gecko-dev/xpcom/ds/nsAtomTable.cpp

834 строки
24 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/HashFunctions.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/Mutex.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/Sprintf.h"
#include "mozilla/Unused.h"
#include "nsAtomTable.h"
#include "nsStaticAtom.h"
#include "nsString.h"
#include "nsCRT.h"
#include "PLDHashTable.h"
#include "prenv.h"
#include "nsThreadUtils.h"
#include "nsDataHashtable.h"
#include "nsHashKeys.h"
#include "nsAutoPtr.h"
#include "nsUnicharUtils.h"
#include "nsPrintfCString.h"
// There are two kinds of atoms handled by this module.
//
// - DynamicAtom: the atom itself is heap allocated, as is the nsStringBuffer it
// points to. |gAtomTable| holds weak references to them DynamicAtoms. When
// the refcount of a DynamicAtom drops to zero, we increment a static counter.
// When that counter reaches a certain threshold, we iterate over the atom
// table, removing and deleting DynamicAtoms with refcount zero. This allows
// us to avoid acquiring the atom table lock during normal refcounting.
//
// - StaticAtom: the atom itself is heap allocated, but it points to a static
// nsStringBuffer. |gAtomTable| effectively owns StaticAtoms, because such
// atoms ignore all AddRef/Release calls, which ensures they stay alive until
// |gAtomTable| itself is destroyed whereupon they are explicitly deleted.
//
// Note that gAtomTable is used on multiple threads, and callers must
// acquire gAtomTableLock before touching it.
using namespace mozilla;
//----------------------------------------------------------------------
class CheckStaticAtomSizes
{
CheckStaticAtomSizes()
{
static_assert((sizeof(nsFakeStringBuffer<1>().mRefCnt) ==
sizeof(nsStringBuffer().mRefCount)) &&
(sizeof(nsFakeStringBuffer<1>().mSize) ==
sizeof(nsStringBuffer().mStorageSize)) &&
(offsetof(nsFakeStringBuffer<1>, mRefCnt) ==
offsetof(nsStringBuffer, mRefCount)) &&
(offsetof(nsFakeStringBuffer<1>, mSize) ==
offsetof(nsStringBuffer, mStorageSize)) &&
(offsetof(nsFakeStringBuffer<1>, mStringData) ==
sizeof(nsStringBuffer)),
"mocked-up strings' representations should be compatible");
}
};
//----------------------------------------------------------------------
static Atomic<uint32_t, ReleaseAcquire> gUnusedAtomCount(0);
class DynamicAtom final : public nsIAtom
{
public:
static already_AddRefed<DynamicAtom> Create(const nsAString& aString, uint32_t aHash)
{
// The refcount is appropriately initialized in the constructor.
return dont_AddRef(new DynamicAtom(aString, aHash));
}
static void GCAtomTable();
enum class GCKind {
RegularOperation,
Shutdown,
};
static void GCAtomTableLocked(const MutexAutoLock& aProofOfLock,
GCKind aKind);
private:
DynamicAtom(const nsAString& aString, uint32_t aHash)
: mRefCnt(1)
{
mLength = aString.Length();
mIsStatic = false;
RefPtr<nsStringBuffer> buf = nsStringBuffer::FromString(aString);
if (buf) {
mString = static_cast<char16_t*>(buf->Data());
} else {
const size_t size = (mLength + 1) * sizeof(char16_t);
buf = nsStringBuffer::Alloc(size);
if (MOZ_UNLIKELY(!buf)) {
// We OOM because atom allocations should be small and it's hard to
// handle them more gracefully in a constructor.
NS_ABORT_OOM(size);
}
mString = static_cast<char16_t*>(buf->Data());
CopyUnicodeTo(aString, 0, mString, mLength);
mString[mLength] = char16_t(0);
}
mHash = aHash;
MOZ_ASSERT(mHash == HashString(mString, mLength));
NS_ASSERTION(mString[mLength] == char16_t(0), "null terminated");
NS_ASSERTION(buf && buf->StorageSize() >= (mLength + 1) * sizeof(char16_t),
"enough storage");
NS_ASSERTION(Equals(aString), "correct data");
// Take ownership of buffer
mozilla::Unused << buf.forget();
}
private:
// We don't need a virtual destructor because we always delete via a
// DynamicAtom* pointer (in GCAtomTable()), not an nsIAtom* pointer.
~DynamicAtom();
public:
NS_DECL_THREADSAFE_ISUPPORTS
NS_DECL_NSIATOM
};
#if defined(NS_BUILD_REFCNT_LOGGING)
// nsFakeStringBuffers don't really use the refcounting system, but we
// have to give a coherent series of addrefs and releases to the
// refcount logging system, or we'll hit assertions when running with
// XPCOM_MEM_LOG_CLASSES=nsStringBuffer.
class FakeBufferRefcountHelper
{
public:
explicit FakeBufferRefcountHelper(nsStringBuffer* aBuffer)
: mBuffer(aBuffer)
{
// Account for the initial static refcount of 1, so that we don't
// hit a refcount logging assertion when this object first appears
// with a refcount of 2.
NS_LOG_ADDREF(aBuffer, 1, "nsStringBuffer", sizeof(nsStringBuffer));
}
~FakeBufferRefcountHelper()
{
// We told the refcount logging system in the ctor that this
// object was created, so now we have to tell it that it was
// destroyed, to avoid leak reports. This may cause odd the
// refcount isn't actually 0.
NS_LOG_RELEASE(mBuffer, 0, "nsStringBuffer");
}
private:
nsStringBuffer* mBuffer;
};
UniquePtr<nsTArray<FakeBufferRefcountHelper>> gFakeBuffers;
#endif
class StaticAtom final : public nsIAtom
{
public:
StaticAtom(nsStringBuffer* aStringBuffer, uint32_t aLength, uint32_t aHash)
{
mLength = aLength;
mIsStatic = true;
mString = static_cast<char16_t*>(aStringBuffer->Data());
#if defined(NS_BUILD_REFCNT_LOGGING)
MOZ_ASSERT(NS_IsMainThread());
if (!gFakeBuffers) {
gFakeBuffers = MakeUnique<nsTArray<FakeBufferRefcountHelper>>();
}
gFakeBuffers->AppendElement(aStringBuffer);
#endif
// Technically we could currently avoid doing this addref by instead making
// the static atom buffers have an initial refcount of 2.
aStringBuffer->AddRef();
mHash = aHash;
MOZ_ASSERT(mHash == HashString(mString, mLength));
MOZ_ASSERT(mString[mLength] == char16_t(0), "null terminated");
MOZ_ASSERT(aStringBuffer &&
aStringBuffer->StorageSize() == (mLength + 1) * sizeof(char16_t),
"correct storage");
}
// We don't need a virtual destructor because we always delete via a
// StaticAtom* pointer (in AtomTableClearEntry()), not an nsIAtom* pointer.
~StaticAtom() {}
NS_DECL_ISUPPORTS
NS_DECL_NSIATOM
};
NS_IMPL_QUERY_INTERFACE(StaticAtom, nsIAtom)
NS_IMETHODIMP_(MozExternalRefCountType)
StaticAtom::AddRef()
{
return 2;
}
NS_IMETHODIMP_(MozExternalRefCountType)
StaticAtom::Release()
{
return 1;
}
NS_IMETHODIMP
DynamicAtom::ScriptableToString(nsAString& aBuf)
{
nsStringBuffer::FromData(mString)->ToString(mLength, aBuf);
return NS_OK;
}
NS_IMETHODIMP
StaticAtom::ScriptableToString(nsAString& aBuf)
{
nsStringBuffer::FromData(mString)->ToString(mLength, aBuf);
return NS_OK;
}
NS_IMETHODIMP
DynamicAtom::ToUTF8String(nsACString& aBuf)
{
CopyUTF16toUTF8(nsDependentString(mString, mLength), aBuf);
return NS_OK;
}
NS_IMETHODIMP
StaticAtom::ToUTF8String(nsACString& aBuf)
{
CopyUTF16toUTF8(nsDependentString(mString, mLength), aBuf);
return NS_OK;
}
NS_IMETHODIMP
DynamicAtom::ScriptableEquals(const nsAString& aString, bool* aResult)
{
*aResult = aString.Equals(nsDependentString(mString, mLength));
return NS_OK;
}
NS_IMETHODIMP
StaticAtom::ScriptableEquals(const nsAString& aString, bool* aResult)
{
*aResult = aString.Equals(nsDependentString(mString, mLength));
return NS_OK;
}
NS_IMETHODIMP_(size_t)
DynamicAtom::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf)
{
size_t n = aMallocSizeOf(this);
n += nsStringBuffer::FromData(mString)->SizeOfIncludingThisIfUnshared(
aMallocSizeOf);
return n;
}
NS_IMETHODIMP_(size_t)
StaticAtom::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf)
{
size_t n = aMallocSizeOf(this);
// Don't measure the string buffer pointed to by the StaticAtom because it's
// in static memory.
return n;
}
//----------------------------------------------------------------------
/**
* The shared hash table for atom lookups.
*
* Callers must hold gAtomTableLock before manipulating the table.
*/
static PLDHashTable* gAtomTable;
static Mutex* gAtomTableLock;
struct AtomTableKey
{
AtomTableKey(const char16_t* aUTF16String, uint32_t aLength, uint32_t aHash)
: mUTF16String(aUTF16String)
, mUTF8String(nullptr)
, mLength(aLength)
, mHash(aHash)
{
MOZ_ASSERT(mHash == HashString(mUTF16String, mLength));
}
AtomTableKey(const char* aUTF8String, uint32_t aLength, uint32_t aHash)
: mUTF16String(nullptr)
, mUTF8String(aUTF8String)
, mLength(aLength)
, mHash(aHash)
{
mozilla::DebugOnly<bool> err;
MOZ_ASSERT(aHash == HashUTF8AsUTF16(mUTF8String, mLength, &err));
}
AtomTableKey(const char16_t* aUTF16String, uint32_t aLength,
uint32_t* aHashOut)
: mUTF16String(aUTF16String)
, mUTF8String(nullptr)
, mLength(aLength)
{
mHash = HashString(mUTF16String, mLength);
*aHashOut = mHash;
}
AtomTableKey(const char* aUTF8String, uint32_t aLength, uint32_t* aHashOut)
: mUTF16String(nullptr)
, mUTF8String(aUTF8String)
, mLength(aLength)
{
bool err;
mHash = HashUTF8AsUTF16(mUTF8String, mLength, &err);
if (err) {
mUTF8String = nullptr;
mLength = 0;
mHash = 0;
}
*aHashOut = mHash;
}
const char16_t* mUTF16String;
const char* mUTF8String;
uint32_t mLength;
uint32_t mHash;
};
struct AtomTableEntry : public PLDHashEntryHdr
{
// These references are either to DynamicAtoms, in which case they are
// non-owning, or they are to StaticAtoms, which aren't really refcounted.
// See the comment at the top of this file for more details.
nsIAtom* MOZ_NON_OWNING_REF mAtom;
};
static PLDHashNumber
AtomTableGetHash(const void* aKey)
{
const AtomTableKey* k = static_cast<const AtomTableKey*>(aKey);
return k->mHash;
}
static bool
AtomTableMatchKey(const PLDHashEntryHdr* aEntry, const void* aKey)
{
const AtomTableEntry* he = static_cast<const AtomTableEntry*>(aEntry);
const AtomTableKey* k = static_cast<const AtomTableKey*>(aKey);
if (k->mUTF8String) {
return
CompareUTF8toUTF16(nsDependentCSubstring(k->mUTF8String,
k->mUTF8String + k->mLength),
nsDependentAtomString(he->mAtom)) == 0;
}
return he->mAtom->Equals(k->mUTF16String, k->mLength);
}
static void
AtomTableClearEntry(PLDHashTable* aTable, PLDHashEntryHdr* aEntry)
{
auto entry = static_cast<AtomTableEntry*>(aEntry);
nsIAtom* atom = entry->mAtom;
if (atom->IsStaticAtom()) {
// This case -- when the entry being cleared holds a StaticAtom -- only
// occurs when gAtomTable is destroyed, whereupon all StaticAtoms within it
// must be explicitly deleted. The cast is required because StaticAtom
// doesn't have a virtual destructor.
delete static_cast<StaticAtom*>(atom);
}
}
static void
AtomTableInitEntry(PLDHashEntryHdr* aEntry, const void* aKey)
{
static_cast<AtomTableEntry*>(aEntry)->mAtom = nullptr;
}
static const PLDHashTableOps AtomTableOps = {
AtomTableGetHash,
AtomTableMatchKey,
PLDHashTable::MoveEntryStub,
AtomTableClearEntry,
AtomTableInitEntry
};
//----------------------------------------------------------------------
#define RECENTLY_USED_MAIN_THREAD_ATOM_CACHE_SIZE 31
static nsIAtom*
sRecentlyUsedMainThreadAtoms[RECENTLY_USED_MAIN_THREAD_ATOM_CACHE_SIZE] = {};
void
DynamicAtom::GCAtomTable()
{
if (NS_IsMainThread()) {
MutexAutoLock lock(*gAtomTableLock);
GCAtomTableLocked(lock, GCKind::RegularOperation);
}
}
void
DynamicAtom::GCAtomTableLocked(const MutexAutoLock& aProofOfLock,
GCKind aKind)
{
MOZ_ASSERT(NS_IsMainThread());
for (uint32_t i = 0; i < RECENTLY_USED_MAIN_THREAD_ATOM_CACHE_SIZE; ++i) {
sRecentlyUsedMainThreadAtoms[i] = nullptr;
}
uint32_t removedCount = 0; // Use a non-atomic temporary for cheaper increments.
nsAutoCString nonZeroRefcountAtoms;
uint32_t nonZeroRefcountAtomsCount = 0;
for (auto i = gAtomTable->Iter(); !i.Done(); i.Next()) {
auto entry = static_cast<AtomTableEntry*>(i.Get());
if (entry->mAtom->IsStaticAtom()) {
continue;
}
auto atom = static_cast<DynamicAtom*>(entry->mAtom);
if (atom->mRefCnt == 0) {
i.Remove();
delete atom;
++removedCount;
}
#ifdef NS_FREE_PERMANENT_DATA
else if (aKind == GCKind::Shutdown && PR_GetEnv("XPCOM_MEM_BLOAT_LOG")) {
// Only report leaking atoms in leak-checking builds in a run
// where we are checking for leaks, during shutdown. If
// something is anomalous, then we'll assert later in this
// function.
nsAutoCString name;
atom->ToUTF8String(name);
if (nonZeroRefcountAtomsCount == 0) {
nonZeroRefcountAtoms = name;
} else if (nonZeroRefcountAtomsCount < 20) {
nonZeroRefcountAtoms += NS_LITERAL_CSTRING(",") + name;
} else if (nonZeroRefcountAtomsCount == 20) {
nonZeroRefcountAtoms += NS_LITERAL_CSTRING(",...");
}
nonZeroRefcountAtomsCount++;
}
#endif
}
if (nonZeroRefcountAtomsCount) {
nsPrintfCString msg("%d dynamic atom(s) with non-zero refcount: %s",
nonZeroRefcountAtomsCount, nonZeroRefcountAtoms.get());
NS_ASSERTION(nonZeroRefcountAtomsCount == 0, msg.get());
}
// We would like to assert that gUnusedAtomCount matches the number of atoms
// we found in the table which we removed. During the course of this function,
// the atom table is locked, but this lock is not acquired for AddRef() and
// Release() calls. This means we might see a gUnusedAtomCount value in
// between, say, AddRef() incrementing mRefCnt and it decrementing
// gUnusedAtomCount. So, we don't bother asserting that there are no unused
// atoms at the end of a regular GC. But we can (and do) assert thist just
// after the last GC at shutdown.
//
// Note that, barring refcounting bugs, an atom can only go from a zero
// refcount to a non-zero refcount while the atom table lock is held, so
// so we won't try to resurrect a zero refcount atom while trying to delete
// it.
MOZ_ASSERT_IF(aKind == GCKind::Shutdown, removedCount == gUnusedAtomCount);
gUnusedAtomCount -= removedCount;
}
NS_IMPL_QUERY_INTERFACE(DynamicAtom, nsIAtom)
NS_IMETHODIMP_(MozExternalRefCountType)
DynamicAtom::AddRef(void)
{
nsrefcnt count = ++mRefCnt;
if (count == 1) {
gUnusedAtomCount--;
}
return count;
}
#ifdef DEBUG
// We set a lower GC threshold for atoms in debug builds so that we exercise
// the GC machinery more often.
static const uint32_t kAtomGCThreshold = 20;
#else
static const uint32_t kAtomGCThreshold = 10000;
#endif
NS_IMETHODIMP_(MozExternalRefCountType)
DynamicAtom::Release(void)
{
MOZ_ASSERT(mRefCnt > 0);
nsrefcnt count = --mRefCnt;
if (count == 0) {
if (++gUnusedAtomCount >= kAtomGCThreshold) {
GCAtomTable();
}
}
return count;
}
DynamicAtom::~DynamicAtom()
{
nsStringBuffer::FromData(mString)->Release();
}
//----------------------------------------------------------------------
class StaticAtomEntry : public PLDHashEntryHdr
{
public:
typedef const nsAString& KeyType;
typedef const nsAString* KeyTypePointer;
explicit StaticAtomEntry(KeyTypePointer aKey) {}
StaticAtomEntry(const StaticAtomEntry& aOther) : mAtom(aOther.mAtom) {}
// We do not delete the atom because that's done when gAtomTable is
// destroyed -- which happens immediately after gStaticAtomTable is destroyed
// -- in NS_PurgeAtomTable().
~StaticAtomEntry() {}
bool KeyEquals(KeyTypePointer aKey) const
{
return mAtom->Equals(*aKey);
}
static KeyTypePointer KeyToPointer(KeyType aKey) { return &aKey; }
static PLDHashNumber HashKey(KeyTypePointer aKey)
{
return HashString(*aKey);
}
enum { ALLOW_MEMMOVE = true };
// StaticAtoms aren't really refcounted. Because these entries live in a
// global hashtable, this reference is essentially owning.
StaticAtom* MOZ_OWNING_REF mAtom;
};
/**
* A hashtable of static atoms that existed at app startup. This hashtable
* helps nsHtml5AtomTable.
*/
typedef nsTHashtable<StaticAtomEntry> StaticAtomTable;
static StaticAtomTable* gStaticAtomTable = nullptr;
/**
* Whether it is still OK to add atoms to gStaticAtomTable.
*/
static bool gStaticAtomTableSealed = false;
// The atom table very quickly gets 10,000+ entries in it (or even 100,000+).
// But choosing the best initial length has some subtleties: we add ~2700
// static atoms to the table at start-up, and then we start adding and removing
// dynamic atoms. If we make the table too big to start with, when the first
// dynamic atom gets removed the load factor will be < 25% and so we will
// shrink it to 4096 entries.
//
// By choosing an initial length of 4096, we get an initial capacity of 8192.
// That's the biggest initial capacity that will let us be > 25% full when the
// first dynamic atom is removed (when the count is ~2700), thus avoiding any
// shrinking.
#define ATOM_HASHTABLE_INITIAL_LENGTH 4096
void
NS_InitAtomTable()
{
MOZ_ASSERT(!gAtomTable);
gAtomTable = new PLDHashTable(&AtomTableOps, sizeof(AtomTableEntry),
ATOM_HASHTABLE_INITIAL_LENGTH);
gAtomTableLock = new Mutex("Atom Table Lock");
// Bug 1340710 has caused us to generate an empty atom at arbitrary times
// after startup. If we end up creating one before nsGkAtoms::_empty is
// registered, we get an assertion about transmuting a dynamic atom into a
// static atom. In order to avoid that, we register an empty string static
// atom as soon as we initialize the atom table to guarantee that the empty
// string atom will always be static.
NS_STATIC_ATOM_BUFFER(empty, "");
static nsIAtom* empty_atom = nullptr;
static const nsStaticAtom default_atoms[] = {
NS_STATIC_ATOM(empty, &empty_atom)
};
NS_RegisterStaticAtoms(default_atoms);
}
void
NS_ShutdownAtomTable()
{
#if defined(NS_BUILD_REFCNT_LOGGING)
gFakeBuffers = nullptr;
#endif
delete gStaticAtomTable;
gStaticAtomTable = nullptr;
#ifdef NS_FREE_PERMANENT_DATA
// Do a final GC to satisfy leak checking. We skip this step in release
// builds.
{
MutexAutoLock lock(*gAtomTableLock);
DynamicAtom::GCAtomTableLocked(lock, DynamicAtom::GCKind::Shutdown);
}
#endif
delete gAtomTable;
gAtomTable = nullptr;
delete gAtomTableLock;
gAtomTableLock = nullptr;
}
void
NS_SizeOfAtomTablesIncludingThis(MallocSizeOf aMallocSizeOf,
size_t* aMain, size_t* aStatic)
{
MutexAutoLock lock(*gAtomTableLock);
*aMain = gAtomTable->ShallowSizeOfIncludingThis(aMallocSizeOf);
for (auto iter = gAtomTable->Iter(); !iter.Done(); iter.Next()) {
auto entry = static_cast<AtomTableEntry*>(iter.Get());
*aMain += entry->mAtom->SizeOfIncludingThis(aMallocSizeOf);
}
// The atoms pointed to by gStaticAtomTable are also pointed to by gAtomTable,
// and they're measured by the loop above. So no need to measure them here.
*aStatic = gStaticAtomTable
? gStaticAtomTable->ShallowSizeOfIncludingThis(aMallocSizeOf)
: 0;
}
static inline AtomTableEntry*
GetAtomHashEntry(const char* aString, uint32_t aLength, uint32_t* aHashOut)
{
gAtomTableLock->AssertCurrentThreadOwns();
AtomTableKey key(aString, aLength, aHashOut);
// This is an infallible add.
return static_cast<AtomTableEntry*>(gAtomTable->Add(&key));
}
static inline AtomTableEntry*
GetAtomHashEntry(const char16_t* aString, uint32_t aLength, uint32_t* aHashOut)
{
gAtomTableLock->AssertCurrentThreadOwns();
AtomTableKey key(aString, aLength, aHashOut);
// This is an infallible add.
return static_cast<AtomTableEntry*>(gAtomTable->Add(&key));
}
void
RegisterStaticAtoms(const nsStaticAtom* aAtoms, uint32_t aAtomCount)
{
MutexAutoLock lock(*gAtomTableLock);
MOZ_RELEASE_ASSERT(!gStaticAtomTableSealed,
"Atom table has already been sealed!");
if (!gStaticAtomTable) {
gStaticAtomTable = new StaticAtomTable();
}
for (uint32_t i = 0; i < aAtomCount; ++i) {
nsStringBuffer* stringBuffer = aAtoms[i].mStringBuffer;
nsIAtom** atomp = aAtoms[i].mAtom;
MOZ_ASSERT(nsCRT::IsAscii(static_cast<char16_t*>(stringBuffer->Data())));
uint32_t stringLen = stringBuffer->StorageSize() / sizeof(char16_t) - 1;
uint32_t hash;
AtomTableEntry* he =
GetAtomHashEntry(static_cast<char16_t*>(stringBuffer->Data()),
stringLen, &hash);
nsIAtom* atom = he->mAtom;
if (atom) {
// Disallow creating a dynamic atom, and then later, while the
// dynamic atom is still alive, registering that same atom as a
// static atom. It causes subtle bugs, and we're programming in
// C++ here, not Smalltalk.
if (!atom->IsStaticAtom()) {
nsAutoCString name;
atom->ToUTF8String(name);
MOZ_CRASH_UNSAFE_PRINTF(
"Static atom registration for %s should be pushed back", name.get());
}
} else {
atom = new StaticAtom(stringBuffer, stringLen, hash);
he->mAtom = atom;
}
*atomp = atom;
if (!gStaticAtomTableSealed) {
StaticAtomEntry* entry =
gStaticAtomTable->PutEntry(nsDependentAtomString(atom));
MOZ_ASSERT(atom->IsStaticAtom());
entry->mAtom = static_cast<StaticAtom*>(atom);
}
}
}
already_AddRefed<nsIAtom>
NS_Atomize(const char* aUTF8String)
{
return NS_Atomize(nsDependentCString(aUTF8String));
}
already_AddRefed<nsIAtom>
NS_Atomize(const nsACString& aUTF8String)
{
MutexAutoLock lock(*gAtomTableLock);
uint32_t hash;
AtomTableEntry* he = GetAtomHashEntry(aUTF8String.Data(),
aUTF8String.Length(),
&hash);
if (he->mAtom) {
nsCOMPtr<nsIAtom> atom = he->mAtom;
return atom.forget();
}
// This results in an extra addref/release of the nsStringBuffer.
// Unfortunately there doesn't seem to be any APIs to avoid that.
// Actually, now there is, sort of: ForgetSharedBuffer.
nsString str;
CopyUTF8toUTF16(aUTF8String, str);
RefPtr<DynamicAtom> atom = DynamicAtom::Create(str, hash);
he->mAtom = atom;
return atom.forget();
}
already_AddRefed<nsIAtom>
NS_Atomize(const char16_t* aUTF16String)
{
return NS_Atomize(nsDependentString(aUTF16String));
}
already_AddRefed<nsIAtom>
NS_Atomize(const nsAString& aUTF16String)
{
MutexAutoLock lock(*gAtomTableLock);
uint32_t hash;
AtomTableEntry* he = GetAtomHashEntry(aUTF16String.Data(),
aUTF16String.Length(),
&hash);
if (he->mAtom) {
nsCOMPtr<nsIAtom> atom = he->mAtom;
return atom.forget();
}
RefPtr<DynamicAtom> atom = DynamicAtom::Create(aUTF16String, hash);
he->mAtom = atom;
return atom.forget();
}
already_AddRefed<nsIAtom>
NS_AtomizeMainThread(const nsAString& aUTF16String)
{
MOZ_ASSERT(NS_IsMainThread());
nsCOMPtr<nsIAtom> retVal;
uint32_t hash;
AtomTableKey key(aUTF16String.Data(), aUTF16String.Length(), &hash);
uint32_t index = hash % RECENTLY_USED_MAIN_THREAD_ATOM_CACHE_SIZE;
nsIAtom* atom =
sRecentlyUsedMainThreadAtoms[index];
if (atom) {
uint32_t length = atom->GetLength();
if (length == key.mLength &&
(memcmp(atom->GetUTF16String(),
key.mUTF16String, length * sizeof(char16_t)) == 0)) {
retVal = atom;
return retVal.forget();
}
}
MutexAutoLock lock(*gAtomTableLock);
AtomTableEntry* he = static_cast<AtomTableEntry*>(gAtomTable->Add(&key));
if (he->mAtom) {
retVal = he->mAtom;
} else {
retVal = DynamicAtom::Create(aUTF16String, hash);
he->mAtom = retVal;
}
sRecentlyUsedMainThreadAtoms[index] = retVal;
return retVal.forget();
}
nsrefcnt
NS_GetNumberOfAtoms(void)
{
DynamicAtom::GCAtomTable(); // Trigger a GC so that we return a deterministic result.
MutexAutoLock lock(*gAtomTableLock);
return gAtomTable->EntryCount();
}
nsIAtom*
NS_GetStaticAtom(const nsAString& aUTF16String)
{
NS_PRECONDITION(gStaticAtomTable, "Static atom table not created yet.");
NS_PRECONDITION(gStaticAtomTableSealed, "Static atom table not sealed yet.");
StaticAtomEntry* entry = gStaticAtomTable->GetEntry(aUTF16String);
return entry ? entry->mAtom : nullptr;
}
void
NS_SealStaticAtomTable()
{
gStaticAtomTableSealed = true;
}