зеркало из https://github.com/mozilla/gecko-dev.git
1012 строки
33 KiB
C++
1012 строки
33 KiB
C++
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-
|
|
*
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "ImageLogging.h" // Must appear first.
|
|
|
|
#include "nsJPEGDecoder.h"
|
|
|
|
#include <cstdint>
|
|
|
|
#include "imgFrame.h"
|
|
#include "Orientation.h"
|
|
#include "EXIF.h"
|
|
|
|
#include "nsIInputStream.h"
|
|
|
|
#include "nspr.h"
|
|
#include "nsCRT.h"
|
|
#include "gfxColor.h"
|
|
|
|
#include "jerror.h"
|
|
|
|
#include "gfxPlatform.h"
|
|
#include "mozilla/EndianUtils.h"
|
|
#include "mozilla/gfx/Types.h"
|
|
#include "mozilla/Telemetry.h"
|
|
|
|
extern "C" {
|
|
#include "iccjpeg.h"
|
|
}
|
|
|
|
#if MOZ_BIG_ENDIAN
|
|
#define MOZ_JCS_EXT_NATIVE_ENDIAN_XRGB JCS_EXT_XRGB
|
|
#else
|
|
#define MOZ_JCS_EXT_NATIVE_ENDIAN_XRGB JCS_EXT_BGRX
|
|
#endif
|
|
|
|
static void cmyk_convert_rgb(JSAMPROW row, JDIMENSION width);
|
|
|
|
using mozilla::gfx::SurfaceFormat;
|
|
|
|
namespace mozilla {
|
|
namespace image {
|
|
|
|
static mozilla::LazyLogModule sJPEGLog("JPEGDecoder");
|
|
|
|
static mozilla::LazyLogModule sJPEGDecoderAccountingLog("JPEGDecoderAccounting");
|
|
|
|
static qcms_profile*
|
|
GetICCProfile(struct jpeg_decompress_struct& info)
|
|
{
|
|
JOCTET* profilebuf;
|
|
uint32_t profileLength;
|
|
qcms_profile* profile = nullptr;
|
|
|
|
if (read_icc_profile(&info, &profilebuf, &profileLength)) {
|
|
profile = qcms_profile_from_memory(profilebuf, profileLength);
|
|
free(profilebuf);
|
|
}
|
|
|
|
return profile;
|
|
}
|
|
|
|
METHODDEF(void) init_source (j_decompress_ptr jd);
|
|
METHODDEF(boolean) fill_input_buffer (j_decompress_ptr jd);
|
|
METHODDEF(void) skip_input_data (j_decompress_ptr jd, long num_bytes);
|
|
METHODDEF(void) term_source (j_decompress_ptr jd);
|
|
METHODDEF(void) my_error_exit (j_common_ptr cinfo);
|
|
|
|
// Normal JFIF markers can't have more bytes than this.
|
|
#define MAX_JPEG_MARKER_LENGTH (((uint32_t)1 << 16) - 1)
|
|
|
|
nsJPEGDecoder::nsJPEGDecoder(RasterImage* aImage,
|
|
Decoder::DecodeStyle aDecodeStyle)
|
|
: Decoder(aImage)
|
|
, mLexer(Transition::ToUnbuffered(State::FINISHED_JPEG_DATA,
|
|
State::JPEG_DATA,
|
|
SIZE_MAX),
|
|
Transition::TerminateSuccess())
|
|
, mDecodeStyle(aDecodeStyle)
|
|
{
|
|
mState = JPEG_HEADER;
|
|
mReading = true;
|
|
mImageData = nullptr;
|
|
|
|
mBytesToSkip = 0;
|
|
memset(&mInfo, 0, sizeof(jpeg_decompress_struct));
|
|
memset(&mSourceMgr, 0, sizeof(mSourceMgr));
|
|
mInfo.client_data = (void*)this;
|
|
|
|
mSegment = nullptr;
|
|
mSegmentLen = 0;
|
|
|
|
mBackBuffer = nullptr;
|
|
mBackBufferLen = mBackBufferSize = mBackBufferUnreadLen = 0;
|
|
|
|
mInProfile = nullptr;
|
|
mTransform = nullptr;
|
|
|
|
mCMSMode = 0;
|
|
|
|
MOZ_LOG(sJPEGDecoderAccountingLog, LogLevel::Debug,
|
|
("nsJPEGDecoder::nsJPEGDecoder: Creating JPEG decoder %p",
|
|
this));
|
|
}
|
|
|
|
nsJPEGDecoder::~nsJPEGDecoder()
|
|
{
|
|
// Step 8: Release JPEG decompression object
|
|
mInfo.src = nullptr;
|
|
jpeg_destroy_decompress(&mInfo);
|
|
|
|
free(mBackBuffer);
|
|
mBackBuffer = nullptr;
|
|
if (mTransform) {
|
|
qcms_transform_release(mTransform);
|
|
}
|
|
if (mInProfile) {
|
|
qcms_profile_release(mInProfile);
|
|
}
|
|
|
|
MOZ_LOG(sJPEGDecoderAccountingLog, LogLevel::Debug,
|
|
("nsJPEGDecoder::~nsJPEGDecoder: Destroying JPEG decoder %p",
|
|
this));
|
|
}
|
|
|
|
Maybe<Telemetry::HistogramID>
|
|
nsJPEGDecoder::SpeedHistogram() const
|
|
{
|
|
return Some(Telemetry::IMAGE_DECODE_SPEED_JPEG);
|
|
}
|
|
|
|
nsresult
|
|
nsJPEGDecoder::InitInternal()
|
|
{
|
|
mCMSMode = gfxPlatform::GetCMSMode();
|
|
if (GetSurfaceFlags() & SurfaceFlags::NO_COLORSPACE_CONVERSION) {
|
|
mCMSMode = eCMSMode_Off;
|
|
}
|
|
|
|
// We set up the normal JPEG error routines, then override error_exit.
|
|
mInfo.err = jpeg_std_error(&mErr.pub);
|
|
// mInfo.err = jpeg_std_error(&mErr.pub);
|
|
mErr.pub.error_exit = my_error_exit;
|
|
// Establish the setjmp return context for my_error_exit to use.
|
|
if (setjmp(mErr.setjmp_buffer)) {
|
|
// If we get here, the JPEG code has signaled an error, and initialization
|
|
// has failed.
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
// Step 1: allocate and initialize JPEG decompression object
|
|
jpeg_create_decompress(&mInfo);
|
|
// Set the source manager
|
|
mInfo.src = &mSourceMgr;
|
|
|
|
// Step 2: specify data source (eg, a file)
|
|
|
|
// Setup callback functions.
|
|
mSourceMgr.init_source = init_source;
|
|
mSourceMgr.fill_input_buffer = fill_input_buffer;
|
|
mSourceMgr.skip_input_data = skip_input_data;
|
|
mSourceMgr.resync_to_restart = jpeg_resync_to_restart;
|
|
mSourceMgr.term_source = term_source;
|
|
|
|
// Record app markers for ICC data
|
|
for (uint32_t m = 0; m < 16; m++) {
|
|
jpeg_save_markers(&mInfo, JPEG_APP0 + m, 0xFFFF);
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult
|
|
nsJPEGDecoder::FinishInternal()
|
|
{
|
|
// If we're not in any sort of error case, force our state to JPEG_DONE.
|
|
if ((mState != JPEG_DONE && mState != JPEG_SINK_NON_JPEG_TRAILER) &&
|
|
(mState != JPEG_ERROR) &&
|
|
!IsMetadataDecode()) {
|
|
mState = JPEG_DONE;
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
LexerResult
|
|
nsJPEGDecoder::DoDecode(SourceBufferIterator& aIterator, IResumable* aOnResume)
|
|
{
|
|
MOZ_ASSERT(!HasError(), "Shouldn't call DoDecode after error!");
|
|
|
|
return mLexer.Lex(aIterator, aOnResume,
|
|
[=](State aState, const char* aData, size_t aLength) {
|
|
switch (aState) {
|
|
case State::JPEG_DATA:
|
|
return ReadJPEGData(aData, aLength);
|
|
case State::FINISHED_JPEG_DATA:
|
|
return FinishedJPEGData();
|
|
}
|
|
MOZ_CRASH("Unknown State");
|
|
});
|
|
}
|
|
|
|
LexerTransition<nsJPEGDecoder::State>
|
|
nsJPEGDecoder::ReadJPEGData(const char* aData, size_t aLength)
|
|
{
|
|
mSegment = reinterpret_cast<const JOCTET*>(aData);
|
|
mSegmentLen = aLength;
|
|
|
|
// Return here if there is a fatal error within libjpeg.
|
|
nsresult error_code;
|
|
// This cast to nsresult makes sense because setjmp() returns whatever we
|
|
// passed to longjmp(), which was actually an nsresult.
|
|
if ((error_code = static_cast<nsresult>(setjmp(mErr.setjmp_buffer))) != NS_OK) {
|
|
if (error_code == NS_ERROR_FAILURE) {
|
|
// Error due to corrupt data. Make sure that we don't feed any more data
|
|
// to libjpeg-turbo.
|
|
mState = JPEG_SINK_NON_JPEG_TRAILER;
|
|
MOZ_LOG(sJPEGDecoderAccountingLog, LogLevel::Debug,
|
|
("} (setjmp returned NS_ERROR_FAILURE)"));
|
|
} else {
|
|
// Error for another reason. (Possibly OOM.)
|
|
mState = JPEG_ERROR;
|
|
MOZ_LOG(sJPEGDecoderAccountingLog, LogLevel::Debug,
|
|
("} (setjmp returned an error)"));
|
|
}
|
|
|
|
return Transition::TerminateFailure();
|
|
}
|
|
|
|
MOZ_LOG(sJPEGLog, LogLevel::Debug,
|
|
("[this=%p] nsJPEGDecoder::Write -- processing JPEG data\n", this));
|
|
|
|
switch (mState) {
|
|
case JPEG_HEADER: {
|
|
LOG_SCOPE((mozilla::LogModule*)sJPEGLog, "nsJPEGDecoder::Write -- entering JPEG_HEADER"
|
|
" case");
|
|
|
|
// Step 3: read file parameters with jpeg_read_header()
|
|
if (jpeg_read_header(&mInfo, TRUE) == JPEG_SUSPENDED) {
|
|
MOZ_LOG(sJPEGDecoderAccountingLog, LogLevel::Debug,
|
|
("} (JPEG_SUSPENDED)"));
|
|
return Transition::ContinueUnbuffered(State::JPEG_DATA); // I/O suspension
|
|
}
|
|
|
|
// Post our size to the superclass
|
|
PostSize(mInfo.image_width, mInfo.image_height,
|
|
ReadOrientationFromEXIF());
|
|
if (HasError()) {
|
|
// Setting the size led to an error.
|
|
mState = JPEG_ERROR;
|
|
return Transition::TerminateFailure();
|
|
}
|
|
|
|
// If we're doing a metadata decode, we're done.
|
|
if (IsMetadataDecode()) {
|
|
return Transition::TerminateSuccess();
|
|
}
|
|
|
|
// We're doing a full decode.
|
|
if (mCMSMode != eCMSMode_Off &&
|
|
(mInProfile = GetICCProfile(mInfo)) != nullptr) {
|
|
uint32_t profileSpace = qcms_profile_get_color_space(mInProfile);
|
|
bool mismatch = false;
|
|
|
|
#ifdef DEBUG_tor
|
|
fprintf(stderr, "JPEG profileSpace: 0x%08X\n", profileSpace);
|
|
#endif
|
|
switch (mInfo.jpeg_color_space) {
|
|
case JCS_GRAYSCALE:
|
|
if (profileSpace == icSigRgbData) {
|
|
mInfo.out_color_space = JCS_RGB;
|
|
} else if (profileSpace != icSigGrayData) {
|
|
mismatch = true;
|
|
}
|
|
break;
|
|
case JCS_RGB:
|
|
if (profileSpace != icSigRgbData) {
|
|
mismatch = true;
|
|
}
|
|
break;
|
|
case JCS_YCbCr:
|
|
if (profileSpace == icSigRgbData) {
|
|
mInfo.out_color_space = JCS_RGB;
|
|
} else {
|
|
// qcms doesn't support ycbcr
|
|
mismatch = true;
|
|
}
|
|
break;
|
|
case JCS_CMYK:
|
|
case JCS_YCCK:
|
|
// qcms doesn't support cmyk
|
|
mismatch = true;
|
|
break;
|
|
default:
|
|
mState = JPEG_ERROR;
|
|
MOZ_LOG(sJPEGDecoderAccountingLog, LogLevel::Debug,
|
|
("} (unknown colorpsace (1))"));
|
|
return Transition::TerminateFailure();
|
|
}
|
|
|
|
if (!mismatch) {
|
|
qcms_data_type type;
|
|
switch (mInfo.out_color_space) {
|
|
case JCS_GRAYSCALE:
|
|
type = QCMS_DATA_GRAY_8;
|
|
break;
|
|
case JCS_RGB:
|
|
type = QCMS_DATA_RGB_8;
|
|
break;
|
|
default:
|
|
mState = JPEG_ERROR;
|
|
MOZ_LOG(sJPEGDecoderAccountingLog, LogLevel::Debug,
|
|
("} (unknown colorpsace (2))"));
|
|
return Transition::TerminateFailure();
|
|
}
|
|
#if 0
|
|
// We don't currently support CMYK profiles. The following
|
|
// code dealt with lcms types. Add something like this
|
|
// back when we gain support for CMYK.
|
|
|
|
// Adobe Photoshop writes YCCK/CMYK files with inverted data
|
|
if (mInfo.out_color_space == JCS_CMYK) {
|
|
type |= FLAVOR_SH(mInfo.saw_Adobe_marker ? 1 : 0);
|
|
}
|
|
#endif
|
|
|
|
if (gfxPlatform::GetCMSOutputProfile()) {
|
|
|
|
// Calculate rendering intent.
|
|
int intent = gfxPlatform::GetRenderingIntent();
|
|
if (intent == -1) {
|
|
intent = qcms_profile_get_rendering_intent(mInProfile);
|
|
}
|
|
|
|
// Create the color management transform.
|
|
mTransform = qcms_transform_create(mInProfile,
|
|
type,
|
|
gfxPlatform::GetCMSOutputProfile(),
|
|
QCMS_DATA_RGB_8,
|
|
(qcms_intent)intent);
|
|
}
|
|
} else {
|
|
#ifdef DEBUG_tor
|
|
fprintf(stderr, "ICM profile colorspace mismatch\n");
|
|
#endif
|
|
}
|
|
}
|
|
|
|
if (!mTransform) {
|
|
switch (mInfo.jpeg_color_space) {
|
|
case JCS_GRAYSCALE:
|
|
case JCS_RGB:
|
|
case JCS_YCbCr:
|
|
// if we're not color managing we can decode directly to
|
|
// MOZ_JCS_EXT_NATIVE_ENDIAN_XRGB
|
|
if (mCMSMode != eCMSMode_All) {
|
|
mInfo.out_color_space = MOZ_JCS_EXT_NATIVE_ENDIAN_XRGB;
|
|
mInfo.out_color_components = 4;
|
|
} else {
|
|
mInfo.out_color_space = JCS_RGB;
|
|
}
|
|
break;
|
|
case JCS_CMYK:
|
|
case JCS_YCCK:
|
|
// libjpeg can convert from YCCK to CMYK, but not to RGB
|
|
mInfo.out_color_space = JCS_CMYK;
|
|
break;
|
|
default:
|
|
mState = JPEG_ERROR;
|
|
MOZ_LOG(sJPEGDecoderAccountingLog, LogLevel::Debug,
|
|
("} (unknown colorpsace (3))"));
|
|
return Transition::TerminateFailure();
|
|
}
|
|
}
|
|
|
|
// Don't allocate a giant and superfluous memory buffer
|
|
// when not doing a progressive decode.
|
|
mInfo.buffered_image = mDecodeStyle == PROGRESSIVE &&
|
|
jpeg_has_multiple_scans(&mInfo);
|
|
|
|
/* Used to set up image size so arrays can be allocated */
|
|
jpeg_calc_output_dimensions(&mInfo);
|
|
|
|
MOZ_ASSERT(!mImageData, "Already have a buffer allocated?");
|
|
nsresult rv = AllocateFrame(OutputSize(), FullOutputFrame(),
|
|
SurfaceFormat::B8G8R8X8);
|
|
if (NS_FAILED(rv)) {
|
|
mState = JPEG_ERROR;
|
|
MOZ_LOG(sJPEGDecoderAccountingLog, LogLevel::Debug,
|
|
("} (could not initialize image frame)"));
|
|
return Transition::TerminateFailure();
|
|
}
|
|
|
|
MOZ_ASSERT(mImageData, "Should have a buffer now");
|
|
|
|
if (mDownscaler) {
|
|
nsresult rv = mDownscaler->BeginFrame(Size(), Nothing(),
|
|
mImageData,
|
|
/* aHasAlpha = */ false);
|
|
if (NS_FAILED(rv)) {
|
|
mState = JPEG_ERROR;
|
|
return Transition::TerminateFailure();
|
|
}
|
|
}
|
|
|
|
MOZ_LOG(sJPEGDecoderAccountingLog, LogLevel::Debug,
|
|
(" JPEGDecoderAccounting: nsJPEGDecoder::"
|
|
"Write -- created image frame with %ux%u pixels",
|
|
mInfo.image_width, mInfo.image_height));
|
|
|
|
mState = JPEG_START_DECOMPRESS;
|
|
MOZ_FALLTHROUGH; // to start decompressing.
|
|
}
|
|
|
|
case JPEG_START_DECOMPRESS: {
|
|
LOG_SCOPE((mozilla::LogModule*)sJPEGLog, "nsJPEGDecoder::Write -- entering"
|
|
" JPEG_START_DECOMPRESS case");
|
|
// Step 4: set parameters for decompression
|
|
|
|
// FIXME -- Should reset dct_method and dither mode
|
|
// for final pass of progressive JPEG
|
|
|
|
mInfo.dct_method = JDCT_ISLOW;
|
|
mInfo.dither_mode = JDITHER_FS;
|
|
mInfo.do_fancy_upsampling = TRUE;
|
|
mInfo.enable_2pass_quant = FALSE;
|
|
mInfo.do_block_smoothing = TRUE;
|
|
|
|
// Step 5: Start decompressor
|
|
if (jpeg_start_decompress(&mInfo) == FALSE) {
|
|
MOZ_LOG(sJPEGDecoderAccountingLog, LogLevel::Debug,
|
|
("} (I/O suspension after jpeg_start_decompress())"));
|
|
return Transition::ContinueUnbuffered(State::JPEG_DATA); // I/O suspension
|
|
}
|
|
|
|
// If this is a progressive JPEG ...
|
|
mState = mInfo.buffered_image ?
|
|
JPEG_DECOMPRESS_PROGRESSIVE : JPEG_DECOMPRESS_SEQUENTIAL;
|
|
MOZ_FALLTHROUGH; // to decompress sequential JPEG.
|
|
}
|
|
|
|
case JPEG_DECOMPRESS_SEQUENTIAL: {
|
|
if (mState == JPEG_DECOMPRESS_SEQUENTIAL) {
|
|
LOG_SCOPE((mozilla::LogModule*)sJPEGLog, "nsJPEGDecoder::Write -- "
|
|
"JPEG_DECOMPRESS_SEQUENTIAL case");
|
|
|
|
bool suspend;
|
|
OutputScanlines(&suspend);
|
|
|
|
if (suspend) {
|
|
MOZ_LOG(sJPEGDecoderAccountingLog, LogLevel::Debug,
|
|
("} (I/O suspension after OutputScanlines() - SEQUENTIAL)"));
|
|
return Transition::ContinueUnbuffered(State::JPEG_DATA); // I/O suspension
|
|
}
|
|
|
|
// If we've completed image output ...
|
|
NS_ASSERTION(mInfo.output_scanline == mInfo.output_height,
|
|
"We didn't process all of the data!");
|
|
mState = JPEG_DONE;
|
|
}
|
|
MOZ_FALLTHROUGH; // to decompress progressive JPEG.
|
|
}
|
|
|
|
case JPEG_DECOMPRESS_PROGRESSIVE: {
|
|
if (mState == JPEG_DECOMPRESS_PROGRESSIVE) {
|
|
LOG_SCOPE((mozilla::LogModule*)sJPEGLog,
|
|
"nsJPEGDecoder::Write -- JPEG_DECOMPRESS_PROGRESSIVE case");
|
|
|
|
int status;
|
|
do {
|
|
status = jpeg_consume_input(&mInfo);
|
|
} while ((status != JPEG_SUSPENDED) &&
|
|
(status != JPEG_REACHED_EOI));
|
|
|
|
for (;;) {
|
|
if (mInfo.output_scanline == 0) {
|
|
int scan = mInfo.input_scan_number;
|
|
|
|
// if we haven't displayed anything yet (output_scan_number==0)
|
|
// and we have enough data for a complete scan, force output
|
|
// of the last full scan
|
|
if ((mInfo.output_scan_number == 0) &&
|
|
(scan > 1) &&
|
|
(status != JPEG_REACHED_EOI))
|
|
scan--;
|
|
|
|
if (!jpeg_start_output(&mInfo, scan)) {
|
|
MOZ_LOG(sJPEGDecoderAccountingLog, LogLevel::Debug,
|
|
("} (I/O suspension after jpeg_start_output() -"
|
|
" PROGRESSIVE)"));
|
|
return Transition::ContinueUnbuffered(State::JPEG_DATA); // I/O suspension
|
|
}
|
|
}
|
|
|
|
if (mInfo.output_scanline == 0xffffff) {
|
|
mInfo.output_scanline = 0;
|
|
}
|
|
|
|
bool suspend;
|
|
OutputScanlines(&suspend);
|
|
|
|
if (suspend) {
|
|
if (mInfo.output_scanline == 0) {
|
|
// didn't manage to read any lines - flag so we don't call
|
|
// jpeg_start_output() multiple times for the same scan
|
|
mInfo.output_scanline = 0xffffff;
|
|
}
|
|
MOZ_LOG(sJPEGDecoderAccountingLog, LogLevel::Debug,
|
|
("} (I/O suspension after OutputScanlines() - PROGRESSIVE)"));
|
|
return Transition::ContinueUnbuffered(State::JPEG_DATA); // I/O suspension
|
|
}
|
|
|
|
if (mInfo.output_scanline == mInfo.output_height) {
|
|
if (!jpeg_finish_output(&mInfo)) {
|
|
MOZ_LOG(sJPEGDecoderAccountingLog, LogLevel::Debug,
|
|
("} (I/O suspension after jpeg_finish_output() -"
|
|
" PROGRESSIVE)"));
|
|
return Transition::ContinueUnbuffered(State::JPEG_DATA); // I/O suspension
|
|
}
|
|
|
|
if (jpeg_input_complete(&mInfo) &&
|
|
(mInfo.input_scan_number == mInfo.output_scan_number))
|
|
break;
|
|
|
|
mInfo.output_scanline = 0;
|
|
if (mDownscaler) {
|
|
mDownscaler->ResetForNextProgressivePass();
|
|
}
|
|
}
|
|
}
|
|
|
|
mState = JPEG_DONE;
|
|
}
|
|
MOZ_FALLTHROUGH; // to finish decompressing.
|
|
}
|
|
|
|
case JPEG_DONE: {
|
|
LOG_SCOPE((mozilla::LogModule*)sJPEGLog, "nsJPEGDecoder::ProcessData -- entering"
|
|
" JPEG_DONE case");
|
|
|
|
// Step 7: Finish decompression
|
|
|
|
if (jpeg_finish_decompress(&mInfo) == FALSE) {
|
|
MOZ_LOG(sJPEGDecoderAccountingLog, LogLevel::Debug,
|
|
("} (I/O suspension after jpeg_finish_decompress() - DONE)"));
|
|
return Transition::ContinueUnbuffered(State::JPEG_DATA); // I/O suspension
|
|
}
|
|
|
|
// Make sure we don't feed any more data to libjpeg-turbo.
|
|
mState = JPEG_SINK_NON_JPEG_TRAILER;
|
|
|
|
// We're done.
|
|
return Transition::TerminateSuccess();
|
|
}
|
|
case JPEG_SINK_NON_JPEG_TRAILER:
|
|
MOZ_LOG(sJPEGLog, LogLevel::Debug,
|
|
("[this=%p] nsJPEGDecoder::ProcessData -- entering"
|
|
" JPEG_SINK_NON_JPEG_TRAILER case\n", this));
|
|
|
|
MOZ_ASSERT_UNREACHABLE("Should stop getting data after entering state "
|
|
"JPEG_SINK_NON_JPEG_TRAILER");
|
|
|
|
return Transition::TerminateSuccess();
|
|
|
|
case JPEG_ERROR:
|
|
MOZ_ASSERT_UNREACHABLE("Should stop getting data after entering state "
|
|
"JPEG_ERROR");
|
|
|
|
return Transition::TerminateFailure();
|
|
}
|
|
|
|
MOZ_ASSERT_UNREACHABLE("Escaped the JPEG decoder state machine");
|
|
return Transition::TerminateFailure();
|
|
}
|
|
|
|
LexerTransition<nsJPEGDecoder::State>
|
|
nsJPEGDecoder::FinishedJPEGData()
|
|
{
|
|
// Since we set up an unbuffered read for SIZE_MAX bytes, if we actually read
|
|
// all that data something is really wrong.
|
|
MOZ_ASSERT_UNREACHABLE("Read the entire address space?");
|
|
return Transition::TerminateFailure();
|
|
}
|
|
|
|
Orientation
|
|
nsJPEGDecoder::ReadOrientationFromEXIF()
|
|
{
|
|
jpeg_saved_marker_ptr marker;
|
|
|
|
// Locate the APP1 marker, where EXIF data is stored, in the marker list.
|
|
for (marker = mInfo.marker_list ; marker != nullptr ; marker = marker->next) {
|
|
if (marker->marker == JPEG_APP0 + 1) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If we're at the end of the list, there's no EXIF data.
|
|
if (!marker) {
|
|
return Orientation();
|
|
}
|
|
|
|
// Extract the orientation information.
|
|
EXIFData exif = EXIFParser::Parse(marker->data,
|
|
static_cast<uint32_t>(marker->data_length));
|
|
return exif.orientation;
|
|
}
|
|
|
|
void
|
|
nsJPEGDecoder::NotifyDone()
|
|
{
|
|
PostFrameStop(Opacity::FULLY_OPAQUE);
|
|
PostDecodeDone();
|
|
}
|
|
|
|
void
|
|
nsJPEGDecoder::OutputScanlines(bool* suspend)
|
|
{
|
|
*suspend = false;
|
|
|
|
const uint32_t top = mInfo.output_scanline;
|
|
|
|
while ((mInfo.output_scanline < mInfo.output_height)) {
|
|
uint32_t* imageRow = nullptr;
|
|
if (mDownscaler) {
|
|
imageRow = reinterpret_cast<uint32_t*>(mDownscaler->RowBuffer());
|
|
} else {
|
|
imageRow = reinterpret_cast<uint32_t*>(mImageData) +
|
|
(mInfo.output_scanline * mInfo.output_width);
|
|
}
|
|
|
|
MOZ_ASSERT(imageRow, "Should have a row buffer here");
|
|
|
|
if (mInfo.out_color_space == MOZ_JCS_EXT_NATIVE_ENDIAN_XRGB) {
|
|
// Special case: scanline will be directly converted into packed ARGB
|
|
if (jpeg_read_scanlines(&mInfo, (JSAMPARRAY)&imageRow, 1) != 1) {
|
|
*suspend = true; // suspend
|
|
break;
|
|
}
|
|
if (mDownscaler) {
|
|
mDownscaler->CommitRow();
|
|
}
|
|
continue; // all done for this row!
|
|
}
|
|
|
|
JSAMPROW sampleRow = (JSAMPROW)imageRow;
|
|
if (mInfo.output_components == 3) {
|
|
// Put the pixels at end of row to enable in-place expansion
|
|
sampleRow += mInfo.output_width;
|
|
}
|
|
|
|
// Request one scanline. Returns 0 or 1 scanlines.
|
|
if (jpeg_read_scanlines(&mInfo, &sampleRow, 1) != 1) {
|
|
*suspend = true; // suspend
|
|
break;
|
|
}
|
|
|
|
if (mTransform) {
|
|
JSAMPROW source = sampleRow;
|
|
if (mInfo.out_color_space == JCS_GRAYSCALE) {
|
|
// Convert from the 1byte grey pixels at begin of row
|
|
// to the 3byte RGB byte pixels at 'end' of row
|
|
sampleRow += mInfo.output_width;
|
|
}
|
|
qcms_transform_data(mTransform, source, sampleRow, mInfo.output_width);
|
|
// Move 3byte RGB data to end of row
|
|
if (mInfo.out_color_space == JCS_CMYK) {
|
|
memmove(sampleRow + mInfo.output_width,
|
|
sampleRow,
|
|
3 * mInfo.output_width);
|
|
sampleRow += mInfo.output_width;
|
|
}
|
|
} else {
|
|
if (mInfo.out_color_space == JCS_CMYK) {
|
|
// Convert from CMYK to RGB
|
|
// We cannot convert directly to Cairo, as the CMSRGBTransform
|
|
// may wants to do a RGB transform...
|
|
// Would be better to have platform CMSenabled transformation
|
|
// from CMYK to (A)RGB...
|
|
cmyk_convert_rgb((JSAMPROW)imageRow, mInfo.output_width);
|
|
sampleRow += mInfo.output_width;
|
|
}
|
|
if (mCMSMode == eCMSMode_All) {
|
|
// No embedded ICC profile - treat as sRGB
|
|
qcms_transform* transform = gfxPlatform::GetCMSRGBTransform();
|
|
if (transform) {
|
|
qcms_transform_data(transform, sampleRow, sampleRow,
|
|
mInfo.output_width);
|
|
}
|
|
}
|
|
}
|
|
|
|
// counter for while() loops below
|
|
uint32_t idx = mInfo.output_width;
|
|
|
|
// copy as bytes until source pointer is 32-bit-aligned
|
|
for (; (NS_PTR_TO_UINT32(sampleRow) & 0x3) && idx; --idx) {
|
|
*imageRow++ = gfxPackedPixel(0xFF, sampleRow[0], sampleRow[1],
|
|
sampleRow[2]);
|
|
sampleRow += 3;
|
|
}
|
|
|
|
// copy pixels in blocks of 4
|
|
while (idx >= 4) {
|
|
GFX_BLOCK_RGB_TO_FRGB(sampleRow, imageRow);
|
|
idx -= 4;
|
|
sampleRow += 12;
|
|
imageRow += 4;
|
|
}
|
|
|
|
// copy remaining pixel(s)
|
|
while (idx--) {
|
|
// 32-bit read of final pixel will exceed buffer, so read bytes
|
|
*imageRow++ = gfxPackedPixel(0xFF, sampleRow[0], sampleRow[1],
|
|
sampleRow[2]);
|
|
sampleRow += 3;
|
|
}
|
|
|
|
if (mDownscaler) {
|
|
mDownscaler->CommitRow();
|
|
}
|
|
}
|
|
|
|
if (mDownscaler && mDownscaler->HasInvalidation()) {
|
|
DownscalerInvalidRect invalidRect = mDownscaler->TakeInvalidRect();
|
|
PostInvalidation(invalidRect.mOriginalSizeRect,
|
|
Some(invalidRect.mTargetSizeRect));
|
|
MOZ_ASSERT(!mDownscaler->HasInvalidation());
|
|
} else if (!mDownscaler && top != mInfo.output_scanline) {
|
|
PostInvalidation(nsIntRect(0, top,
|
|
mInfo.output_width,
|
|
mInfo.output_scanline - top));
|
|
}
|
|
}
|
|
|
|
// Override the standard error method in the IJG JPEG decoder code.
|
|
METHODDEF(void)
|
|
my_error_exit (j_common_ptr cinfo)
|
|
{
|
|
decoder_error_mgr* err = (decoder_error_mgr*) cinfo->err;
|
|
|
|
// Convert error to a browser error code
|
|
nsresult error_code = err->pub.msg_code == JERR_OUT_OF_MEMORY
|
|
? NS_ERROR_OUT_OF_MEMORY
|
|
: NS_ERROR_FAILURE;
|
|
|
|
#ifdef DEBUG
|
|
char buffer[JMSG_LENGTH_MAX];
|
|
|
|
// Create the message
|
|
(*err->pub.format_message) (cinfo, buffer);
|
|
|
|
fprintf(stderr, "JPEG decoding error:\n%s\n", buffer);
|
|
#endif
|
|
|
|
// Return control to the setjmp point. We pass an nsresult masquerading as
|
|
// an int, which works because the setjmp() caller casts it back.
|
|
longjmp(err->setjmp_buffer, static_cast<int>(error_code));
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This is the callback routine from the IJG JPEG library used to supply new
|
|
* data to the decompressor when its input buffer is exhausted. It juggles
|
|
* multiple buffers in an attempt to avoid unnecessary copying of input data.
|
|
*
|
|
* (A simpler scheme is possible: It's much easier to use only a single
|
|
* buffer; when fill_input_buffer() is called, move any unconsumed data
|
|
* (beyond the current pointer/count) down to the beginning of this buffer and
|
|
* then load new data into the remaining buffer space. This approach requires
|
|
* a little more data copying but is far easier to get right.)
|
|
*
|
|
* At any one time, the JPEG decompressor is either reading from the necko
|
|
* input buffer, which is volatile across top-level calls to the IJG library,
|
|
* or the "backtrack" buffer. The backtrack buffer contains the remaining
|
|
* unconsumed data from the necko buffer after parsing was suspended due
|
|
* to insufficient data in some previous call to the IJG library.
|
|
*
|
|
* When suspending, the decompressor will back up to a convenient restart
|
|
* point (typically the start of the current MCU). The variables
|
|
* next_input_byte & bytes_in_buffer indicate where the restart point will be
|
|
* if the current call returns FALSE. Data beyond this point must be
|
|
* rescanned after resumption, so it must be preserved in case the decompressor
|
|
* decides to backtrack.
|
|
*
|
|
* Returns:
|
|
* TRUE if additional data is available, FALSE if no data present and
|
|
* the JPEG library should therefore suspend processing of input stream
|
|
******************************************************************************/
|
|
|
|
/******************************************************************************/
|
|
/* data source manager method */
|
|
/******************************************************************************/
|
|
|
|
/******************************************************************************/
|
|
/* data source manager method
|
|
Initialize source. This is called by jpeg_read_header() before any
|
|
data is actually read. May leave
|
|
bytes_in_buffer set to 0 (in which case a fill_input_buffer() call
|
|
will occur immediately).
|
|
*/
|
|
METHODDEF(void)
|
|
init_source (j_decompress_ptr jd)
|
|
{
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/* data source manager method
|
|
Skip num_bytes worth of data. The buffer pointer and count should
|
|
be advanced over num_bytes input bytes, refilling the buffer as
|
|
needed. This is used to skip over a potentially large amount of
|
|
uninteresting data (such as an APPn marker). In some applications
|
|
it may be possible to optimize away the reading of the skipped data,
|
|
but it's not clear that being smart is worth much trouble; large
|
|
skips are uncommon. bytes_in_buffer may be zero on return.
|
|
A zero or negative skip count should be treated as a no-op.
|
|
*/
|
|
METHODDEF(void)
|
|
skip_input_data (j_decompress_ptr jd, long num_bytes)
|
|
{
|
|
struct jpeg_source_mgr* src = jd->src;
|
|
nsJPEGDecoder* decoder = (nsJPEGDecoder*)(jd->client_data);
|
|
|
|
if (num_bytes > (long)src->bytes_in_buffer) {
|
|
// Can't skip it all right now until we get more data from
|
|
// network stream. Set things up so that fill_input_buffer
|
|
// will skip remaining amount.
|
|
decoder->mBytesToSkip = (size_t)num_bytes - src->bytes_in_buffer;
|
|
src->next_input_byte += src->bytes_in_buffer;
|
|
src->bytes_in_buffer = 0;
|
|
|
|
} else {
|
|
// Simple case. Just advance buffer pointer
|
|
|
|
src->bytes_in_buffer -= (size_t)num_bytes;
|
|
src->next_input_byte += num_bytes;
|
|
}
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/* data source manager method
|
|
This is called whenever bytes_in_buffer has reached zero and more
|
|
data is wanted. In typical applications, it should read fresh data
|
|
into the buffer (ignoring the current state of next_input_byte and
|
|
bytes_in_buffer), reset the pointer & count to the start of the
|
|
buffer, and return TRUE indicating that the buffer has been reloaded.
|
|
It is not necessary to fill the buffer entirely, only to obtain at
|
|
least one more byte. bytes_in_buffer MUST be set to a positive value
|
|
if TRUE is returned. A FALSE return should only be used when I/O
|
|
suspension is desired.
|
|
*/
|
|
METHODDEF(boolean)
|
|
fill_input_buffer (j_decompress_ptr jd)
|
|
{
|
|
struct jpeg_source_mgr* src = jd->src;
|
|
nsJPEGDecoder* decoder = (nsJPEGDecoder*)(jd->client_data);
|
|
|
|
if (decoder->mReading) {
|
|
const JOCTET* new_buffer = decoder->mSegment;
|
|
uint32_t new_buflen = decoder->mSegmentLen;
|
|
|
|
if (!new_buffer || new_buflen == 0) {
|
|
return false; // suspend
|
|
}
|
|
|
|
decoder->mSegmentLen = 0;
|
|
|
|
if (decoder->mBytesToSkip) {
|
|
if (decoder->mBytesToSkip < new_buflen) {
|
|
// All done skipping bytes; Return what's left.
|
|
new_buffer += decoder->mBytesToSkip;
|
|
new_buflen -= decoder->mBytesToSkip;
|
|
decoder->mBytesToSkip = 0;
|
|
} else {
|
|
// Still need to skip some more data in the future
|
|
decoder->mBytesToSkip -= (size_t)new_buflen;
|
|
return false; // suspend
|
|
}
|
|
}
|
|
|
|
decoder->mBackBufferUnreadLen = src->bytes_in_buffer;
|
|
|
|
src->next_input_byte = new_buffer;
|
|
src->bytes_in_buffer = (size_t)new_buflen;
|
|
decoder->mReading = false;
|
|
|
|
return true;
|
|
}
|
|
|
|
if (src->next_input_byte != decoder->mSegment) {
|
|
// Backtrack data has been permanently consumed.
|
|
decoder->mBackBufferUnreadLen = 0;
|
|
decoder->mBackBufferLen = 0;
|
|
}
|
|
|
|
// Save remainder of netlib buffer in backtrack buffer
|
|
const uint32_t new_backtrack_buflen = src->bytes_in_buffer +
|
|
decoder->mBackBufferLen;
|
|
|
|
// Make sure backtrack buffer is big enough to hold new data.
|
|
if (decoder->mBackBufferSize < new_backtrack_buflen) {
|
|
// Check for malformed MARKER segment lengths, before allocating space
|
|
// for it
|
|
if (new_backtrack_buflen > MAX_JPEG_MARKER_LENGTH) {
|
|
my_error_exit((j_common_ptr)(&decoder->mInfo));
|
|
}
|
|
|
|
// Round up to multiple of 256 bytes.
|
|
const size_t roundup_buflen = ((new_backtrack_buflen + 255) >> 8) << 8;
|
|
JOCTET* buf = (JOCTET*) realloc(decoder->mBackBuffer, roundup_buflen);
|
|
// Check for OOM
|
|
if (!buf) {
|
|
decoder->mInfo.err->msg_code = JERR_OUT_OF_MEMORY;
|
|
my_error_exit((j_common_ptr)(&decoder->mInfo));
|
|
}
|
|
decoder->mBackBuffer = buf;
|
|
decoder->mBackBufferSize = roundup_buflen;
|
|
}
|
|
|
|
// Ensure we actually have a backtrack buffer. Without it, then we know that
|
|
// there is no data to copy and bytes_in_buffer is already zero.
|
|
if (decoder->mBackBuffer) {
|
|
// Copy remainder of netlib segment into backtrack buffer.
|
|
memmove(decoder->mBackBuffer + decoder->mBackBufferLen,
|
|
src->next_input_byte,
|
|
src->bytes_in_buffer);
|
|
} else {
|
|
MOZ_ASSERT(src->bytes_in_buffer == 0);
|
|
MOZ_ASSERT(decoder->mBackBufferLen == 0);
|
|
MOZ_ASSERT(decoder->mBackBufferUnreadLen == 0);
|
|
}
|
|
|
|
// Point to start of data to be rescanned.
|
|
src->next_input_byte = decoder->mBackBuffer + decoder->mBackBufferLen -
|
|
decoder->mBackBufferUnreadLen;
|
|
src->bytes_in_buffer += decoder->mBackBufferUnreadLen;
|
|
decoder->mBackBufferLen = (size_t)new_backtrack_buflen;
|
|
decoder->mReading = true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/* data source manager method */
|
|
/*
|
|
* Terminate source --- called by jpeg_finish_decompress() after all
|
|
* data has been read to clean up JPEG source manager. NOT called by
|
|
* jpeg_abort() or jpeg_destroy().
|
|
*/
|
|
METHODDEF(void)
|
|
term_source (j_decompress_ptr jd)
|
|
{
|
|
nsJPEGDecoder* decoder = (nsJPEGDecoder*)(jd->client_data);
|
|
|
|
// This function shouldn't be called if we ran into an error we didn't
|
|
// recover from.
|
|
MOZ_ASSERT(decoder->mState != JPEG_ERROR,
|
|
"Calling term_source on a JPEG with mState == JPEG_ERROR!");
|
|
|
|
// Notify using a helper method to get around protectedness issues.
|
|
decoder->NotifyDone();
|
|
}
|
|
|
|
} // namespace image
|
|
} // namespace mozilla
|
|
|
|
///*************** Inverted CMYK -> RGB conversion *************************
|
|
/// Input is (Inverted) CMYK stored as 4 bytes per pixel.
|
|
/// Output is RGB stored as 3 bytes per pixel.
|
|
/// @param row Points to row buffer containing the CMYK bytes for each pixel
|
|
/// in the row.
|
|
/// @param width Number of pixels in the row.
|
|
static void cmyk_convert_rgb(JSAMPROW row, JDIMENSION width)
|
|
{
|
|
// Work from end to front to shrink from 4 bytes per pixel to 3
|
|
JSAMPROW in = row + width*4;
|
|
JSAMPROW out = in;
|
|
|
|
for (uint32_t i = width; i > 0; i--) {
|
|
in -= 4;
|
|
out -= 3;
|
|
|
|
// Source is 'Inverted CMYK', output is RGB.
|
|
// See: http://www.easyrgb.com/math.php?MATH=M12#text12
|
|
// Or: http://www.ilkeratalay.com/colorspacesfaq.php#rgb
|
|
|
|
// From CMYK to CMY
|
|
// C = ( C * ( 1 - K ) + K )
|
|
// M = ( M * ( 1 - K ) + K )
|
|
// Y = ( Y * ( 1 - K ) + K )
|
|
|
|
// From Inverted CMYK to CMY is thus:
|
|
// C = ( (1-iC) * (1 - (1-iK)) + (1-iK) ) => 1 - iC*iK
|
|
// Same for M and Y
|
|
|
|
// Convert from CMY (0..1) to RGB (0..1)
|
|
// R = 1 - C => 1 - (1 - iC*iK) => iC*iK
|
|
// G = 1 - M => 1 - (1 - iM*iK) => iM*iK
|
|
// B = 1 - Y => 1 - (1 - iY*iK) => iY*iK
|
|
|
|
// Convert from Inverted CMYK (0..255) to RGB (0..255)
|
|
const uint32_t iC = in[0];
|
|
const uint32_t iM = in[1];
|
|
const uint32_t iY = in[2];
|
|
const uint32_t iK = in[3];
|
|
out[0] = iC*iK/255; // Red
|
|
out[1] = iM*iK/255; // Green
|
|
out[2] = iY*iK/255; // Blue
|
|
}
|
|
}
|