gecko-dev/ipc/glue/IPCMessageUtilsSpecializati...

974 строки
28 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef __IPC_GLUE_IPCMESSAGEUTILSSPECIALIZATIONS_H__
#define __IPC_GLUE_IPCMESSAGEUTILSSPECIALIZATIONS_H__
#include <cstdint>
#include <cstdlib>
#include <limits>
#include <string>
#include <type_traits>
#include <unordered_map>
#include <utility>
#include <vector>
#include "chrome/common/ipc_message.h"
#include "chrome/common/ipc_message_utils.h"
#include "ipc/EnumSerializer.h"
#include "ipc/IPCMessageUtils.h"
#include "mozilla/Assertions.h"
#include "mozilla/BitSet.h"
#include "mozilla/EnumSet.h"
#include "mozilla/EnumTypeTraits.h"
#include "mozilla/IntegerRange.h"
#include "mozilla/Maybe.h"
#include "mozilla/TimeStamp.h"
#ifdef XP_WIN
# include "mozilla/TimeStamp_windows.h"
#endif
#include "mozilla/Unused.h"
#include "mozilla/Vector.h"
#include "mozilla/dom/ipc/StructuredCloneData.h"
#include "nsCSSPropertyID.h"
#include "nsDebug.h"
#include "nsIContentPolicy.h"
#include "nsID.h"
#include "nsILoadInfo.h"
#include "nsIThread.h"
#include "nsLiteralString.h"
#include "nsString.h"
#include "nsTArray.h"
#include "nsTHashSet.h"
// XXX Includes that are only required by implementations which could be moved
// to the cpp file.
#include "base/string_util.h" // for StringPrintf
#include "mozilla/ArrayUtils.h" // for ArrayLength
#include "mozilla/CheckedInt.h"
#ifdef _MSC_VER
# pragma warning(disable : 4800)
#endif
namespace mozilla {
template <typename... Ts>
class Variant;
namespace detail {
template <typename... Ts>
struct VariantTag;
}
} // namespace mozilla
namespace mozilla::dom {
template <typename T>
class Optional;
}
class nsAtom;
namespace IPC {
template <>
struct ParamTraits<nsACString> {
typedef nsACString paramType;
static void Write(Message* aMsg, const paramType& aParam) {
bool isVoid = aParam.IsVoid();
aMsg->WriteBool(isVoid);
if (isVoid)
// represents a nullptr pointer
return;
uint32_t length = aParam.Length();
WriteParam(aMsg, length);
aMsg->WriteBytes(aParam.BeginReading(), length);
}
static bool Read(const Message* aMsg, PickleIterator* aIter,
paramType* aResult) {
bool isVoid;
if (!aMsg->ReadBool(aIter, &isVoid)) return false;
if (isVoid) {
aResult->SetIsVoid(true);
return true;
}
uint32_t length;
if (!ReadParam(aMsg, aIter, &length)) {
return false;
}
if (!aMsg->HasBytesAvailable(aIter, length)) {
return false;
}
aResult->SetLength(length);
return aMsg->ReadBytesInto(aIter, aResult->BeginWriting(), length);
}
static void Log(const paramType& aParam, std::wstring* aLog) {
if (aParam.IsVoid())
aLog->append(L"(NULL)");
else
aLog->append(UTF8ToWide(aParam.BeginReading()));
}
};
template <>
struct ParamTraits<nsAString> {
typedef nsAString paramType;
static void Write(Message* aMsg, const paramType& aParam) {
bool isVoid = aParam.IsVoid();
aMsg->WriteBool(isVoid);
if (isVoid)
// represents a nullptr pointer
return;
uint32_t length = aParam.Length();
WriteParam(aMsg, length);
aMsg->WriteBytes(aParam.BeginReading(), length * sizeof(char16_t));
}
static bool Read(const Message* aMsg, PickleIterator* aIter,
paramType* aResult) {
bool isVoid;
if (!aMsg->ReadBool(aIter, &isVoid)) return false;
if (isVoid) {
aResult->SetIsVoid(true);
return true;
}
uint32_t length;
if (!ReadParam(aMsg, aIter, &length)) {
return false;
}
mozilla::CheckedInt<uint32_t> byteLength =
mozilla::CheckedInt<uint32_t>(length) * sizeof(char16_t);
if (!byteLength.isValid() ||
!aMsg->HasBytesAvailable(aIter, byteLength.value())) {
return false;
}
aResult->SetLength(length);
return aMsg->ReadBytesInto(aIter, aResult->BeginWriting(),
byteLength.value());
}
static void Log(const paramType& aParam, std::wstring* aLog) {
if (aParam.IsVoid())
aLog->append(L"(NULL)");
else {
#ifdef WCHAR_T_IS_UTF16
aLog->append(reinterpret_cast<const wchar_t*>(aParam.BeginReading()));
#else
uint32_t length = aParam.Length();
for (uint32_t index = 0; index < length; index++) {
aLog->push_back(std::wstring::value_type(aParam[index]));
}
#endif
}
}
};
template <>
struct ParamTraits<nsCString> : ParamTraits<nsACString> {
typedef nsCString paramType;
};
template <>
struct ParamTraits<nsLiteralCString> : ParamTraits<nsACString> {
typedef nsLiteralCString paramType;
};
#ifdef MOZILLA_INTERNAL_API
template <>
struct ParamTraits<nsAutoCString> : ParamTraits<nsCString> {
typedef nsAutoCString paramType;
};
#endif // MOZILLA_INTERNAL_API
template <>
struct ParamTraits<nsString> : ParamTraits<nsAString> {
typedef nsString paramType;
};
template <>
struct ParamTraits<nsLiteralString> : ParamTraits<nsAString> {
typedef nsLiteralString paramType;
};
template <>
struct ParamTraits<nsDependentSubstring> : ParamTraits<nsAString> {
typedef nsDependentSubstring paramType;
};
template <>
struct ParamTraits<nsDependentCSubstring> : ParamTraits<nsACString> {
typedef nsDependentCSubstring paramType;
};
#ifdef MOZILLA_INTERNAL_API
template <>
struct ParamTraits<nsAutoString> : ParamTraits<nsString> {
typedef nsAutoString paramType;
};
#endif // MOZILLA_INTERNAL_API
// XXX While this has no special dependencies, it's currently only used in
// GfxMessageUtils and could be moved there, or generalized to potentially work
// with any nsTHashSet.
template <>
struct ParamTraits<nsTHashSet<uint64_t>> {
typedef nsTHashSet<uint64_t> paramType;
static void Write(Message* aMsg, const paramType& aParam) {
uint32_t count = aParam.Count();
WriteParam(aMsg, count);
for (const auto& key : aParam) {
WriteParam(aMsg, key);
}
}
static bool Read(const Message* aMsg, PickleIterator* aIter,
paramType* aResult) {
uint32_t count;
if (!ReadParam(aMsg, aIter, &count)) {
return false;
}
paramType table(count);
for (uint32_t i = 0; i < count; ++i) {
uint64_t key;
if (!ReadParam(aMsg, aIter, &key)) {
return false;
}
table.Insert(key);
}
*aResult = std::move(table);
return true;
}
};
// Pickle::ReadBytes and ::WriteBytes take the length in ints, so we must
// ensure there is no overflow. This returns |false| if it would overflow.
// Otherwise, it returns |true| and places the byte length in |aByteLength|.
bool ByteLengthIsValid(uint32_t aNumElements, size_t aElementSize,
int* aByteLength);
// Note: IPDL will sometimes codegen specialized implementations of
// nsTArray serialization and deserialization code in
// implementSpecialArrayPickling(). This is needed when ParamTraits<E>
// is not defined.
template <typename E>
struct ParamTraits<nsTArray<E>> {
typedef nsTArray<E> paramType;
// We write arrays of integer or floating-point data using a single pickling
// call, rather than writing each element individually. We deliberately do
// not use mozilla::IsPod here because it is perfectly reasonable to have
// a data structure T for which IsPod<T>::value is true, yet also have a
// ParamTraits<T> specialization.
static const bool sUseWriteBytes =
(std::is_integral_v<E> || std::is_floating_point_v<E>);
static void Write(Message* aMsg, const paramType& aParam) {
uint32_t length = aParam.Length();
WriteParam(aMsg, length);
if (sUseWriteBytes) {
int pickledLength = 0;
MOZ_RELEASE_ASSERT(ByteLengthIsValid(length, sizeof(E), &pickledLength));
aMsg->WriteBytes(aParam.Elements(), pickledLength);
} else {
const E* elems = aParam.Elements();
for (uint32_t index = 0; index < length; index++) {
WriteParam(aMsg, elems[index]);
}
}
}
// This method uses infallible allocation so that an OOM failure will
// show up as an OOM crash rather than an IPC FatalError.
static bool Read(const Message* aMsg, PickleIterator* aIter,
paramType* aResult) {
uint32_t length;
if (!ReadParam(aMsg, aIter, &length)) {
return false;
}
if (sUseWriteBytes) {
int pickledLength = 0;
if (!ByteLengthIsValid(length, sizeof(E), &pickledLength)) {
return false;
}
E* elements = aResult->AppendElements(length);
return aMsg->ReadBytesInto(aIter, elements, pickledLength);
} else {
// Each ReadParam<E> may read more than 1 byte each; this is an attempt
// to minimally validate that the length isn't much larger than what's
// actually available in aMsg.
if (!aMsg->HasBytesAvailable(aIter, length)) {
return false;
}
aResult->SetCapacity(length);
for (uint32_t index = 0; index < length; index++) {
E* element = aResult->AppendElement();
if (!ReadParam(aMsg, aIter, element)) {
return false;
}
}
return true;
}
}
static void Log(const paramType& aParam, std::wstring* aLog) {
for (uint32_t index = 0; index < aParam.Length(); index++) {
if (index) {
aLog->append(L" ");
}
LogParam(aParam[index], aLog);
}
}
};
template <typename E>
struct ParamTraits<CopyableTArray<E>> : ParamTraits<nsTArray<E>> {};
template <typename E>
struct ParamTraits<FallibleTArray<E>> {
typedef FallibleTArray<E> paramType;
static void Write(Message* aMsg, const paramType& aParam) {
WriteParam(aMsg, static_cast<const nsTArray<E>&>(aParam));
}
// Deserialize the array infallibly, but return a FallibleTArray.
static bool Read(const Message* aMsg, PickleIterator* aIter,
paramType* aResult) {
nsTArray<E> temp;
if (!ReadParam(aMsg, aIter, &temp)) return false;
*aResult = std::move(temp);
return true;
}
static void Log(const paramType& aParam, std::wstring* aLog) {
LogParam(static_cast<const nsTArray<E>&>(aParam), aLog);
}
};
template <typename E, size_t N>
struct ParamTraits<AutoTArray<E, N>> : ParamTraits<nsTArray<E>> {
typedef AutoTArray<E, N> paramType;
};
template <typename E, size_t N>
struct ParamTraits<CopyableAutoTArray<E, N>> : ParamTraits<AutoTArray<E, N>> {};
template <typename E, size_t N, typename AP>
struct ParamTraits<mozilla::Vector<E, N, AP>> {
typedef mozilla::Vector<E, N, AP> paramType;
// We write arrays of integer or floating-point data using a single pickling
// call, rather than writing each element individually. We deliberately do
// not use mozilla::IsPod here because it is perfectly reasonable to have
// a data structure T for which IsPod<T>::value is true, yet also have a
// ParamTraits<T> specialization.
static const bool sUseWriteBytes =
(std::is_integral_v<E> || std::is_floating_point_v<E>);
static void Write(Message* aMsg, const paramType& aParam) {
uint32_t length = aParam.length();
WriteParam(aMsg, length);
if (sUseWriteBytes) {
int pickledLength = 0;
MOZ_RELEASE_ASSERT(ByteLengthIsValid(length, sizeof(E), &pickledLength));
aMsg->WriteBytes(aParam.begin(), pickledLength);
return;
}
for (const E& elem : aParam) {
WriteParam(aMsg, elem);
}
}
static bool Read(const Message* aMsg, PickleIterator* aIter,
paramType* aResult) {
uint32_t length;
if (!ReadParam(aMsg, aIter, &length)) {
return false;
}
if (sUseWriteBytes) {
int pickledLength = 0;
if (!ByteLengthIsValid(length, sizeof(E), &pickledLength)) {
return false;
}
if (!aResult->resizeUninitialized(length)) {
// So that OOM failure shows up as OOM crash instead of IPC FatalError.
NS_ABORT_OOM(length * sizeof(E));
}
E* elements = aResult->begin();
return aMsg->ReadBytesInto(aIter, elements, pickledLength);
}
// Each ReadParam<E> may read more than 1 byte each; this is an attempt
// to minimally validate that the length isn't much larger than what's
// actually available in aMsg.
if (!aMsg->HasBytesAvailable(aIter, length)) {
return false;
}
if (!aResult->resize(length)) {
// So that OOM failure shows up as OOM crash instead of IPC FatalError.
NS_ABORT_OOM(length * sizeof(E));
}
for (uint32_t index = 0; index < length; ++index) {
if (!ReadParam(aMsg, aIter, &((*aResult)[index]))) {
return false;
}
}
return true;
}
static void Log(const paramType& aParam, std::wstring* aLog) {
for (uint32_t index = 0, len = aParam.length(); index < len; ++index) {
if (index) {
aLog->append(L" ");
}
LogParam(aParam[index], aLog);
}
}
};
template <typename E>
struct ParamTraits<std::vector<E>> {
typedef std::vector<E> paramType;
// We write arrays of integer or floating-point data using a single pickling
// call, rather than writing each element individually. We deliberately do
// not use mozilla::IsPod here because it is perfectly reasonable to have
// a data structure T for which IsPod<T>::value is true, yet also have a
// ParamTraits<T> specialization.
static const bool sUseWriteBytes =
(std::is_integral_v<E> || std::is_floating_point_v<E>);
static void Write(Message* aMsg, const paramType& aParam) {
uint32_t length = aParam.size();
WriteParam(aMsg, length);
if (sUseWriteBytes) {
int pickledLength = 0;
MOZ_RELEASE_ASSERT(ByteLengthIsValid(length, sizeof(E), &pickledLength));
aMsg->WriteBytes(aParam.data(), pickledLength);
return;
}
for (const E& elem : aParam) {
WriteParam(aMsg, elem);
}
}
static bool Read(const Message* aMsg, PickleIterator* aIter,
paramType* aResult) {
uint32_t length;
if (!ReadParam(aMsg, aIter, &length)) {
return false;
}
if (sUseWriteBytes) {
int pickledLength = 0;
if (!ByteLengthIsValid(length, sizeof(E), &pickledLength)) {
return false;
}
aResult->resize(length);
E* elements = aResult->data();
return aMsg->ReadBytesInto(aIter, elements, pickledLength);
}
// Each ReadParam<E> may read more than 1 byte each; this is an attempt
// to minimally validate that the length isn't much larger than what's
// actually available in aMsg.
if (!aMsg->HasBytesAvailable(aIter, length)) {
return false;
}
aResult->resize(length);
for (uint32_t index = 0; index < length; ++index) {
if (!ReadParam(aMsg, aIter, &((*aResult)[index]))) {
return false;
}
}
return true;
}
static void Log(const paramType& aParam, std::wstring* aLog) {
for (uint32_t index = 0, len = aParam.size(); index < len; ++index) {
if (index) {
aLog->append(L" ");
}
LogParam(aParam[index], aLog);
}
}
};
template <typename K, typename V>
struct ParamTraits<std::unordered_map<K, V>> final {
using T = std::unordered_map<K, V>;
static void Write(Message* const msg, const T& in) {
WriteParam(msg, in.size());
for (const auto& pair : in) {
WriteParam(msg, pair.first);
WriteParam(msg, pair.second);
}
}
static bool Read(const Message* const msg, PickleIterator* const itr,
T* const out) {
size_t size = 0;
if (!ReadParam(msg, itr, &size)) return false;
T map;
map.reserve(size);
for (const auto i : mozilla::IntegerRange(size)) {
std::pair<K, V> pair;
mozilla::Unused << i;
if (!ReadParam(msg, itr, &(pair.first)) ||
!ReadParam(msg, itr, &(pair.second))) {
return false;
}
map.insert(std::move(pair));
}
*out = std::move(map);
return true;
}
};
template <>
struct ParamTraits<float> {
typedef float paramType;
static void Write(Message* aMsg, const paramType& aParam) {
aMsg->WriteBytes(&aParam, sizeof(paramType));
}
static bool Read(const Message* aMsg, PickleIterator* aIter,
paramType* aResult) {
return aMsg->ReadBytesInto(aIter, aResult, sizeof(*aResult));
}
static void Log(const paramType& aParam, std::wstring* aLog) {
aLog->append(StringPrintf(L"%g", aParam));
}
};
template <>
struct ParamTraits<nsCSSPropertyID>
: public ContiguousEnumSerializer<nsCSSPropertyID, eCSSProperty_UNKNOWN,
eCSSProperty_COUNT> {};
template <>
struct ParamTraits<nsID> {
typedef nsID paramType;
static void Write(Message* aMsg, const paramType& aParam) {
WriteParam(aMsg, aParam.m0);
WriteParam(aMsg, aParam.m1);
WriteParam(aMsg, aParam.m2);
for (unsigned int i = 0; i < mozilla::ArrayLength(aParam.m3); i++) {
WriteParam(aMsg, aParam.m3[i]);
}
}
static bool Read(const Message* aMsg, PickleIterator* aIter,
paramType* aResult) {
if (!ReadParam(aMsg, aIter, &(aResult->m0)) ||
!ReadParam(aMsg, aIter, &(aResult->m1)) ||
!ReadParam(aMsg, aIter, &(aResult->m2)))
return false;
for (unsigned int i = 0; i < mozilla::ArrayLength(aResult->m3); i++)
if (!ReadParam(aMsg, aIter, &(aResult->m3[i]))) return false;
return true;
}
static void Log(const paramType& aParam, std::wstring* aLog) {
aLog->append(L"{");
aLog->append(
StringPrintf(L"%8.8X-%4.4X-%4.4X-", aParam.m0, aParam.m1, aParam.m2));
for (unsigned int i = 0; i < mozilla::ArrayLength(aParam.m3); i++)
aLog->append(StringPrintf(L"%2.2X", aParam.m3[i]));
aLog->append(L"}");
}
};
template <>
struct ParamTraits<nsContentPolicyType>
: public ContiguousEnumSerializerInclusive<
nsContentPolicyType, nsIContentPolicy::TYPE_INVALID,
nsIContentPolicy::TYPE_INTERNAL_FETCH_PRELOAD> {};
template <>
struct ParamTraits<mozilla::TimeDuration> {
typedef mozilla::TimeDuration paramType;
static void Write(Message* aMsg, const paramType& aParam) {
WriteParam(aMsg, aParam.mValue);
}
static bool Read(const Message* aMsg, PickleIterator* aIter,
paramType* aResult) {
return ReadParam(aMsg, aIter, &aResult->mValue);
};
};
template <>
struct ParamTraits<mozilla::TimeStamp> {
typedef mozilla::TimeStamp paramType;
static void Write(Message* aMsg, const paramType& aParam) {
WriteParam(aMsg, aParam.mValue);
}
static bool Read(const Message* aMsg, PickleIterator* aIter,
paramType* aResult) {
return ReadParam(aMsg, aIter, &aResult->mValue);
};
};
#ifdef XP_WIN
template <>
struct ParamTraits<mozilla::TimeStampValue> {
typedef mozilla::TimeStampValue paramType;
static void Write(Message* aMsg, const paramType& aParam) {
WriteParam(aMsg, aParam.mGTC);
WriteParam(aMsg, aParam.mQPC);
WriteParam(aMsg, aParam.mUsedCanonicalNow);
WriteParam(aMsg, aParam.mIsNull);
WriteParam(aMsg, aParam.mHasQPC);
}
static bool Read(const Message* aMsg, PickleIterator* aIter,
paramType* aResult) {
return (ReadParam(aMsg, aIter, &aResult->mGTC) &&
ReadParam(aMsg, aIter, &aResult->mQPC) &&
ReadParam(aMsg, aIter, &aResult->mUsedCanonicalNow) &&
ReadParam(aMsg, aIter, &aResult->mIsNull) &&
ReadParam(aMsg, aIter, &aResult->mHasQPC));
}
};
#else
template <>
struct ParamTraits<mozilla::TimeStamp63Bit> {
typedef mozilla::TimeStamp63Bit paramType;
static void Write(Message* aMsg, const paramType& aParam) {
WriteParam(aMsg, aParam.mUsedCanonicalNow);
WriteParam(aMsg, aParam.mTimeStamp);
}
static bool Read(const Message* aMsg, PickleIterator* aIter,
paramType* aResult) {
bool success = true;
uint64_t result;
success &= ReadParam(aMsg, aIter, &result);
aResult->mUsedCanonicalNow = result & 0x01;
success &= ReadParam(aMsg, aIter, &result);
aResult->mTimeStamp = result & 0x7FFFFFFFFFFFFFFF;
return success;
}
};
#endif
template <>
struct ParamTraits<mozilla::dom::ipc::StructuredCloneData> {
typedef mozilla::dom::ipc::StructuredCloneData paramType;
static void Write(Message* aMsg, const paramType& aParam) {
aParam.WriteIPCParams(aMsg);
}
static bool Read(const Message* aMsg, PickleIterator* aIter,
paramType* aResult) {
return aResult->ReadIPCParams(aMsg, aIter);
}
static void Log(const paramType& aParam, std::wstring* aLog) {
LogParam(aParam.DataLength(), aLog);
}
};
template <class T>
struct ParamTraits<mozilla::Maybe<T>> {
typedef mozilla::Maybe<T> paramType;
static void Write(Message* msg, const paramType& param) {
if (param.isSome()) {
WriteParam(msg, true);
WriteParam(msg, param.value());
} else {
WriteParam(msg, false);
}
}
static bool Read(const Message* msg, PickleIterator* iter,
paramType* result) {
bool isSome;
if (!ReadParam(msg, iter, &isSome)) {
return false;
}
if (isSome) {
T tmp;
if (!ReadParam(msg, iter, &tmp)) {
return false;
}
*result = mozilla::Some(std::move(tmp));
} else {
*result = mozilla::Nothing();
}
return true;
}
};
template <typename T, typename U>
struct ParamTraits<mozilla::EnumSet<T, U>> {
typedef mozilla::EnumSet<T, U> paramType;
typedef U serializedType;
static void Write(Message* msg, const paramType& param) {
MOZ_RELEASE_ASSERT(IsLegalValue(param.serialize()));
WriteParam(msg, param.serialize());
}
static bool Read(const Message* msg, PickleIterator* iter,
paramType* result) {
serializedType tmp;
if (ReadParam(msg, iter, &tmp)) {
if (IsLegalValue(tmp)) {
result->deserialize(tmp);
return true;
}
}
return false;
}
static constexpr serializedType AllEnumBits() {
return ~serializedType(0) >> (std::numeric_limits<serializedType>::digits -
(mozilla::MaxEnumValue<T>::value + 1));
}
static constexpr bool IsLegalValue(const serializedType value) {
static_assert(mozilla::MaxEnumValue<T>::value <
std::numeric_limits<serializedType>::digits,
"Enum max value is not in the range!");
static_assert(
std::is_unsigned<decltype(mozilla::MaxEnumValue<T>::value)>::value,
"Type of MaxEnumValue<T>::value specialization should be unsigned!");
return (value & AllEnumBits()) == value;
}
};
template <class... Ts>
struct ParamTraits<mozilla::Variant<Ts...>> {
typedef mozilla::Variant<Ts...> paramType;
using Tag = typename mozilla::detail::VariantTag<Ts...>::Type;
static void Write(Message* msg, const paramType& param) {
WriteParam(msg, param.tag);
param.match([msg](const auto& t) { WriteParam(msg, t); });
}
// Because VariantReader is a nested struct, we need the dummy template
// parameter to avoid making VariantReader<0> an explicit specialization,
// which is not allowed for a nested class template
template <size_t N, typename dummy = void>
struct VariantReader {
using Next = VariantReader<N - 1>;
static bool Read(const Message* msg, PickleIterator* iter, Tag tag,
paramType* result) {
// Since the VariantReader specializations start at N , we need to
// subtract one to look at N - 1, the first valid tag. This means our
// comparisons are off by 1. If we get to N = 0 then we have failed to
// find a match to the tag.
if (tag == N - 1) {
// Recall, even though the template parameter is N, we are
// actually interested in the N - 1 tag.
// Default construct our field within the result outparameter and
// directly deserialize into the variant. Note that this means that
// every type in Ts needs to be default constructible
return ReadParam(msg, iter, &result->template emplace<N - 1>());
} else {
return Next::Read(msg, iter, tag, result);
}
}
}; // VariantReader<N>
// Since we are conditioning on tag = N - 1 in the preceding specialization,
// if we get to `VariantReader<0, dummy>` we have failed to find
// a matching tag.
template <typename dummy>
struct VariantReader<0, dummy> {
static bool Read(const Message* msg, PickleIterator* iter, Tag tag,
paramType* result) {
return false;
}
};
static bool Read(const Message* msg, PickleIterator* iter,
paramType* result) {
Tag tag;
if (ReadParam(msg, iter, &tag)) {
return VariantReader<sizeof...(Ts)>::Read(msg, iter, tag, result);
}
return false;
}
};
template <typename T>
struct ParamTraits<mozilla::dom::Optional<T>> {
typedef mozilla::dom::Optional<T> paramType;
static void Write(Message* aMsg, const paramType& aParam) {
if (aParam.WasPassed()) {
WriteParam(aMsg, true);
WriteParam(aMsg, aParam.Value());
return;
}
WriteParam(aMsg, false);
}
static bool Read(const Message* aMsg, PickleIterator* aIter,
paramType* aResult) {
bool wasPassed = false;
if (!ReadParam(aMsg, aIter, &wasPassed)) {
return false;
}
aResult->Reset();
if (wasPassed) {
if (!ReadParam(aMsg, aIter, &aResult->Construct())) {
return false;
}
}
return true;
}
};
template <>
struct ParamTraits<nsAtom*> {
typedef nsAtom paramType;
static void Write(Message* aMsg, const paramType* aParam);
static bool Read(const Message* aMsg, PickleIterator* aIter,
RefPtr<paramType>* aResult);
};
struct CrossOriginOpenerPolicyValidator {
using IntegralType =
std::underlying_type_t<nsILoadInfo::CrossOriginOpenerPolicy>;
static bool IsLegalValue(const IntegralType e) {
return AreIntegralValuesEqual(e, nsILoadInfo::OPENER_POLICY_UNSAFE_NONE) ||
AreIntegralValuesEqual(e, nsILoadInfo::OPENER_POLICY_SAME_ORIGIN) ||
AreIntegralValuesEqual(
e, nsILoadInfo::OPENER_POLICY_SAME_ORIGIN_ALLOW_POPUPS) ||
AreIntegralValuesEqual(
e, nsILoadInfo::
OPENER_POLICY_SAME_ORIGIN_EMBEDDER_POLICY_REQUIRE_CORP);
}
private:
static bool AreIntegralValuesEqual(
const IntegralType aLhs,
const nsILoadInfo::CrossOriginOpenerPolicy aRhs) {
return aLhs == static_cast<IntegralType>(aRhs);
}
};
template <>
struct ParamTraits<nsILoadInfo::CrossOriginOpenerPolicy>
: EnumSerializer<nsILoadInfo::CrossOriginOpenerPolicy,
CrossOriginOpenerPolicyValidator> {};
struct CrossOriginEmbedderPolicyValidator {
using IntegralType =
std::underlying_type_t<nsILoadInfo::CrossOriginEmbedderPolicy>;
static bool IsLegalValue(const IntegralType e) {
return AreIntegralValuesEqual(e, nsILoadInfo::EMBEDDER_POLICY_NULL) ||
AreIntegralValuesEqual(e, nsILoadInfo::EMBEDDER_POLICY_REQUIRE_CORP);
}
private:
static bool AreIntegralValuesEqual(
const IntegralType aLhs,
const nsILoadInfo::CrossOriginEmbedderPolicy aRhs) {
return aLhs == static_cast<IntegralType>(aRhs);
}
};
template <>
struct ParamTraits<nsILoadInfo::CrossOriginEmbedderPolicy>
: EnumSerializer<nsILoadInfo::CrossOriginEmbedderPolicy,
CrossOriginEmbedderPolicyValidator> {};
template <size_t N, typename Word>
struct ParamTraits<mozilla::BitSet<N, Word>> {
typedef mozilla::BitSet<N, Word> paramType;
static void Write(Message* aMsg, const paramType& aParam) {
for (Word word : aParam.Storage()) {
WriteParam(aMsg, word);
}
}
static bool Read(const Message* aMsg, PickleIterator* aIter,
paramType* aResult) {
for (Word& word : aResult->Storage()) {
if (!ReadParam(aMsg, aIter, &word)) {
return false;
}
}
return true;
}
};
} /* namespace IPC */
#endif /* __IPC_GLUE_IPCMESSAGEUTILSSPECIALIZATIONS_H__ */