gecko-dev/ipc/mscom/AsyncInvoker.h

340 строки
10 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef mozilla_mscom_AsyncInvoker_h
#define mozilla_mscom_AsyncInvoker_h
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/Maybe.h"
#include "mozilla/Move.h"
#include "mozilla/mscom/Aggregation.h"
#include "mozilla/mscom/Utils.h"
#include "mozilla/Mutex.h"
#include "nsISupportsImpl.h"
#include <objidl.h>
#include <windows.h>
namespace mozilla {
namespace mscom {
namespace detail {
template <typename AsyncInterface>
class ForgettableAsyncCall : public ISynchronize {
public:
explicit ForgettableAsyncCall(ICallFactory* aCallFactory)
: mRefCnt(0), mAsyncCall(nullptr) {
StabilizedRefCount<Atomic<ULONG>> stabilizer(mRefCnt);
HRESULT hr =
aCallFactory->CreateCall(__uuidof(AsyncInterface), this, IID_IUnknown,
getter_AddRefs(mInnerUnk));
if (FAILED(hr)) {
return;
}
hr = mInnerUnk->QueryInterface(__uuidof(AsyncInterface),
reinterpret_cast<void**>(&mAsyncCall));
if (SUCCEEDED(hr)) {
// Don't hang onto a ref. Because mAsyncCall is aggregated, its refcount
// is this->mRefCnt, so we'd create a cycle!
mAsyncCall->Release();
}
}
AsyncInterface* GetInterface() const { return mAsyncCall; }
// IUnknown
STDMETHODIMP QueryInterface(REFIID aIid, void** aOutInterface) override {
if (aIid == IID_IUnknown || aIid == IID_ISynchronize) {
RefPtr<ISynchronize> ptr(this);
ptr.forget(aOutInterface);
return S_OK;
}
return mInnerUnk->QueryInterface(aIid, aOutInterface);
}
STDMETHODIMP_(ULONG) AddRef() override {
ULONG result = ++mRefCnt;
NS_LOG_ADDREF(this, result, "ForgettableAsyncCall", sizeof(*this));
return result;
}
STDMETHODIMP_(ULONG) Release() override {
ULONG result = --mRefCnt;
NS_LOG_RELEASE(this, result, "ForgettableAsyncCall");
if (!result) {
delete this;
}
return result;
}
// ISynchronize
STDMETHODIMP Wait(DWORD aFlags, DWORD aTimeoutMilliseconds) override {
return E_NOTIMPL;
}
STDMETHODIMP Signal() override {
// Even though this function is a no-op, we must return S_OK as opposed to
// E_NOTIMPL or else COM will consider the async call to have failed.
return S_OK;
}
STDMETHODIMP Reset() override {
// Even though this function is a no-op, we must return S_OK as opposed to
// E_NOTIMPL or else COM will consider the async call to have failed.
return S_OK;
}
protected:
virtual ~ForgettableAsyncCall() {}
private:
Atomic<ULONG> mRefCnt;
RefPtr<IUnknown> mInnerUnk;
AsyncInterface* mAsyncCall; // weak reference
};
template <typename AsyncInterface>
class WaitableAsyncCall : public ForgettableAsyncCall<AsyncInterface> {
public:
explicit WaitableAsyncCall(ICallFactory* aCallFactory)
: ForgettableAsyncCall<AsyncInterface>(aCallFactory),
mEvent(::CreateEventW(nullptr, FALSE, FALSE, nullptr)) {}
STDMETHODIMP Wait(DWORD aFlags, DWORD aTimeoutMilliseconds) override {
const DWORD waitStart =
aTimeoutMilliseconds == INFINITE ? 0 : ::GetTickCount();
DWORD flags = aFlags;
if (XRE_IsContentProcess() && NS_IsMainThread()) {
flags |= COWAIT_ALERTABLE;
}
HRESULT hr;
DWORD signaledIdx;
DWORD elapsed = 0;
while (true) {
if (aTimeoutMilliseconds != INFINITE) {
elapsed = ::GetTickCount() - waitStart;
}
if (elapsed >= aTimeoutMilliseconds) {
return RPC_S_CALLPENDING;
}
::SetLastError(ERROR_SUCCESS);
hr = ::CoWaitForMultipleHandles(flags, aTimeoutMilliseconds - elapsed, 1,
&mEvent, &signaledIdx);
if (hr == RPC_S_CALLPENDING || FAILED(hr)) {
return hr;
}
if (hr == S_OK && signaledIdx == 0) {
return hr;
}
}
}
STDMETHODIMP Signal() override {
if (!::SetEvent(mEvent)) {
return HRESULT_FROM_WIN32(::GetLastError());
}
return S_OK;
}
protected:
~WaitableAsyncCall() {
if (mEvent) {
::CloseHandle(mEvent);
}
}
private:
HANDLE mEvent;
};
template <typename AsyncInterface>
class FireAndForgetInvoker {
protected:
typedef ForgettableAsyncCall<AsyncInterface> AsyncCallType;
RefPtr<ForgettableAsyncCall<AsyncInterface>> mAsyncCall;
};
template <typename AsyncInterface>
class WaitableInvoker {
public:
HRESULT Wait(DWORD aTimeout = INFINITE) const {
if (!mAsyncCall) {
// Nothing to wait for
return S_OK;
}
return mAsyncCall->Wait(0, aTimeout);
}
protected:
typedef WaitableAsyncCall<AsyncInterface> AsyncCallType;
RefPtr<WaitableAsyncCall<AsyncInterface>> mAsyncCall;
};
} // namespace detail
/**
* This class is intended for "fire-and-forget" asynchronous invocations of COM
* interfaces. This requires that an interface be annotated with the
* |async_uuid| attribute in midl. We also require that there be no outparams
* in the desired asynchronous interface (otherwise that would break the
* desired "fire-and-forget" semantics).
*
* For example, let us suppose we have some IDL as such:
* [object, uuid(...), async_uuid(...)]
* interface IFoo : IUnknown
* {
* HRESULT Bar([in] long baz);
* }
*
* Then, given an IFoo, we may construct an AsyncInvoker<IFoo, AsyncIFoo>:
*
* IFoo* foo = ...;
* AsyncInvoker<IFoo, AsyncIFoo> myInvoker(foo);
* HRESULT hr = myInvoker.Invoke(&IFoo::Bar, &AsyncIFoo::Begin_Bar, 7);
*
* Alternatively you may use the ASYNC_INVOKER_FOR and ASYNC_INVOKE macros,
* which automatically deduce the name of the asynchronous interface from the
* name of the synchronous interface:
*
* ASYNC_INVOKER_FOR(IFoo) myInvoker(foo);
* HRESULT hr = ASYNC_INVOKE(myInvoker, Bar, 7);
*
* This class may also be used when a synchronous COM call must be made that
* might reenter the content process. In this case, use the WaitableAsyncInvoker
* variant, or the WAITABLE_ASYNC_INVOKER_FOR macro:
*
* WAITABLE_ASYNC_INVOKER_FOR(Ifoo) myInvoker(foo);
* HRESULT hr = ASYNC_INVOKE(myInvoker, Bar, 7);
* if (SUCCEEDED(hr)) {
* myInvoker.Wait(); // <-- Wait for the COM call to complete.
* }
*
* In general you should avoid using the waitable version, but in some corner
* cases it is absolutely necessary in order to preserve correctness while
* avoiding deadlock.
*/
template <typename SyncInterface, typename AsyncInterface,
template <typename Iface> class WaitPolicy =
detail::FireAndForgetInvoker>
class MOZ_RAII AsyncInvoker final : public WaitPolicy<AsyncInterface> {
using Base = WaitPolicy<AsyncInterface>;
public:
typedef SyncInterface SyncInterfaceT;
typedef AsyncInterface AsyncInterfaceT;
/**
* @param aSyncObj The COM object on which to invoke the asynchronous event.
* If this object is not a proxy to the synchronous variant
* of AsyncInterface, then it will be invoked synchronously
* instead (because it is an in-process virtual method call).
* @param aIsProxy An optional hint as to whether or not aSyncObj is a proxy.
* If not specified, AsyncInvoker will automatically detect
* whether aSyncObj is a proxy, however there may be a
* performance penalty associated with that.
*/
explicit AsyncInvoker(SyncInterface* aSyncObj,
const Maybe<bool>& aIsProxy = Nothing())
: mSyncObj(ResolveIsProxy(aSyncObj, aIsProxy) ? nullptr : aSyncObj) {
MOZ_ASSERT(aSyncObj);
if (mSyncObj) {
return;
}
RefPtr<ICallFactory> callFactory;
if (FAILED(aSyncObj->QueryInterface(IID_ICallFactory,
getter_AddRefs(callFactory)))) {
return;
}
this->mAsyncCall = new typename Base::AsyncCallType(callFactory);
}
/**
* @brief Invoke a method on the object. Member function pointers are provided
* for both the sychronous and asynchronous variants of the interface.
* If this invoker's encapsulated COM object is a proxy, then Invoke
* will call the asynchronous member function. Otherwise the
* synchronous version must be used, as the invocation will simply be a
* virtual function call that executes in-process.
* @param aSyncMethod Pointer to the method that we would like to invoke on
* the synchronous interface.
* @param aAsyncMethod Pointer to the method that we would like to invoke on
* the asynchronous interface.
*/
template <typename SyncMethod, typename AsyncMethod, typename... Args>
HRESULT Invoke(SyncMethod aSyncMethod, AsyncMethod aAsyncMethod,
Args... aArgs) {
if (mSyncObj) {
return (mSyncObj->*aSyncMethod)(std::forward<Args>(aArgs)...);
}
MOZ_ASSERT(this->mAsyncCall);
if (!this->mAsyncCall) {
return E_POINTER;
}
AsyncInterface* asyncInterface = this->mAsyncCall->GetInterface();
MOZ_ASSERT(asyncInterface);
if (!asyncInterface) {
return E_POINTER;
}
return (asyncInterface->*aAsyncMethod)(std::forward<Args>(aArgs)...);
}
AsyncInvoker(const AsyncInvoker& aOther) = delete;
AsyncInvoker(AsyncInvoker&& aOther) = delete;
AsyncInvoker& operator=(const AsyncInvoker& aOther) = delete;
AsyncInvoker& operator=(AsyncInvoker&& aOther) = delete;
private:
static bool ResolveIsProxy(SyncInterface* aSyncObj,
const Maybe<bool>& aIsProxy) {
MOZ_ASSERT(aSyncObj);
return aIsProxy.isSome() ? aIsProxy.value() : IsProxy(aSyncObj);
}
private:
RefPtr<SyncInterface> mSyncObj;
};
template <typename SyncInterface, typename AsyncInterface>
using WaitableAsyncInvoker =
AsyncInvoker<SyncInterface, AsyncInterface, detail::WaitableInvoker>;
} // namespace mscom
} // namespace mozilla
#define ASYNC_INVOKER_FOR(SyncIface) \
mozilla::mscom::AsyncInvoker<SyncIface, Async##SyncIface>
#define WAITABLE_ASYNC_INVOKER_FOR(SyncIface) \
mozilla::mscom::WaitableAsyncInvoker<SyncIface, Async##SyncIface>
#define ASYNC_INVOKE(InvokerObj, SyncMethodName, ...) \
InvokerObj.Invoke( \
&decltype(InvokerObj)::SyncInterfaceT::SyncMethodName, \
&decltype(InvokerObj)::AsyncInterfaceT::Begin_##SyncMethodName, \
##__VA_ARGS__)
#endif // mozilla_mscom_AsyncInvoker_h