gecko-dev/dom/quota/EncryptingOutputStream_impl.h

255 строки
7.7 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef mozilla_dom_quota_EncryptingOutputStream_impl_h
#define mozilla_dom_quota_EncryptingOutputStream_impl_h
#include "EncryptingOutputStream.h"
#include <algorithm>
#include <utility>
#include "CipherStrategy.h"
#include "mozilla/Assertions.h"
#include "mozilla/Span.h"
#include "mozilla/fallible.h"
#include "nsDebug.h"
#include "nsError.h"
#include "nsIAsyncOutputStream.h"
namespace mozilla::dom::quota {
template <typename CipherStrategy>
EncryptingOutputStream<CipherStrategy>::EncryptingOutputStream(
nsCOMPtr<nsIOutputStream> aBaseStream, size_t aBlockSize,
typename CipherStrategy::KeyType aKey)
: EncryptingOutputStreamBase(std::move(aBaseStream), aBlockSize) {
// XXX Move this to a fallible init function.
MOZ_ALWAYS_SUCCEEDS(mCipherStrategy.Init(CipherMode::Encrypt,
CipherStrategy::SerializeKey(aKey),
CipherStrategy::MakeBlockPrefix()));
MOZ_ASSERT(mBlockSize > 0);
MOZ_ASSERT(mBlockSize % CipherStrategy::BasicBlockSize == 0);
static_assert(
CipherStrategy::BlockPrefixLength % CipherStrategy::BasicBlockSize == 0);
// This implementation only supports sync base streams. Verify this in debug
// builds. Note, this is a bit complicated because the streams we support
// advertise different capabilities:
// - nsFileOutputStream - blocking and sync
// - FixedBufferOutputStream - non-blocking and sync
// - nsPipeOutputStream - can be blocking, but provides async interface
#ifdef DEBUG
bool baseNonBlocking;
nsresult rv = (*mBaseStream)->IsNonBlocking(&baseNonBlocking);
MOZ_ASSERT(NS_SUCCEEDED(rv));
if (baseNonBlocking) {
nsCOMPtr<nsIAsyncOutputStream> async =
do_QueryInterface((*mBaseStream).get());
MOZ_ASSERT(!async);
}
#endif
}
template <typename CipherStrategy>
EncryptingOutputStream<CipherStrategy>::~EncryptingOutputStream() {
Close();
}
template <typename CipherStrategy>
NS_IMETHODIMP EncryptingOutputStream<CipherStrategy>::Close() {
if (!mBaseStream) {
return NS_OK;
}
// When closing, flush to the base stream unconditionally, i.e. even if the
// buffer is not completely full.
nsresult rv = FlushToBaseStream();
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
// XXX Maybe this Flush call can be removed, since the base stream is closed
// afterwards anyway.
rv = (*mBaseStream)->Flush();
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
// XXX What if closing the base stream failed? Fail this method, or at least
// log a warning?
(*mBaseStream)->Close();
mBaseStream.destroy();
mBuffer.Clear();
mEncryptedBlock.reset();
return NS_OK;
}
template <typename CipherStrategy>
NS_IMETHODIMP EncryptingOutputStream<CipherStrategy>::Flush() {
if (!mBaseStream) {
return NS_BASE_STREAM_CLOSED;
}
if (!EnsureBuffers()) {
return NS_ERROR_OUT_OF_MEMORY;
}
// We cannot call FlushBaseStream() here if the buffer is not completely
// full, we would write an incomplete page, which might be read sequentially,
// but we want to support random accesses in DecryptingInputStream, which
// would no longer be feasible.
if (mNextByte && mNextByte == mEncryptedBlock->MaxPayloadLength()) {
nsresult rv = FlushToBaseStream();
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
}
return (*mBaseStream)->Flush();
}
template <typename CipherStrategy>
NS_IMETHODIMP EncryptingOutputStream<CipherStrategy>::StreamStatus() {
if (!mBaseStream) {
return NS_BASE_STREAM_CLOSED;
}
return (*mBaseStream)->StreamStatus();
}
template <typename CipherStrategy>
NS_IMETHODIMP EncryptingOutputStream<CipherStrategy>::WriteSegments(
nsReadSegmentFun aReader, void* aClosure, uint32_t aCount,
uint32_t* aBytesWrittenOut) {
*aBytesWrittenOut = 0;
if (!mBaseStream) {
return NS_BASE_STREAM_CLOSED;
}
if (!EnsureBuffers()) {
return NS_ERROR_OUT_OF_MEMORY;
}
const size_t plainBufferSize = mEncryptedBlock->MaxPayloadLength();
while (aCount > 0) {
// Determine how much space is left in our flat, plain buffer.
MOZ_ASSERT(mNextByte <= plainBufferSize);
uint32_t remaining = plainBufferSize - mNextByte;
// If it is full, then encrypt and flush the data to the base stream.
if (remaining == 0) {
nsresult rv = FlushToBaseStream();
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
// Now the entire buffer should be available for copying.
MOZ_ASSERT(!mNextByte);
remaining = plainBufferSize;
}
uint32_t numToRead = std::min(remaining, aCount);
uint32_t numRead = 0;
nsresult rv =
aReader(this, aClosure, reinterpret_cast<char*>(&mBuffer[mNextByte]),
*aBytesWrittenOut, numToRead, &numRead);
// As defined in nsIOutputStream.idl, do not pass reader func errors.
if (NS_FAILED(rv)) {
return NS_OK;
}
// End-of-file
if (numRead == 0) {
return NS_OK;
}
mNextByte += numRead;
*aBytesWrittenOut += numRead;
aCount -= numRead;
}
return NS_OK;
}
template <typename CipherStrategy>
bool EncryptingOutputStream<CipherStrategy>::EnsureBuffers() {
// Lazily create the encrypted buffer on our first flush. This
// allows us to report OOM during stream operation. This buffer
// will then get re-used until the stream is closed.
if (!mEncryptedBlock) {
// XXX Do we need to do this fallible (as the comment above suggests)?
mEncryptedBlock.emplace(mBlockSize);
MOZ_ASSERT(mBuffer.IsEmpty());
if (NS_WARN_IF(!mBuffer.SetLength(mEncryptedBlock->MaxPayloadLength(),
fallible))) {
return false;
}
}
return true;
}
template <typename CipherStrategy>
nsresult EncryptingOutputStream<CipherStrategy>::FlushToBaseStream() {
MOZ_ASSERT(mBaseStream);
if (!mNextByte) {
// Nothing to do.
return NS_OK;
}
// XXX The compressing stream implementation this was based on wrote a stream
// identifier, containing e.g. the block size. Should we do something like
// that as well? At the moment, we don't need it, but maybe this were
// convenient if we use this for persistent files in the future across version
// updates, which might change such parameters.
const auto iv = mCipherStrategy.MakeBlockPrefix();
static_assert(iv.size() * sizeof(decltype(*iv.begin())) ==
CipherStrategy::BlockPrefixLength);
std::copy(iv.cbegin(), iv.cend(),
mEncryptedBlock->MutableCipherPrefix().begin());
// Encrypt the data to our internal encrypted buffer.
// XXX Do we need to know the actual encrypted size?
nsresult rv = mCipherStrategy.Cipher(
mEncryptedBlock->MutableCipherPrefix(),
mozilla::Span(reinterpret_cast<uint8_t*>(mBuffer.Elements()),
((mNextByte + (CipherStrategy::BasicBlockSize - 1)) /
CipherStrategy::BasicBlockSize) *
CipherStrategy::BasicBlockSize),
mEncryptedBlock->MutablePayload());
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
mEncryptedBlock->SetActualPayloadLength(mNextByte);
mNextByte = 0;
// Write the encrypted buffer out to the base stream.
uint32_t numWritten = 0;
const auto& wholeBlock = mEncryptedBlock->WholeBlock();
rv = WriteAll(AsChars(wholeBlock).Elements(), wholeBlock.Length(),
&numWritten);
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
MOZ_ASSERT(wholeBlock.Length() == numWritten);
return NS_OK;
}
} // namespace mozilla::dom::quota
#endif