зеркало из https://github.com/mozilla/gecko-dev.git
501 строка
19 KiB
C++
501 строка
19 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
* vim: set ts=8 sts=4 et sw=4 tw=99:
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#ifndef js_ProfilingStack_h
|
|
#define js_ProfilingStack_h
|
|
|
|
#include <algorithm>
|
|
#include <stdint.h>
|
|
|
|
#include "jstypes.h"
|
|
|
|
#include "js/TypeDecls.h"
|
|
#include "js/Utility.h"
|
|
|
|
#ifdef JS_BROKEN_GCC_ATTRIBUTE_WARNING
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wattributes"
|
|
#endif // JS_BROKEN_GCC_ATTRIBUTE_WARNING
|
|
|
|
class JS_PUBLIC_API(JSTracer);
|
|
|
|
#ifdef JS_BROKEN_GCC_ATTRIBUTE_WARNING
|
|
#pragma GCC diagnostic pop
|
|
#endif // JS_BROKEN_GCC_ATTRIBUTE_WARNING
|
|
|
|
class ProfilingStack;
|
|
|
|
// This file defines the classes ProfilingStack and ProfilingStackFrame.
|
|
// The ProfilingStack manages an array of ProfilingStackFrames.
|
|
// It keeps track of the "label stack" and the JS interpreter stack.
|
|
// The two stack types are interleaved.
|
|
//
|
|
// Usage:
|
|
//
|
|
// ProfilingStack* profilingStack = ...;
|
|
//
|
|
// // For label frames:
|
|
// profilingStack->pushLabelFrame(...);
|
|
// // Execute some code. When finished, pop the frame:
|
|
// profilingStack->pop();
|
|
//
|
|
// // For JS stack frames:
|
|
// profilingStack->pushJSFrame(...);
|
|
// // Execute some code. When finished, pop the frame:
|
|
// profilingStack->pop();
|
|
//
|
|
//
|
|
// Concurrency considerations
|
|
//
|
|
// A thread's profiling stack (and the frames inside it) is only modified by
|
|
// that thread. However, the profiling stack can be *read* by a different thread,
|
|
// the sampler thread: Whenever the profiler wants to sample a given thread A,
|
|
// the following happens:
|
|
// (1) Thread A is suspended.
|
|
// (2) The sampler thread (thread S) reads the ProfilingStack of thread A,
|
|
// including all ProfilingStackFrames that are currently in that stack
|
|
// (profilingStack->frames[0..profilingStack->stackSize()]).
|
|
// (3) Thread A is resumed.
|
|
//
|
|
// Thread suspension is achieved using platform-specific APIs; refer to each
|
|
// platform's Sampler::SuspendAndSampleAndResumeThread implementation in
|
|
// platform-*.cpp for details.
|
|
//
|
|
// When the thread is suspended, the values in profilingStack->stackPointer and in
|
|
// the stack frame range profilingStack->frames[0..profilingStack->stackPointer] need
|
|
// to be in a consistent state, so that thread S does not read partially-
|
|
// constructed stack frames. More specifically, we have two requirements:
|
|
// (1) When adding a new frame at the top of the stack, its ProfilingStackFrame
|
|
// data needs to be put in place *before* the stackPointer is incremented,
|
|
// and the compiler + CPU need to know that this order matters.
|
|
// (2) When popping an frame from the stack and then preparing the
|
|
// ProfilingStackFrame data for the next frame that is about to be pushed,
|
|
// the decrement of the stackPointer in pop() needs to happen *before* the
|
|
// ProfilingStackFrame for the new frame is being popuplated, and the
|
|
// compiler + CPU need to know that this order matters.
|
|
//
|
|
// We can express the relevance of these orderings in multiple ways.
|
|
// Option A is to make stackPointer an atomic with SequentiallyConsistent
|
|
// memory ordering. This would ensure that no writes in thread A would be
|
|
// reordered across any writes to stackPointer, which satisfies requirements
|
|
// (1) and (2) at the same time. Option A is the simplest.
|
|
// Option B is to use ReleaseAcquire memory ordering both for writes to
|
|
// stackPointer *and* for writes to ProfilingStackFrame fields. Release-stores
|
|
// ensure that all writes that happened *before this write in program order* are
|
|
// not reordered to happen after this write. ReleaseAcquire ordering places no
|
|
// requirements on the ordering of writes that happen *after* this write in
|
|
// program order.
|
|
// Using release-stores for writes to stackPointer expresses requirement (1),
|
|
// and using release-stores for writes to the ProfilingStackFrame fields
|
|
// expresses requirement (2).
|
|
//
|
|
// Option B is more complicated than option A, but has much better performance
|
|
// on x86/64: In a microbenchmark run on a Macbook Pro from 2017, switching
|
|
// from option A to option B reduced the overhead of pushing+popping a
|
|
// ProfilingStackFrame by 10 nanoseconds.
|
|
// On x86/64, release-stores require no explicit hardware barriers or lock
|
|
// instructions.
|
|
// On ARM/64, option B may be slower than option A, because the compiler will
|
|
// generate hardware barriers for every single release-store instead of just
|
|
// for the writes to stackPointer. However, the actual performance impact of
|
|
// this has not yet been measured on ARM, so we're currently using option B
|
|
// everywhere. This is something that we may want to change in the future once
|
|
// we've done measurements.
|
|
|
|
namespace js {
|
|
|
|
// A call stack can be specified to the JS engine such that all JS entry/exits
|
|
// to functions push/pop a stack frame to/from the specified stack.
|
|
//
|
|
// For more detailed information, see vm/GeckoProfiler.h.
|
|
//
|
|
class ProfilingStackFrame
|
|
{
|
|
// A ProfilingStackFrame represents either a label frame or a JS frame.
|
|
|
|
// WARNING WARNING WARNING
|
|
//
|
|
// All the fields below are Atomic<...,ReleaseAcquire>. This is needed so
|
|
// that writes to these fields are release-writes, which ensures that
|
|
// earlier writes in this thread don't get reordered after the writes to
|
|
// these fields. In particular, the decrement of the stack pointer in
|
|
// ProfilingStack::pop() is a write that *must* happen before the values in
|
|
// this ProfilingStackFrame are changed. Otherwise, the sampler thread might
|
|
// see an inconsistent state where the stack pointer still points to a
|
|
// ProfilingStackFrame which has already been popped off the stack and whose
|
|
// fields have now been partially repopulated with new values.
|
|
// See the "Concurrency considerations" paragraph at the top of this file
|
|
// for more details.
|
|
|
|
// Descriptive label for this stack frame. Must be a static string! Can be
|
|
// an empty string, but not a null pointer.
|
|
mozilla::Atomic<const char*, mozilla::ReleaseAcquire,
|
|
mozilla::recordreplay::Behavior::DontPreserve> label_;
|
|
|
|
// An additional descriptive string of this frame which is combined with
|
|
// |label_| in profiler output. Need not be (and usually isn't) static. Can
|
|
// be null.
|
|
mozilla::Atomic<const char*, mozilla::ReleaseAcquire,
|
|
mozilla::recordreplay::Behavior::DontPreserve> dynamicString_;
|
|
|
|
// Stack pointer for non-JS stack frames, the script pointer otherwise.
|
|
mozilla::Atomic<void*, mozilla::ReleaseAcquire,
|
|
mozilla::recordreplay::Behavior::DontPreserve> spOrScript;
|
|
|
|
// Line number for non-JS stack frames, the bytecode offset otherwise.
|
|
mozilla::Atomic<int32_t, mozilla::ReleaseAcquire,
|
|
mozilla::recordreplay::Behavior::DontPreserve> lineOrPcOffset;
|
|
|
|
// Bits 0...1 hold the Kind. Bits 2...31 hold the category.
|
|
mozilla::Atomic<uint32_t, mozilla::ReleaseAcquire,
|
|
mozilla::recordreplay::Behavior::DontPreserve> kindAndCategory_;
|
|
|
|
static int32_t pcToOffset(JSScript* aScript, jsbytecode* aPc);
|
|
|
|
public:
|
|
ProfilingStackFrame() = default;
|
|
ProfilingStackFrame& operator=(const ProfilingStackFrame& other)
|
|
{
|
|
label_ = other.label();
|
|
dynamicString_ = other.dynamicString();
|
|
void* spScript = other.spOrScript;
|
|
spOrScript = spScript;
|
|
int32_t offset = other.lineOrPcOffset;
|
|
lineOrPcOffset = offset;
|
|
uint32_t kindAndCategory = other.kindAndCategory_;
|
|
kindAndCategory_ = kindAndCategory;
|
|
return *this;
|
|
}
|
|
|
|
enum class Kind : uint32_t {
|
|
// A regular label frame. These usually come from AutoProfilerLabel.
|
|
LABEL = 0,
|
|
|
|
// A special frame indicating the start of a run of JS profiling stack
|
|
// frames. SP_MARKER frames are ignored, except for the sp field.
|
|
// These frames are needed to get correct ordering between JS and LABEL
|
|
// frames because JS frames don't carry sp information.
|
|
// SP is short for "stack pointer".
|
|
SP_MARKER = 1,
|
|
|
|
// A normal JS frame.
|
|
JS_NORMAL = 2,
|
|
|
|
// An interpreter JS frame that has OSR-ed into baseline. JS_NORMAL
|
|
// frames can be converted to JS_OSR and back. JS_OSR frames are
|
|
// ignored.
|
|
JS_OSR = 3,
|
|
|
|
KIND_BITCOUNT = 2,
|
|
KIND_MASK = (1 << KIND_BITCOUNT) - 1
|
|
};
|
|
|
|
// Keep these in sync with devtools/client/performance/modules/categories.js
|
|
enum class Category : uint32_t {
|
|
IDLE,
|
|
OTHER,
|
|
LAYOUT,
|
|
JS,
|
|
GCCC,
|
|
NETWORK,
|
|
GRAPHICS,
|
|
DOM,
|
|
|
|
FIRST = OTHER,
|
|
LAST = DOM,
|
|
};
|
|
|
|
static_assert(uint32_t(Category::LAST) <= (UINT32_MAX >> uint32_t(Kind::KIND_BITCOUNT)),
|
|
"Too many categories to fit into u32 with two bits reserved for the kind");
|
|
|
|
bool isLabelFrame() const
|
|
{
|
|
return kind() == Kind::LABEL;
|
|
}
|
|
|
|
bool isSpMarkerFrame() const
|
|
{
|
|
return kind() == Kind::SP_MARKER;
|
|
}
|
|
|
|
bool isJsFrame() const
|
|
{
|
|
Kind k = kind();
|
|
return k == Kind::JS_NORMAL || k == Kind::JS_OSR;
|
|
}
|
|
|
|
void setLabel(const char* aLabel) { label_ = aLabel; }
|
|
const char* label() const { return label_; }
|
|
|
|
const char* dynamicString() const { return dynamicString_; }
|
|
|
|
void initLabelFrame(const char* aLabel, const char* aDynamicString, void* sp,
|
|
uint32_t aLine, Category aCategory)
|
|
{
|
|
label_ = aLabel;
|
|
dynamicString_ = aDynamicString;
|
|
spOrScript = sp;
|
|
lineOrPcOffset = static_cast<int32_t>(aLine);
|
|
kindAndCategory_ = uint32_t(Kind::LABEL) | (uint32_t(aCategory) << uint32_t(Kind::KIND_BITCOUNT));
|
|
MOZ_ASSERT(isLabelFrame());
|
|
}
|
|
|
|
void initSpMarkerFrame(void* sp)
|
|
{
|
|
label_ = "";
|
|
dynamicString_ = nullptr;
|
|
spOrScript = sp;
|
|
lineOrPcOffset = 0;
|
|
kindAndCategory_ = uint32_t(Kind::SP_MARKER) | (uint32_t(Category::OTHER) << uint32_t(Kind::KIND_BITCOUNT));
|
|
MOZ_ASSERT(isSpMarkerFrame());
|
|
}
|
|
|
|
void initJsFrame(const char* aLabel, const char* aDynamicString, JSScript* aScript,
|
|
jsbytecode* aPc)
|
|
{
|
|
label_ = aLabel;
|
|
dynamicString_ = aDynamicString;
|
|
spOrScript = aScript;
|
|
lineOrPcOffset = pcToOffset(aScript, aPc);
|
|
kindAndCategory_ = uint32_t(Kind::JS_NORMAL) | (uint32_t(Category::JS) << uint32_t(Kind::KIND_BITCOUNT));
|
|
MOZ_ASSERT(isJsFrame());
|
|
}
|
|
|
|
void setKind(Kind aKind) {
|
|
kindAndCategory_ = uint32_t(aKind) | (uint32_t(category()) << uint32_t(Kind::KIND_BITCOUNT));
|
|
}
|
|
|
|
Kind kind() const {
|
|
return Kind(kindAndCategory_ & uint32_t(Kind::KIND_MASK));
|
|
}
|
|
|
|
Category category() const {
|
|
return Category(kindAndCategory_ >> uint32_t(Kind::KIND_BITCOUNT));
|
|
}
|
|
|
|
void* stackAddress() const {
|
|
MOZ_ASSERT(!isJsFrame());
|
|
return spOrScript;
|
|
}
|
|
|
|
JS_PUBLIC_API(JSScript*) script() const;
|
|
|
|
uint32_t line() const {
|
|
MOZ_ASSERT(!isJsFrame());
|
|
return static_cast<uint32_t>(lineOrPcOffset);
|
|
}
|
|
|
|
// Note that the pointer returned might be invalid.
|
|
JSScript* rawScript() const {
|
|
MOZ_ASSERT(isJsFrame());
|
|
void* script = spOrScript;
|
|
return static_cast<JSScript*>(script);
|
|
}
|
|
|
|
// We can't know the layout of JSScript, so look in vm/GeckoProfiler.cpp.
|
|
JS_FRIEND_API(jsbytecode*) pc() const;
|
|
void setPC(jsbytecode* pc);
|
|
|
|
void trace(JSTracer* trc);
|
|
|
|
// The offset of a pc into a script's code can actually be 0, so to
|
|
// signify a nullptr pc, use a -1 index. This is checked against in
|
|
// pc() and setPC() to set/get the right pc.
|
|
static const int32_t NullPCOffset = -1;
|
|
};
|
|
|
|
JS_FRIEND_API(void)
|
|
SetContextProfilingStack(JSContext* cx, ProfilingStack* profilingStack);
|
|
|
|
// GetContextProfilingStack also exists, but it's defined in RootingAPI.h.
|
|
|
|
JS_FRIEND_API(void)
|
|
EnableContextProfilingStack(JSContext* cx, bool enabled);
|
|
|
|
JS_FRIEND_API(void)
|
|
RegisterContextProfilingEventMarker(JSContext* cx, void (*fn)(const char*));
|
|
|
|
} // namespace js
|
|
|
|
namespace JS {
|
|
|
|
typedef void
|
|
(* RegisterThreadCallback)(const char* threadName, void* stackBase);
|
|
|
|
typedef void
|
|
(* UnregisterThreadCallback)();
|
|
|
|
JS_FRIEND_API(void)
|
|
SetProfilingThreadCallbacks(RegisterThreadCallback registerThread,
|
|
UnregisterThreadCallback unregisterThread);
|
|
|
|
} // namespace JS
|
|
|
|
// Each thread has its own ProfilingStack. That thread modifies the ProfilingStack,
|
|
// pushing and popping elements as necessary.
|
|
//
|
|
// The ProfilingStack is also read periodically by the profiler's sampler thread.
|
|
// This happens only when the thread that owns the ProfilingStack is suspended.
|
|
// So there are no genuine parallel accesses.
|
|
//
|
|
// However, it is possible for pushing/popping to be interrupted by a periodic
|
|
// sample. Because of this, we need pushing/popping to be effectively atomic.
|
|
//
|
|
// - When pushing a new frame, we increment the stack pointer -- making the new
|
|
// frame visible to the sampler thread -- only after the new frame has been
|
|
// fully written. The stack pointer is Atomic<uint32_t,ReleaseAcquire>, so
|
|
// the increment is a release-store, which ensures that this store is not
|
|
// reordered before the writes of the frame.
|
|
//
|
|
// - When popping an old frame, the only operation is the decrementing of the
|
|
// stack pointer, which is obviously atomic.
|
|
//
|
|
class ProfilingStack final
|
|
{
|
|
public:
|
|
ProfilingStack()
|
|
: stackPointer(0)
|
|
{}
|
|
|
|
~ProfilingStack();
|
|
|
|
void pushLabelFrame(const char* label, const char* dynamicString, void* sp,
|
|
uint32_t line, js::ProfilingStackFrame::Category category) {
|
|
uint32_t oldStackPointer = stackPointer;
|
|
|
|
if (MOZ_LIKELY(capacity > oldStackPointer) || MOZ_LIKELY(ensureCapacitySlow()))
|
|
frames[oldStackPointer].initLabelFrame(label, dynamicString, sp, line, category);
|
|
|
|
// This must happen at the end! The compiler will not reorder this
|
|
// update because stackPointer is Atomic<..., ReleaseAcquire>, so any
|
|
// the writes above will not be reordered below the stackPointer store.
|
|
// Do the read and the write as two separate statements, in order to
|
|
// make it clear that we don't need an atomic increment, which would be
|
|
// more expensive on x86 than the separate operations done here.
|
|
// This thread is the only one that ever changes the value of
|
|
// stackPointer.
|
|
stackPointer = oldStackPointer + 1;
|
|
}
|
|
|
|
void pushSpMarkerFrame(void* sp) {
|
|
uint32_t oldStackPointer = stackPointer;
|
|
|
|
if (MOZ_LIKELY(capacity > oldStackPointer) || MOZ_LIKELY(ensureCapacitySlow()))
|
|
frames[oldStackPointer].initSpMarkerFrame(sp);
|
|
|
|
// This must happen at the end, see the comment in pushLabelFrame.
|
|
stackPointer = oldStackPointer + 1;
|
|
}
|
|
|
|
void pushJsFrame(const char* label, const char* dynamicString, JSScript* script,
|
|
jsbytecode* pc) {
|
|
uint32_t oldStackPointer = stackPointer;
|
|
|
|
if (MOZ_LIKELY(capacity > oldStackPointer) || MOZ_LIKELY(ensureCapacitySlow()))
|
|
frames[oldStackPointer].initJsFrame(label, dynamicString, script, pc);
|
|
|
|
// This must happen at the end, see the comment in pushLabelFrame.
|
|
stackPointer = oldStackPointer + 1;
|
|
}
|
|
|
|
void pop() {
|
|
MOZ_ASSERT(stackPointer > 0);
|
|
// Do the read and the write as two separate statements, in order to
|
|
// make it clear that we don't need an atomic decrement, which would be
|
|
// more expensive on x86 than the separate operations done here.
|
|
// This thread is the only one that ever changes the value of
|
|
// stackPointer.
|
|
uint32_t oldStackPointer = stackPointer;
|
|
stackPointer = oldStackPointer - 1;
|
|
}
|
|
|
|
uint32_t stackSize() const { return std::min(uint32_t(stackPointer), stackCapacity()); }
|
|
uint32_t stackCapacity() const { return capacity; }
|
|
|
|
private:
|
|
// Out of line path for expanding the buffer, since otherwise this would get inlined in every
|
|
// DOM WebIDL call.
|
|
MOZ_COLD MOZ_MUST_USE bool ensureCapacitySlow();
|
|
|
|
// No copying.
|
|
ProfilingStack(const ProfilingStack&) = delete;
|
|
void operator=(const ProfilingStack&) = delete;
|
|
|
|
// No moving either.
|
|
ProfilingStack(ProfilingStack&&) = delete;
|
|
void operator=(ProfilingStack&&) = delete;
|
|
|
|
uint32_t capacity = 0;
|
|
|
|
public:
|
|
|
|
// The pointer to the stack frames, this is read from the profiler thread and written from the
|
|
// current thread.
|
|
//
|
|
// This is effectively a unique pointer.
|
|
mozilla::Atomic<js::ProfilingStackFrame*, mozilla::SequentiallyConsistent,
|
|
mozilla::recordreplay::Behavior::DontPreserve> frames { nullptr };
|
|
|
|
// This may exceed the capacity, so instead use the stackSize() method to
|
|
// determine the number of valid frames in stackFrames. When this is less
|
|
// than stackCapacity(), it refers to the first free stackframe past the top
|
|
// of the in-use stack (i.e. frames[stackPointer - 1] is the top stack
|
|
// frame).
|
|
//
|
|
// WARNING WARNING WARNING
|
|
//
|
|
// This is an atomic variable that uses ReleaseAcquire memory ordering.
|
|
// See the "Concurrency considerations" paragraph at the top of this file
|
|
// for more details.
|
|
mozilla::Atomic<uint32_t, mozilla::ReleaseAcquire,
|
|
mozilla::recordreplay::Behavior::DontPreserve> stackPointer;
|
|
};
|
|
|
|
namespace js {
|
|
|
|
class AutoGeckoProfilerEntry;
|
|
class GeckoProfilerEntryMarker;
|
|
class GeckoProfilerBaselineOSRMarker;
|
|
|
|
class GeckoProfilerThread
|
|
{
|
|
friend class AutoGeckoProfilerEntry;
|
|
friend class GeckoProfilerEntryMarker;
|
|
friend class GeckoProfilerBaselineOSRMarker;
|
|
|
|
ProfilingStack* profilingStack_;
|
|
|
|
public:
|
|
GeckoProfilerThread();
|
|
|
|
uint32_t stackPointer() { MOZ_ASSERT(installed()); return profilingStack_->stackPointer; }
|
|
ProfilingStackFrame* stack() { return profilingStack_->frames; }
|
|
ProfilingStack* getProfilingStack() { return profilingStack_; }
|
|
|
|
/* management of whether instrumentation is on or off */
|
|
bool installed() { return profilingStack_ != nullptr; }
|
|
|
|
void setProfilingStack(ProfilingStack* profilingStack);
|
|
void trace(JSTracer* trc);
|
|
|
|
/*
|
|
* Functions which are the actual instrumentation to track run information
|
|
*
|
|
* - enter: a function has started to execute
|
|
* - updatePC: updates the pc information about where a function
|
|
* is currently executing
|
|
* - exit: this function has ceased execution, and no further
|
|
* entries/exits will be made
|
|
*/
|
|
bool enter(JSContext* cx, JSScript* script, JSFunction* maybeFun);
|
|
void exit(JSScript* script, JSFunction* maybeFun);
|
|
inline void updatePC(JSContext* cx, JSScript* script, jsbytecode* pc);
|
|
};
|
|
|
|
} // namespace js
|
|
|
|
#endif /* js_ProfilingStack_h */
|