ptr lookup(const Lookup& l) const
{
mozilla::ReentrancyGuard g(*this);
if (!HasHash<HashPolicy>(l))
return Ptr();
HashNumber keyHash = prepareHash(l);
return Ptr(lookup(l, keyHash, 0), *this);
}
MOZ_ALWAYS_INLINE Ptr readonlyThreadsafeLookup(const Lookup& l) const
{
if (!HasHash<HashPolicy>(l))
return Ptr();
HashNumber keyHash = prepareHash(l);
return Ptr(lookup(l, keyHash, 0), *this);
}
MOZ_ALWAYS_INLINE AddPtr lookupForAdd(const Lookup& l) const
{
mozilla::ReentrancyGuard g(*this);
if (!EnsureHash<HashPolicy>(l))
return AddPtr();
HashNumber keyHash = prepareHash(l);
Entry& entry = lookup(l, keyHash, sCollisionBit);
AddPtr p(entry, *this, keyHash);
return p;
}
template <typename... Args>
MOZ_MUST_USE bool add(AddPtr& p, Args&&... args)
{
mozilla::ReentrancyGuard g(*this);
MOZ_ASSERT(table);
MOZ_ASSERT_IF(p.isValid(), p.table_ == this);
MOZ_ASSERT(!p.found());
MOZ_ASSERT(!(p.keyHash & sCollisionBit));
// Check for error from ensureHash() here.
if (!p.isValid())
return false;
MOZ_ASSERT(p.generation == generation());
MOZ_ASSERT(p.mutationCount == mutationCount);
// Changing an entry from removed to live does not affect whether we
// are overloaded and can be handled separately.
if (p.entry_->isRemoved()) {
if (!this->checkSimulatedOOM())
return false;
METER(stats.addOverRemoved++);
removedCount--;
p.keyHash |= sCollisionBit;
} else {
// Preserve the validity of |p.entry_|.
RebuildStatus status = checkOverloaded();
if (status == RehashFailed)
return false;
if (status == NotOverloaded && !this->checkSimulatedOOM())
return false;
if (status == Rehashed)
p.entry_ = &findFreeEntry(p.keyHash);
}
p.entry_->setLive(p.keyHash, mozilla::Forward<Args>(args)...);
entryCount++;
#ifdef JS_DEBUG
mutationCount++;
p.generation = generation();
p.mutationCount = mutationCount;
#endif
return true;
}
// Note: |l| may be a reference to a piece of |u|, so this function
// must take care not to use |l| after moving |u|.
template <typename... Args>
void putNewInfallible(const Lookup& l, Args&&... args)
{
MOZ_ASSERT(!lookup(l).found());
mozilla::ReentrancyGuard g(*this);
putNewInfallibleInternal(l, mozilla::Forward<Args>(args)...);
}
// Note: |l| may be alias arguments in |args|, so this function must take
// care not to use |l| after moving |args|.
template <typename... Args>
MOZ_MUST_USE bool putNew(const Lookup& l, Args&&... args)
{
if (!this->checkSimulatedOOM())
return false;
if (!EnsureHash<HashPolicy>(l))
return false;
if (checkOverloaded() == RehashFailed)
return false;
putNewInfallible(l, mozilla::Forward<Args>(args)...);
return true;
}
// Note: |l| may be a reference to a piece of |u|, so this function
// must take care not to use |l| after moving |u|.
template <typename... Args>
MOZ_MUST_USE bool relookupOrAdd(AddPtr& p, const Lookup& l, Args&&... args)
{
// Check for error from ensureHash() here.
if (!p.isValid())
return false;
#ifdef JS_DEBUG
p.generation = generation();
p.mutationCount = mutationCount;
#endif
{
mozilla::ReentrancyGuard g(*this);
MOZ_ASSERT(prepareHash(l) == p.keyHash); // l has not been destroyed
p.entry_ = &lookup(l, p.keyHash, sCollisionBit);
}
return p.found() || add(p, mozilla::Forward<Args>(args)...);
}
void remove(Ptr p)
{
MOZ_ASSERT(table);
mozilla::ReentrancyGuard g(*this);
MOZ_ASSERT(p.found());
MOZ_ASSERT(p.generation == generation());
remove(*p.entry_);
checkUnderloaded();
}
void rekeyWithoutRehash(Ptr p, const Lookup& l, const Key& k)
{
MOZ_ASSERT(table);
mozilla::ReentrancyGuard g(*this);
MOZ_ASSERT(p.found());
MOZ_ASSERT(p.generation == generation());
typename HashTableEntry<T>::NonConstT t(mozilla::Move(*p));
HashPolicy::setKey(t, const_cast<Key&>(k));
remove(*p.entry_);
putNewInfallibleInternal(l, mozilla::Move(t));
}
void rekeyAndMaybeRehash(Ptr p, const Lookup& l, const Key& k)
{
rekeyWithoutRehash(p, l, k);
checkOverRemoved();
}
#undef METER
};
} // namespace detail
} // namespace js
#endif /* js_HashTable_h */