gecko-dev/gfx/layers/BSPTree.cpp

188 строки
5.1 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "BSPTree.h"
#include "mozilla/gfx/Polygon.h"
namespace mozilla {
namespace layers {
gfx::Polygon3D PopFront(std::deque<gfx::Polygon3D>& aPolygons)
{
gfx::Polygon3D polygon = std::move(aPolygons.front());
aPolygons.pop_front();
return polygon;
}
namespace {
static int sign(float d) {
if (d > 0) return 1;
if (d < 0) return -1;
return 0;
}
}
void
BSPTree::BuildDrawOrder(const UniquePtr<BSPTreeNode>& aNode,
nsTArray<gfx::Polygon3D>& aPolygons) const
{
const gfx::Point3D& normal = aNode->First().GetNormal();
UniquePtr<BSPTreeNode> *front = &aNode->front;
UniquePtr<BSPTreeNode> *back = &aNode->back;
// Since the goal is to return the draw order from back to front, we reverse
// the traversal order if the current polygon is facing towards the camera.
const bool reverseOrder = normal.z > 0.0f;
if (reverseOrder) {
std::swap(front, back);
}
if (*front) {
BuildDrawOrder(*front, aPolygons);
}
for (gfx::Polygon3D& polygon : aNode->polygons) {
aPolygons.AppendElement(std::move(polygon));
}
if (*back) {
BuildDrawOrder(*back, aPolygons);
}
}
nsTArray<float>
BSPTree::CalculateDotProduct(const gfx::Polygon3D& aFirst,
const gfx::Polygon3D& aSecond,
size_t& aPos, size_t& aNeg) const
{
// Point classification might produce incorrect results due to numerical
// inaccuracies. Using an epsilon value makes the splitting plane "thicker".
const float epsilon = 0.05f;
const gfx::Point3D& normal = aFirst.GetNormal();
const gfx::Point3D& planePoint = aFirst[0];
nsTArray<float> dotProducts;
for (const gfx::Point3D& point : aSecond.GetPoints()) {
float dot = (point - planePoint).DotProduct(normal);
if (dot > epsilon) {
aPos++;
} else if (dot < -epsilon) {
aNeg++;
} else {
// The point is within the thick plane.
dot = 0.0f;
}
dotProducts.AppendElement(dot);
}
return dotProducts;
}
void
BSPTree::BuildTree(UniquePtr<BSPTreeNode>& aRoot,
std::deque<gfx::Polygon3D>& aPolygons)
{
if (aPolygons.empty()) {
return;
}
const gfx::Polygon3D& splittingPlane = aRoot->First();
std::deque<gfx::Polygon3D> backPolygons, frontPolygons;
for (gfx::Polygon3D& polygon : aPolygons) {
size_t pos = 0, neg = 0;
nsTArray<float> dots = CalculateDotProduct(splittingPlane, polygon,
pos, neg);
// Back polygon
if (pos == 0 && neg > 0) {
backPolygons.push_back(std::move(polygon));
}
// Front polygon
else if (pos > 0 && neg == 0) {
frontPolygons.push_back(std::move(polygon));
}
// Coplanar polygon
else if (pos == 0 && neg == 0) {
aRoot->polygons.push_back(std::move(polygon));
}
// Polygon intersects with the splitting plane.
else if (pos > 0 && neg > 0) {
nsTArray<gfx::Point3D> backPoints, frontPoints;
SplitPolygon(splittingPlane, polygon, dots, backPoints, frontPoints);
backPolygons.push_back(gfx::Polygon3D(std::move(backPoints)));
frontPolygons.push_back(gfx::Polygon3D(std::move(frontPoints)));
}
}
if (!backPolygons.empty()) {
aRoot->back.reset(new BSPTreeNode(PopFront(backPolygons)));
BuildTree(aRoot->back, backPolygons);
}
if (!frontPolygons.empty()) {
aRoot->front.reset(new BSPTreeNode(PopFront(frontPolygons)));
BuildTree(aRoot->front, frontPolygons);
}
}
void
BSPTree::SplitPolygon(const gfx::Polygon3D& aSplittingPlane,
const gfx::Polygon3D& aPolygon,
const nsTArray<float>& dots,
nsTArray<gfx::Point3D>& backPoints,
nsTArray<gfx::Point3D>& frontPoints)
{
const gfx::Point3D& normal = aSplittingPlane.GetNormal();
const size_t pointCount = aPolygon.GetPoints().Length();
for (size_t i = 0; i < pointCount; ++i) {
size_t j = (i + 1) % pointCount;
const gfx::Point3D& a = aPolygon[i];
const gfx::Point3D& b = aPolygon[j];
const float dotA = dots[i];
const float dotB = dots[j];
// The point is in front of the plane.
if (dotA >= 0) {
frontPoints.AppendElement(a);
}
// The point is behind the plane.
if (dotA <= 0) {
backPoints.AppendElement(a);
}
// If the sign of the dot product changes between two consecutive vertices,
// the splitting plane intersects the corresponding polygon edge.
if (sign(dotA) != sign(dotB)) {
// Calculate the line segment and plane intersection point.
const gfx::Point3D ab = b - a;
const float dotAB = ab.DotProduct(normal);
const float t = -dotA / dotAB;
const gfx::Point3D p = a + (ab * t);
// Add the intersection point to both polygons.
backPoints.AppendElement(p);
frontPoints.AppendElement(p);
}
}
}
} // namespace layers
} // namespace mozilla