gecko-dev/toolkit/modules/subprocess/subprocess_common.jsm

704 строки
20 KiB
JavaScript

/* -*- Mode: indent-tabs-mode: nil; js-indent-level: 2 -*- */
/* vim: set sts=2 sw=2 et tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
"use strict";
/* eslint-disable mozilla/balanced-listeners */
/* exported BaseProcess, PromiseWorker */
var {classes: Cc, interfaces: Ci, utils: Cu, results: Cr} = Components;
Cu.import("resource://gre/modules/Services.jsm");
Cu.import("resource://gre/modules/XPCOMUtils.jsm");
Cu.importGlobalProperties(["TextDecoder"]);
XPCOMUtils.defineLazyModuleGetter(this, "AsyncShutdown",
"resource://gre/modules/AsyncShutdown.jsm");
XPCOMUtils.defineLazyModuleGetter(this, "setTimeout",
"resource://gre/modules/Timer.jsm");
Services.scriptloader.loadSubScript("resource://gre/modules/subprocess/subprocess_shared.js", this);
var EXPORTED_SYMBOLS = ["BaseProcess", "PromiseWorker", "SubprocessConstants"];
const BUFFER_SIZE = 4096;
let nextResponseId = 0;
/**
* Wraps a ChromeWorker so that messages sent to it return a promise which
* resolves when the message has been received and the operation it triggers is
* complete.
*/
class PromiseWorker extends ChromeWorker {
constructor(url) {
super(url);
this.listeners = new Map();
this.pendingResponses = new Map();
this.addListener("close", this.onClose.bind(this));
this.addListener("failure", this.onFailure.bind(this));
this.addListener("success", this.onSuccess.bind(this));
this.addListener("debug", this.onDebug.bind(this));
this.addEventListener("message", this.onmessage);
this.shutdown = this.shutdown.bind(this);
AsyncShutdown.webWorkersShutdown.addBlocker(
"Subprocess.jsm: Shut down IO worker",
this.shutdown);
}
onClose() {
AsyncShutdown.webWorkersShutdown.removeBlocker(this.shutdown);
}
shutdown() {
return this.call("shutdown", []);
}
/**
* Adds a listener for the given message from the worker. Any message received
* from the worker with a `data.msg` property matching the given `msg`
* parameter are passed to the given listener.
*
* @param {string} msg
* The message to listen for.
* @param {function(Event)} listener
* The listener to call when matching messages are received.
*/
addListener(msg, listener) {
if (!this.listeners.has(msg)) {
this.listeners.set(msg, new Set());
}
this.listeners.get(msg).add(listener);
}
/**
* Removes the given message listener.
*
* @param {string} msg
* The message to stop listening for.
* @param {function(Event)} listener
* The listener to remove.
*/
removeListener(msg, listener) {
let listeners = this.listeners.get(msg);
if (listeners) {
listeners.delete(listener);
if (!listeners.size) {
this.listeners.delete(msg);
}
}
}
onmessage(event) {
let {msg} = event.data;
let listeners = this.listeners.get(msg) || new Set();
for (let listener of listeners) {
try {
listener(event.data);
} catch (e) {
Cu.reportError(e);
}
}
}
/**
* Called when a message sent to the worker has failed, and rejects its
* corresponding promise.
*
* @private
*/
onFailure({msgId, error}) {
this.pendingResponses.get(msgId).reject(error);
this.pendingResponses.delete(msgId);
}
/**
* Called when a message sent to the worker has succeeded, and resolves its
* corresponding promise.
*
* @private
*/
onSuccess({msgId, data}) {
this.pendingResponses.get(msgId).resolve(data);
this.pendingResponses.delete(msgId);
}
onDebug({message}) {
dump(`Worker debug: ${message}\n`);
}
/**
* Calls the given method in the worker, and returns a promise which resolves
* or rejects when the method has completed.
*
* @param {string} method
* The name of the method to call.
* @param {Array} args
* The arguments to pass to the method.
* @param {Array} [transferList]
* A list of objects to transfer to the worker, rather than cloning.
* @returns {Promise}
*/
call(method, args, transferList = []) {
let msgId = nextResponseId++;
return new Promise((resolve, reject) => {
this.pendingResponses.set(msgId, {resolve, reject});
let message = {
msg: method,
msgId,
args,
};
this.postMessage(message, transferList);
});
}
}
/**
* Represents an input or output pipe connected to a subprocess.
*
* @property {integer} fd
* The file descriptor number of the pipe on the child process's side.
* @readonly
*/
class Pipe {
/**
* @param {Process} process
* The child process that this pipe is connected to.
* @param {integer} fd
* The file descriptor number of the pipe on the child process's side.
* @param {integer} id
* The internal ID of the pipe, which ties it to the corresponding Pipe
* object on the Worker side.
*/
constructor(process, fd, id) {
this.id = id;
this.fd = fd;
this.processId = process.id;
this.worker = process.worker;
/**
* @property {boolean} closed
* True if the file descriptor has been closed, and can no longer
* be read from or written to. Pending IO operations may still
* complete, but new operations may not be initiated.
* @readonly
*/
this.closed = false;
}
/**
* Closes the end of the pipe which belongs to this process.
*
* @param {boolean} force
* If true, the pipe is closed immediately, regardless of any pending
* IO operations. If false, the pipe is closed after any existing
* pending IO operations have completed.
* @returns {Promise<object>}
* Resolves to an object with no properties once the pipe has been
* closed.
*/
close(force = false) {
this.closed = true;
return this.worker.call("close", [this.id, force]);
}
}
/**
* Represents an output-only pipe, to which data may be written.
*/
class OutputPipe extends Pipe {
constructor(...args) {
super(...args);
this.encoder = new TextEncoder();
}
/**
* Writes the given data to the stream.
*
* When given an array buffer or typed array, ownership of the buffer is
* transferred to the IO worker, and it may no longer be used from this
* thread.
*
* @param {ArrayBuffer|TypedArray|string} buffer
* Data to write to the stream.
* @returns {Promise<object>}
* Resolves to an object with a `bytesWritten` property, containing
* the number of bytes successfully written, once the operation has
* completed.
*
* @rejects {object}
* May be rejected with an Error object, or an object with similar
* properties. The object will include an `errorCode` property with
* one of the following values if it was rejected for the
* corresponding reason:
*
* - Subprocess.ERROR_END_OF_FILE: The pipe was closed before
* all of the data in `buffer` could be written to it.
*/
write(buffer) {
if (typeof buffer === "string") {
buffer = this.encoder.encode(buffer);
}
if (Cu.getClassName(buffer, true) !== "ArrayBuffer") {
if (buffer.byteLength === buffer.buffer.byteLength) {
buffer = buffer.buffer;
} else {
buffer = buffer.buffer.slice(buffer.byteOffset, buffer.byteOffset + buffer.byteLength);
}
}
let args = [this.id, buffer];
return this.worker.call("write", args, [buffer]);
}
}
/**
* Represents an input-only pipe, from which data may be read.
*/
class InputPipe extends Pipe {
constructor(...args) {
super(...args);
this.buffers = [];
/**
* @property {integer} dataAvailable
* The number of readable bytes currently stored in the input
* buffer.
* @readonly
*/
this.dataAvailable = 0;
this.decoder = new TextDecoder();
this.pendingReads = [];
this._pendingBufferRead = null;
this.fillBuffer();
}
/**
* @property {integer} bufferSize
* The current size of the input buffer. This varies depending on
* the size of pending read operations.
* @readonly
*/
get bufferSize() {
if (this.pendingReads.length) {
return Math.max(this.pendingReads[0].length, BUFFER_SIZE);
}
return BUFFER_SIZE;
}
/**
* Attempts to fill the input buffer.
*
* @private
*/
fillBuffer() {
let dataWanted = this.bufferSize - this.dataAvailable;
if (!this._pendingBufferRead && dataWanted > 0) {
this._pendingBufferRead = this._read(dataWanted);
this._pendingBufferRead.then((result) => {
this._pendingBufferRead = null;
if (result) {
this.onInput(result.buffer);
this.fillBuffer();
}
});
}
}
_read(size) {
let args = [this.id, size];
return this.worker.call("read", args).catch(e => {
this.closed = true;
for (let {length, resolve, reject} of this.pendingReads.splice(0)) {
if (length === null && e.errorCode === SubprocessConstants.ERROR_END_OF_FILE) {
resolve(new ArrayBuffer(0));
} else {
reject(e);
}
}
});
}
/**
* Adds the given data to the end of the input buffer.
*
* @param {ArrayBuffer} buffer
* An input buffer to append to the current buffered input.
* @private
*/
onInput(buffer) {
this.buffers.push(buffer);
this.dataAvailable += buffer.byteLength;
this.checkPendingReads();
}
/**
* Checks the topmost pending read operations and fulfills as many as can be
* filled from the current input buffer.
*
* @private
*/
checkPendingReads() {
this.fillBuffer();
let reads = this.pendingReads;
while (reads.length && this.dataAvailable &&
reads[0].length <= this.dataAvailable) {
let pending = this.pendingReads.shift();
let length = pending.length || this.dataAvailable;
let result;
let byteLength = this.buffers[0].byteLength;
if (byteLength == length) {
result = this.buffers.shift();
} else if (byteLength > length) {
let buffer = this.buffers[0];
this.buffers[0] = buffer.slice(length);
result = ArrayBuffer.transfer(buffer, length);
} else {
result = ArrayBuffer.transfer(this.buffers.shift(), length);
let u8result = new Uint8Array(result);
while (byteLength < length) {
let buffer = this.buffers[0];
let u8buffer = new Uint8Array(buffer);
let remaining = length - byteLength;
if (buffer.byteLength <= remaining) {
this.buffers.shift();
u8result.set(u8buffer, byteLength);
} else {
this.buffers[0] = buffer.slice(remaining);
u8result.set(u8buffer.subarray(0, remaining), byteLength);
}
byteLength += Math.min(buffer.byteLength, remaining);
}
}
this.dataAvailable -= result.byteLength;
pending.resolve(result);
}
}
/**
* Reads exactly `length` bytes of binary data from the input stream, or, if
* length is not provided, reads the first chunk of data to become available.
* In the latter case, returns an empty array buffer on end of file.
*
* The read operation will not complete until enough data is available to
* fulfill the request. If the pipe closes without enough available data to
* fulfill the read, the operation fails, and any remaining buffered data is
* lost.
*
* @param {integer} [length]
* The number of bytes to read.
* @returns {Promise<ArrayBuffer>}
*
* @rejects {object}
* May be rejected with an Error object, or an object with similar
* properties. The object will include an `errorCode` property with
* one of the following values if it was rejected for the
* corresponding reason:
*
* - Subprocess.ERROR_END_OF_FILE: The pipe was closed before
* enough input could be read to satisfy the request.
*/
read(length = null) {
if (length !== null && !(Number.isInteger(length) && length >= 0)) {
throw new RangeError("Length must be a non-negative integer");
}
if (length == 0) {
return Promise.resolve(new ArrayBuffer(0));
}
return new Promise((resolve, reject) => {
this.pendingReads.push({length, resolve, reject});
this.checkPendingReads();
});
}
/**
* Reads exactly `length` bytes from the input stream, and parses them as
* UTF-8 JSON data.
*
* @param {integer} length
* The number of bytes to read.
* @returns {Promise<object>}
*
* @rejects {object}
* May be rejected with an Error object, or an object with similar
* properties. The object will include an `errorCode` property with
* one of the following values if it was rejected for the
* corresponding reason:
*
* - Subprocess.ERROR_END_OF_FILE: The pipe was closed before
* enough input could be read to satisfy the request.
* - Subprocess.ERROR_INVALID_JSON: The data read from the pipe
* could not be parsed as a valid JSON string.
*/
readJSON(length) {
if (!Number.isInteger(length) || length <= 0) {
throw new RangeError("Length must be a positive integer");
}
return this.readString(length).then(string => {
try {
return JSON.parse(string);
} catch (e) {
e.errorCode = SubprocessConstants.ERROR_INVALID_JSON;
throw e;
}
});
}
/**
* Reads a chunk of UTF-8 data from the input stream, and converts it to a
* JavaScript string.
*
* If `length` is provided, reads exactly `length` bytes. Otherwise, reads the
* first chunk of data to become available, and returns an empty string on end
* of file. In the latter case, the chunk is decoded in streaming mode, and
* any incomplete UTF-8 sequences at the end of a chunk are returned at the
* start of a subsequent read operation.
*
* @param {integer} [length]
* The number of bytes to read.
* @param {object} [options]
* An options object as expected by TextDecoder.decode.
* @returns {Promise<string>}
*
* @rejects {object}
* May be rejected with an Error object, or an object with similar
* properties. The object will include an `errorCode` property with
* one of the following values if it was rejected for the
* corresponding reason:
*
* - Subprocess.ERROR_END_OF_FILE: The pipe was closed before
* enough input could be read to satisfy the request.
*/
readString(length = null, options = {stream: length === null}) {
if (length !== null && !(Number.isInteger(length) && length >= 0)) {
throw new RangeError("Length must be a non-negative integer");
}
return this.read(length).then(buffer => {
return this.decoder.decode(buffer, options);
});
}
/**
* Reads 4 bytes from the input stream, and parses them as an unsigned
* integer, in native byte order.
*
* @returns {Promise<integer>}
*
* @rejects {object}
* May be rejected with an Error object, or an object with similar
* properties. The object will include an `errorCode` property with
* one of the following values if it was rejected for the
* corresponding reason:
*
* - Subprocess.ERROR_END_OF_FILE: The pipe was closed before
* enough input could be read to satisfy the request.
*/
readUint32() {
return this.read(4).then(buffer => {
return new Uint32Array(buffer)[0];
});
}
}
/**
* @class Process
* @extends BaseProcess
*/
/**
* Represents a currently-running process, and allows interaction with it.
*/
class BaseProcess {
/**
* @param {PromiseWorker} worker
* The worker instance which owns the process.
* @param {integer} processId
* The internal ID of the Process object, which ties it to the
* corresponding process on the Worker side.
* @param {integer[]} fds
* An array of internal Pipe IDs, one for each standard file descriptor
* in the child process.
* @param {integer} pid
* The operating system process ID of the process.
*/
constructor(worker, processId, fds, pid) {
this.id = processId;
this.worker = worker;
/**
* @property {integer} pid
* The process ID of the process, assigned by the operating system.
* @readonly
*/
this.pid = pid;
this.exitCode = null;
this.exitPromise = new Promise(resolve => {
this.worker.call("wait", [this.id]).then(({exitCode}) => {
resolve(Object.freeze({exitCode}));
this.exitCode = exitCode;
});
});
if (fds[0] !== undefined) {
/**
* @property {OutputPipe} stdin
* A Pipe object which allows writing to the process's standard
* input.
* @readonly
*/
this.stdin = new OutputPipe(this, 0, fds[0]);
}
if (fds[1] !== undefined) {
/**
* @property {InputPipe} stdout
* A Pipe object which allows reading from the process's standard
* output.
* @readonly
*/
this.stdout = new InputPipe(this, 1, fds[1]);
}
if (fds[2] !== undefined) {
/**
* @property {InputPipe} [stderr]
* An optional Pipe object which allows reading from the
* process's standard error output.
* @readonly
*/
this.stderr = new InputPipe(this, 2, fds[2]);
}
}
/**
* Spawns a process, and resolves to a BaseProcess instance on success.
*
* @param {object} options
* An options object as passed to `Subprocess.call`.
*
* @returns {Promise<BaseProcess>}
*/
static create(options) {
let worker = this.getWorker();
return worker.call("spawn", [options]).then(({processId, fds, pid}) => {
return new this(worker, processId, fds, pid);
});
}
static get WORKER_URL() {
throw new Error("Not implemented");
}
static get WorkerClass() {
return PromiseWorker;
}
/**
* Gets the current subprocess worker, or spawns a new one if it does not
* currently exist.
*
* @returns {PromiseWorker}
*/
static getWorker() {
if (!this._worker) {
this._worker = new this.WorkerClass(this.WORKER_URL);
}
return this._worker;
}
/**
* Kills the process.
*
* @param {integer} [timeout=300]
* A timeout, in milliseconds, after which the process will be forcibly
* killed. On platforms which support it, the process will be sent
* a `SIGTERM` signal immediately, so that it has a chance to terminate
* gracefully, and a `SIGKILL` signal if it hasn't exited within
* `timeout` milliseconds. On other platforms (namely Windows), the
* process will be forcibly terminated immediately.
*
* @returns {Promise<object>}
* Resolves to an object with an `exitCode` property when the process
* has exited.
*/
kill(timeout = 300) {
// If the process has already exited, don't bother sending a signal.
if (this.exitCode != null) {
return this.wait();
}
let force = timeout <= 0;
this.worker.call("kill", [this.id, force]);
if (!force) {
setTimeout(() => {
if (this.exitCode == null) {
this.worker.call("kill", [this.id, true]);
}
}, timeout);
}
return this.wait();
}
/**
* Returns a promise which resolves to the process's exit code, once it has
* exited.
*
* @returns {Promise<object>}
* Resolves to an object with an `exitCode` property, containing the
* process's exit code, once the process has exited.
*
* On Unix-like systems, a negative exit code indicates that the
* process was killed by a signal whose signal number is the absolute
* value of the error code. On Windows, an exit code of -9 indicates
* that the process was killed via the {@linkcode BaseProcess#kill kill()}
* method.
*/
wait() {
return this.exitPromise;
}
}