зеркало из https://github.com/mozilla/gecko-dev.git
188 строки
5.1 KiB
C++
188 строки
5.1 KiB
C++
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "BSPTree.h"
|
|
#include "mozilla/gfx/Polygon.h"
|
|
|
|
namespace mozilla {
|
|
namespace layers {
|
|
|
|
gfx::Polygon3D PopFront(std::deque<gfx::Polygon3D>& aPolygons)
|
|
{
|
|
gfx::Polygon3D polygon = std::move(aPolygons.front());
|
|
aPolygons.pop_front();
|
|
return polygon;
|
|
}
|
|
|
|
namespace {
|
|
|
|
static int sign(float d) {
|
|
if (d > 0) return 1;
|
|
if (d < 0) return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
}
|
|
|
|
void
|
|
BSPTree::BuildDrawOrder(const UniquePtr<BSPTreeNode>& aNode,
|
|
nsTArray<gfx::Polygon3D>& aPolygons) const
|
|
{
|
|
const gfx::Point3D& normal = aNode->First().GetNormal();
|
|
|
|
UniquePtr<BSPTreeNode> *front = &aNode->front;
|
|
UniquePtr<BSPTreeNode> *back = &aNode->back;
|
|
|
|
// Since the goal is to return the draw order from back to front, we reverse
|
|
// the traversal order if the current polygon is facing towards the camera.
|
|
const bool reverseOrder = normal.z > 0.0f;
|
|
|
|
if (reverseOrder) {
|
|
std::swap(front, back);
|
|
}
|
|
|
|
if (*front) {
|
|
BuildDrawOrder(*front, aPolygons);
|
|
}
|
|
|
|
for (gfx::Polygon3D& polygon : aNode->polygons) {
|
|
aPolygons.AppendElement(std::move(polygon));
|
|
}
|
|
|
|
if (*back) {
|
|
BuildDrawOrder(*back, aPolygons);
|
|
}
|
|
}
|
|
|
|
nsTArray<float>
|
|
BSPTree::CalculateDotProduct(const gfx::Polygon3D& aFirst,
|
|
const gfx::Polygon3D& aSecond,
|
|
size_t& aPos, size_t& aNeg) const
|
|
{
|
|
// Point classification might produce incorrect results due to numerical
|
|
// inaccuracies. Using an epsilon value makes the splitting plane "thicker".
|
|
const float epsilon = 0.05f;
|
|
|
|
const gfx::Point3D& normal = aFirst.GetNormal();
|
|
const gfx::Point3D& planePoint = aFirst[0];
|
|
|
|
nsTArray<float> dotProducts;
|
|
|
|
for (const gfx::Point3D& point : aSecond.GetPoints()) {
|
|
float dot = (point - planePoint).DotProduct(normal);
|
|
|
|
if (dot > epsilon) {
|
|
aPos++;
|
|
} else if (dot < -epsilon) {
|
|
aNeg++;
|
|
} else {
|
|
// The point is within the thick plane.
|
|
dot = 0.0f;
|
|
}
|
|
|
|
dotProducts.AppendElement(dot);
|
|
}
|
|
|
|
return dotProducts;
|
|
}
|
|
|
|
void
|
|
BSPTree::BuildTree(UniquePtr<BSPTreeNode>& aRoot,
|
|
std::deque<gfx::Polygon3D>& aPolygons)
|
|
{
|
|
if (aPolygons.empty()) {
|
|
return;
|
|
}
|
|
|
|
const gfx::Polygon3D& splittingPlane = aRoot->First();
|
|
std::deque<gfx::Polygon3D> backPolygons, frontPolygons;
|
|
|
|
for (gfx::Polygon3D& polygon : aPolygons) {
|
|
size_t pos = 0, neg = 0;
|
|
nsTArray<float> dots = CalculateDotProduct(splittingPlane, polygon,
|
|
pos, neg);
|
|
|
|
// Back polygon
|
|
if (pos == 0 && neg > 0) {
|
|
backPolygons.push_back(std::move(polygon));
|
|
}
|
|
// Front polygon
|
|
else if (pos > 0 && neg == 0) {
|
|
frontPolygons.push_back(std::move(polygon));
|
|
}
|
|
// Coplanar polygon
|
|
else if (pos == 0 && neg == 0) {
|
|
aRoot->polygons.push_back(std::move(polygon));
|
|
}
|
|
// Polygon intersects with the splitting plane.
|
|
else if (pos > 0 && neg > 0) {
|
|
nsTArray<gfx::Point3D> backPoints, frontPoints;
|
|
SplitPolygon(splittingPlane, polygon, dots, backPoints, frontPoints);
|
|
|
|
backPolygons.push_back(gfx::Polygon3D(std::move(backPoints)));
|
|
frontPolygons.push_back(gfx::Polygon3D(std::move(frontPoints)));
|
|
}
|
|
}
|
|
|
|
if (!backPolygons.empty()) {
|
|
aRoot->back.reset(new BSPTreeNode(PopFront(backPolygons)));
|
|
BuildTree(aRoot->back, backPolygons);
|
|
}
|
|
|
|
if (!frontPolygons.empty()) {
|
|
aRoot->front.reset(new BSPTreeNode(PopFront(frontPolygons)));
|
|
BuildTree(aRoot->front, frontPolygons);
|
|
}
|
|
}
|
|
|
|
void
|
|
BSPTree::SplitPolygon(const gfx::Polygon3D& aSplittingPlane,
|
|
const gfx::Polygon3D& aPolygon,
|
|
const nsTArray<float>& dots,
|
|
nsTArray<gfx::Point3D>& backPoints,
|
|
nsTArray<gfx::Point3D>& frontPoints)
|
|
{
|
|
const gfx::Point3D& normal = aSplittingPlane.GetNormal();
|
|
const size_t pointCount = aPolygon.GetPoints().Length();
|
|
|
|
for (size_t i = 0; i < pointCount; ++i) {
|
|
size_t j = (i + 1) % pointCount;
|
|
|
|
const gfx::Point3D& a = aPolygon[i];
|
|
const gfx::Point3D& b = aPolygon[j];
|
|
const float dotA = dots[i];
|
|
const float dotB = dots[j];
|
|
|
|
// The point is in front of the plane.
|
|
if (dotA >= 0) {
|
|
frontPoints.AppendElement(a);
|
|
}
|
|
|
|
// The point is behind the plane.
|
|
if (dotA <= 0) {
|
|
backPoints.AppendElement(a);
|
|
}
|
|
|
|
// If the sign of the dot product changes between two consecutive vertices,
|
|
// the splitting plane intersects the corresponding polygon edge.
|
|
if (sign(dotA) != sign(dotB)) {
|
|
|
|
// Calculate the line segment and plane intersection point.
|
|
const gfx::Point3D ab = b - a;
|
|
const float dotAB = ab.DotProduct(normal);
|
|
const float t = -dotA / dotAB;
|
|
const gfx::Point3D p = a + (ab * t);
|
|
|
|
// Add the intersection point to both polygons.
|
|
backPoints.AppendElement(p);
|
|
frontPoints.AppendElement(p);
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace layers
|
|
} // namespace mozilla
|