gecko-dev/dom/animation/KeyframeEffect.cpp

639 строки
22 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/dom/KeyframeEffect.h"
#include "mozilla/dom/KeyframeEffectBinding.h"
#include "mozilla/FloatingPoint.h"
#include "AnimationCommon.h"
#include "nsCSSPropertySet.h"
#include "nsCSSProps.h" // For nsCSSProps::PropHasFlags
#include "nsStyleUtil.h"
namespace mozilla {
void
ComputedTimingFunction::Init(const nsTimingFunction &aFunction)
{
mType = aFunction.mType;
if (nsTimingFunction::IsSplineType(mType)) {
mTimingFunction.Init(aFunction.mFunc.mX1, aFunction.mFunc.mY1,
aFunction.mFunc.mX2, aFunction.mFunc.mY2);
} else {
mSteps = aFunction.mSteps;
mStepSyntax = aFunction.mStepSyntax;
}
}
static inline double
StepEnd(uint32_t aSteps, double aPortion)
{
MOZ_ASSERT(0.0 <= aPortion && aPortion <= 1.0, "out of range");
uint32_t step = uint32_t(aPortion * aSteps); // floor
return double(step) / double(aSteps);
}
double
ComputedTimingFunction::GetValue(double aPortion) const
{
if (HasSpline()) {
return mTimingFunction.GetSplineValue(aPortion);
}
if (mType == nsTimingFunction::Type::StepStart) {
// There are diagrams in the spec that seem to suggest this check
// and the bounds point should not be symmetric with StepEnd, but
// should actually step up at rather than immediately after the
// fraction points. However, we rely on rounding negative values
// up to zero, so we can't do that. And it's not clear the spec
// really meant it.
return 1.0 - StepEnd(mSteps, 1.0 - aPortion);
}
MOZ_ASSERT(mType == nsTimingFunction::Type::StepEnd, "bad type");
return StepEnd(mSteps, aPortion);
}
int32_t
ComputedTimingFunction::Compare(const ComputedTimingFunction& aRhs) const
{
if (mType != aRhs.mType) {
return int32_t(mType) - int32_t(aRhs.mType);
}
if (mType == nsTimingFunction::Type::CubicBezier) {
int32_t order = mTimingFunction.Compare(aRhs.mTimingFunction);
if (order != 0) {
return order;
}
} else if (mType == nsTimingFunction::Type::StepStart ||
mType == nsTimingFunction::Type::StepEnd) {
if (mSteps != aRhs.mSteps) {
return int32_t(mSteps) - int32_t(aRhs.mSteps);
}
if (mStepSyntax != aRhs.mStepSyntax) {
return int32_t(mStepSyntax) - int32_t(aRhs.mStepSyntax);
}
}
return 0;
}
void
ComputedTimingFunction::AppendToString(nsAString& aResult) const
{
switch (mType) {
case nsTimingFunction::Type::CubicBezier:
nsStyleUtil::AppendCubicBezierTimingFunction(mTimingFunction.X1(),
mTimingFunction.Y1(),
mTimingFunction.X2(),
mTimingFunction.Y2(),
aResult);
break;
case nsTimingFunction::Type::StepStart:
case nsTimingFunction::Type::StepEnd:
nsStyleUtil::AppendStepsTimingFunction(mType, mSteps, mStepSyntax,
aResult);
break;
default:
nsStyleUtil::AppendCubicBezierKeywordTimingFunction(mType, aResult);
break;
}
}
// In the Web Animations model, the iteration progress can be outside the range
// [0.0, 1.0] but it shouldn't be Infinity.
const double ComputedTiming::kNullProgress = PositiveInfinity<double>();
namespace dom {
NS_IMPL_CYCLE_COLLECTION_INHERITED(KeyframeEffectReadOnly,
AnimationEffectReadOnly,
mTarget,
mAnimation)
NS_IMPL_CYCLE_COLLECTION_TRACE_BEGIN_INHERITED(KeyframeEffectReadOnly,
AnimationEffectReadOnly)
NS_IMPL_CYCLE_COLLECTION_TRACE_END
NS_INTERFACE_MAP_BEGIN_CYCLE_COLLECTION_INHERITED(KeyframeEffectReadOnly)
NS_INTERFACE_MAP_END_INHERITING(AnimationEffectReadOnly)
NS_IMPL_ADDREF_INHERITED(KeyframeEffectReadOnly, AnimationEffectReadOnly)
NS_IMPL_RELEASE_INHERITED(KeyframeEffectReadOnly, AnimationEffectReadOnly)
KeyframeEffectReadOnly::KeyframeEffectReadOnly(
nsIDocument* aDocument,
Element* aTarget,
nsCSSPseudoElements::Type aPseudoType,
const AnimationTiming& aTiming)
: AnimationEffectReadOnly(aDocument)
, mTarget(aTarget)
, mTiming(aTiming)
, mPseudoType(aPseudoType)
{
MOZ_ASSERT(aTarget, "null animation target is not yet supported");
ResetIsRunningOnCompositor();
}
JSObject*
KeyframeEffectReadOnly::WrapObject(JSContext* aCx,
JS::Handle<JSObject*> aGivenProto)
{
return KeyframeEffectReadOnlyBinding::Wrap(aCx, this, aGivenProto);
}
void
KeyframeEffectReadOnly::SetTiming(const AnimationTiming& aTiming)
{
if (mTiming == aTiming) {
return;
}
mTiming = aTiming;
if (mAnimation) {
mAnimation->NotifyEffectTimingUpdated();
}
}
Nullable<TimeDuration>
KeyframeEffectReadOnly::GetLocalTime() const
{
// Since the *animation* start time is currently always zero, the local
// time is equal to the parent time.
Nullable<TimeDuration> result;
if (mAnimation) {
result = mAnimation->GetCurrentTime();
}
return result;
}
ComputedTiming
KeyframeEffectReadOnly::GetComputedTimingAt(
const Nullable<TimeDuration>& aLocalTime,
const AnimationTiming& aTiming)
{
const TimeDuration zeroDuration;
// Currently we expect negative durations to be picked up during CSS
// parsing but when we start receiving timing parameters from other sources
// we will need to clamp negative durations here.
// For now, if we're hitting this it probably means we're overflowing
// integer arithmetic in mozilla::TimeStamp.
MOZ_ASSERT(aTiming.mIterationDuration >= zeroDuration,
"Expecting iteration duration >= 0");
// Always return the same object to benefit from return-value optimization.
ComputedTiming result;
result.mActiveDuration = ActiveDuration(aTiming);
// The default constructor for ComputedTiming sets all other members to
// values consistent with an animation that has not been sampled.
if (aLocalTime.IsNull()) {
return result;
}
const TimeDuration& localTime = aLocalTime.Value();
// When we finish exactly at the end of an iteration we need to report
// the end of the final iteration and not the start of the next iteration
// so we set up a flag for that case.
bool isEndOfFinalIteration = false;
// Get the normalized time within the active interval.
StickyTimeDuration activeTime;
if (localTime >= aTiming.mDelay + result.mActiveDuration) {
result.mPhase = ComputedTiming::AnimationPhase_After;
if (!aTiming.FillsForwards()) {
// The animation isn't active or filling at this time.
result.mProgress = ComputedTiming::kNullProgress;
return result;
}
activeTime = result.mActiveDuration;
// Note that infinity == floor(infinity) so this will also be true when we
// have finished an infinitely repeating animation of zero duration.
isEndOfFinalIteration =
aTiming.mIterationCount != 0.0 &&
aTiming.mIterationCount == floor(aTiming.mIterationCount);
} else if (localTime < aTiming.mDelay) {
result.mPhase = ComputedTiming::AnimationPhase_Before;
if (!aTiming.FillsBackwards()) {
// The animation isn't active or filling at this time.
result.mProgress = ComputedTiming::kNullProgress;
return result;
}
// activeTime is zero
} else {
MOZ_ASSERT(result.mActiveDuration != zeroDuration,
"How can we be in the middle of a zero-duration interval?");
result.mPhase = ComputedTiming::AnimationPhase_Active;
activeTime = localTime - aTiming.mDelay;
}
// Get the position within the current iteration.
StickyTimeDuration iterationTime;
if (aTiming.mIterationDuration != zeroDuration) {
iterationTime = isEndOfFinalIteration
? StickyTimeDuration(aTiming.mIterationDuration)
: activeTime % aTiming.mIterationDuration;
} /* else, iterationTime is zero */
// Determine the 0-based index of the current iteration.
if (isEndOfFinalIteration) {
result.mCurrentIteration =
aTiming.mIterationCount == NS_IEEEPositiveInfinity()
? UINT64_MAX // FIXME: When we return this via the API we'll need
// to make sure it ends up being infinity.
: static_cast<uint64_t>(aTiming.mIterationCount) - 1;
} else if (activeTime == zeroDuration) {
// If the active time is zero we're either in the first iteration
// (including filling backwards) or we have finished an animation with an
// iteration duration of zero that is filling forwards (but we're not at
// the exact end of an iteration since we deal with that above).
result.mCurrentIteration =
result.mPhase == ComputedTiming::AnimationPhase_After
? static_cast<uint64_t>(aTiming.mIterationCount) // floor
: 0;
} else {
result.mCurrentIteration =
static_cast<uint64_t>(activeTime / aTiming.mIterationDuration); // floor
}
// Normalize the iteration time into a fraction of the iteration duration.
if (result.mPhase == ComputedTiming::AnimationPhase_Before) {
result.mProgress = 0.0;
} else if (result.mPhase == ComputedTiming::AnimationPhase_After) {
result.mProgress = isEndOfFinalIteration
? 1.0
: fmod(aTiming.mIterationCount, 1.0f);
} else {
// We are in the active phase so the iteration duration can't be zero.
MOZ_ASSERT(aTiming.mIterationDuration != zeroDuration,
"In the active phase of a zero-duration animation?");
result.mProgress = aTiming.mIterationDuration == TimeDuration::Forever()
? 0.0
: iterationTime / aTiming.mIterationDuration;
}
bool thisIterationReverse = false;
switch (aTiming.mDirection) {
case NS_STYLE_ANIMATION_DIRECTION_NORMAL:
thisIterationReverse = false;
break;
case NS_STYLE_ANIMATION_DIRECTION_REVERSE:
thisIterationReverse = true;
break;
case NS_STYLE_ANIMATION_DIRECTION_ALTERNATE:
thisIterationReverse = (result.mCurrentIteration & 1) == 1;
break;
case NS_STYLE_ANIMATION_DIRECTION_ALTERNATE_REVERSE:
thisIterationReverse = (result.mCurrentIteration & 1) == 0;
break;
}
if (thisIterationReverse) {
result.mProgress = 1.0 - result.mProgress;
}
return result;
}
StickyTimeDuration
KeyframeEffectReadOnly::ActiveDuration(const AnimationTiming& aTiming)
{
if (aTiming.mIterationCount == mozilla::PositiveInfinity<float>()) {
// An animation that repeats forever has an infinite active duration
// unless its iteration duration is zero, in which case it has a zero
// active duration.
const StickyTimeDuration zeroDuration;
return aTiming.mIterationDuration == zeroDuration
? zeroDuration
: StickyTimeDuration::Forever();
}
return StickyTimeDuration(
aTiming.mIterationDuration.MultDouble(aTiming.mIterationCount));
}
// https://w3c.github.io/web-animations/#in-play
bool
KeyframeEffectReadOnly::IsInPlay() const
{
if (!mAnimation || mAnimation->PlayState() == AnimationPlayState::Finished) {
return false;
}
return GetComputedTiming().mPhase == ComputedTiming::AnimationPhase_Active;
}
// https://w3c.github.io/web-animations/#current
bool
KeyframeEffectReadOnly::IsCurrent() const
{
if (!mAnimation || mAnimation->PlayState() == AnimationPlayState::Finished) {
return false;
}
ComputedTiming computedTiming = GetComputedTiming();
return computedTiming.mPhase == ComputedTiming::AnimationPhase_Before ||
computedTiming.mPhase == ComputedTiming::AnimationPhase_Active;
}
// https://w3c.github.io/web-animations/#in-effect
bool
KeyframeEffectReadOnly::IsInEffect() const
{
ComputedTiming computedTiming = GetComputedTiming();
return computedTiming.mProgress != ComputedTiming::kNullProgress;
}
void
KeyframeEffectReadOnly::SetAnimation(Animation* aAnimation)
{
mAnimation = aAnimation;
}
const AnimationProperty*
KeyframeEffectReadOnly::GetAnimationOfProperty(nsCSSProperty aProperty) const
{
for (size_t propIdx = 0, propEnd = mProperties.Length();
propIdx != propEnd; ++propIdx) {
if (aProperty == mProperties[propIdx].mProperty) {
const AnimationProperty* result = &mProperties[propIdx];
if (!result->mWinsInCascade) {
result = nullptr;
}
return result;
}
}
return nullptr;
}
bool
KeyframeEffectReadOnly::HasAnimationOfProperties(
const nsCSSProperty* aProperties,
size_t aPropertyCount) const
{
for (size_t i = 0; i < aPropertyCount; i++) {
if (HasAnimationOfProperty(aProperties[i])) {
return true;
}
}
return false;
}
void
KeyframeEffectReadOnly::ComposeStyle(nsRefPtr<AnimValuesStyleRule>& aStyleRule,
nsCSSPropertySet& aSetProperties)
{
ComputedTiming computedTiming = GetComputedTiming();
// If the progress is null, we don't have fill data for the current
// time so we shouldn't animate.
if (computedTiming.mProgress == ComputedTiming::kNullProgress) {
return;
}
MOZ_ASSERT(0.0 <= computedTiming.mProgress &&
computedTiming.mProgress <= 1.0,
"iteration progress should be in [0-1]");
for (size_t propIdx = 0, propEnd = mProperties.Length();
propIdx != propEnd; ++propIdx)
{
const AnimationProperty& prop = mProperties[propIdx];
MOZ_ASSERT(prop.mSegments[0].mFromKey == 0.0, "incorrect first from key");
MOZ_ASSERT(prop.mSegments[prop.mSegments.Length() - 1].mToKey == 1.0,
"incorrect last to key");
if (aSetProperties.HasProperty(prop.mProperty)) {
// Animations are composed by AnimationCollection by iterating
// from the last animation to first. For animations targetting the
// same property, the later one wins. So if this property is already set,
// we should not override it.
continue;
}
if (!prop.mWinsInCascade) {
// This isn't the winning declaration, so don't add it to style.
// For transitions, this is important, because it's how we
// implement the rule that CSS transitions don't run when a CSS
// animation is running on the same property and element. For
// animations, this is only skipping things that will otherwise be
// overridden.
continue;
}
aSetProperties.AddProperty(prop.mProperty);
MOZ_ASSERT(prop.mSegments.Length() > 0,
"property should not be in animations if it has no segments");
// FIXME: Maybe cache the current segment?
const AnimationPropertySegment *segment = prop.mSegments.Elements(),
*segmentEnd = segment + prop.mSegments.Length();
while (segment->mToKey < computedTiming.mProgress) {
MOZ_ASSERT(segment->mFromKey < segment->mToKey, "incorrect keys");
++segment;
if (segment == segmentEnd) {
MOZ_ASSERT_UNREACHABLE("incorrect iteration progress");
break; // in order to continue in outer loop (just below)
}
MOZ_ASSERT(segment->mFromKey == (segment-1)->mToKey, "incorrect keys");
}
if (segment == segmentEnd) {
continue;
}
MOZ_ASSERT(segment->mFromKey < segment->mToKey, "incorrect keys");
MOZ_ASSERT(segment >= prop.mSegments.Elements() &&
size_t(segment - prop.mSegments.Elements()) <
prop.mSegments.Length(),
"out of array bounds");
if (!aStyleRule) {
// Allocate the style rule now that we know we have animation data.
aStyleRule = new AnimValuesStyleRule();
}
double positionInSegment =
(computedTiming.mProgress - segment->mFromKey) /
(segment->mToKey - segment->mFromKey);
double valuePosition =
segment->mTimingFunction.GetValue(positionInSegment);
StyleAnimationValue *val = aStyleRule->AddEmptyValue(prop.mProperty);
#ifdef DEBUG
bool result =
#endif
StyleAnimationValue::Interpolate(prop.mProperty,
segment->mFromValue,
segment->mToValue,
valuePosition, *val);
MOZ_ASSERT(result, "interpolate must succeed now");
}
}
bool
KeyframeEffectReadOnly::IsRunningOnCompositor() const
{
// We consider animation is running on compositor if there is at least
// one property running on compositor.
// Animation.IsRunningOnCompotitor will return more fine grained
// information in bug 1196114.
for (bool isPropertyRunningOnCompositor : mIsPropertyRunningOnCompositor) {
if (isPropertyRunningOnCompositor) {
return true;
}
}
return false;
}
void
KeyframeEffectReadOnly::SetIsRunningOnCompositor(nsCSSProperty aProperty,
bool aIsRunning)
{
static_assert(
MOZ_ARRAY_LENGTH(LayerAnimationInfo::sRecords) ==
MOZ_ARRAY_LENGTH(mIsPropertyRunningOnCompositor),
"The length of mIsPropertyRunningOnCompositor should equal to"
"the length of LayserAnimationInfo::sRecords");
MOZ_ASSERT(nsCSSProps::PropHasFlags(aProperty,
CSS_PROPERTY_CAN_ANIMATE_ON_COMPOSITOR),
"Property being animated on compositor is a recognized "
"compositor-animatable property");
const auto& info = LayerAnimationInfo::sRecords;
for (size_t i = 0; i < ArrayLength(mIsPropertyRunningOnCompositor); i++) {
if (info[i].mProperty == aProperty) {
mIsPropertyRunningOnCompositor[i] = aIsRunning;
return;
}
}
}
// We need to define this here since Animation is an incomplete type
// (forward-declared) in the header.
KeyframeEffectReadOnly::~KeyframeEffectReadOnly()
{
}
void
KeyframeEffectReadOnly::ResetIsRunningOnCompositor()
{
for (bool& isPropertyRunningOnCompositor : mIsPropertyRunningOnCompositor) {
isPropertyRunningOnCompositor = false;
}
}
struct KeyframeValueEntry
{
float mOffset;
nsCSSProperty mProperty;
nsString mValue;
const ComputedTimingFunction* mTimingFunction;
bool operator==(const KeyframeValueEntry& aRhs) const
{
NS_ASSERTION(mOffset != aRhs.mOffset || mProperty != aRhs.mProperty,
"shouldn't have duplicate (offset, property) pairs");
return false;
}
bool operator<(const KeyframeValueEntry& aRhs) const
{
NS_ASSERTION(mOffset != aRhs.mOffset || mProperty != aRhs.mProperty,
"shouldn't have duplicate (offset, property) pairs");
// First, sort by offset.
if (mOffset != aRhs.mOffset) {
return mOffset < aRhs.mOffset;
}
// Second, by timing function.
int32_t order = mTimingFunction->Compare(*aRhs.mTimingFunction);
if (order != 0) {
return order < 0;
}
// Last, by property IDL name.
return nsCSSProps::PropertyIDLNameSortPosition(mProperty) <
nsCSSProps::PropertyIDLNameSortPosition(aRhs.mProperty);
}
};
void
KeyframeEffectReadOnly::GetFrames(JSContext*& aCx,
nsTArray<JSObject*>& aResult,
ErrorResult& aRv)
{
// Collect tuples of the form (offset, property, value, easing) from
// mProperties, then sort them so we can generate one ComputedKeyframe per
// offset/easing pair. We sort secondarily by property IDL name so that we
// have a uniform order that we set properties on the ComputedKeyframe
// object.
nsAutoTArray<KeyframeValueEntry,4> entries;
for (const AnimationProperty& property : mProperties) {
if (property.mSegments.IsEmpty()) {
continue;
}
for (size_t i = 0, n = property.mSegments.Length(); i < n; i++) {
const AnimationPropertySegment& segment = property.mSegments[i];
KeyframeValueEntry* entry = entries.AppendElement();
entry->mOffset = segment.mFromKey;
entry->mProperty = property.mProperty;
entry->mTimingFunction = &segment.mTimingFunction;
StyleAnimationValue::UncomputeValue(property.mProperty,
segment.mFromValue,
entry->mValue);
}
const AnimationPropertySegment& segment = property.mSegments.LastElement();
KeyframeValueEntry* entry = entries.AppendElement();
entry->mOffset = segment.mToKey;
entry->mProperty = property.mProperty;
// We don't have the an appropriate animation-timing-function value to use,
// either from the element or from the 100% keyframe, so we just set it to
// the animation-timing-value value used on the previous segment.
entry->mTimingFunction = &segment.mTimingFunction;
StyleAnimationValue::UncomputeValue(property.mProperty,
segment.mToValue,
entry->mValue);
}
entries.Sort();
for (size_t i = 0, n = entries.Length(); i < n; ) {
// Create a JS object with the explicit ComputedKeyframe dictionary members.
ComputedKeyframe keyframeDict;
keyframeDict.mOffset.SetValue(entries[i].mOffset);
keyframeDict.mComputedOffset.Construct(entries[i].mOffset);
keyframeDict.mEasing.Truncate();
entries[i].mTimingFunction->AppendToString(keyframeDict.mEasing);
keyframeDict.mComposite.SetValue(CompositeOperation::Replace);
JS::Rooted<JS::Value> keyframeValue(aCx);
if (!ToJSValue(aCx, keyframeDict, &keyframeValue)) {
aRv.Throw(NS_ERROR_FAILURE);
return;
}
JS::Rooted<JSObject*> keyframe(aCx, &keyframeValue.toObject());
// Set the property name/value pairs on the JS object.
do {
const KeyframeValueEntry& entry = entries[i];
const char* name = nsCSSProps::PropertyIDLName(entry.mProperty);
JS::Rooted<JS::Value> value(aCx);
if (!ToJSValue(aCx, entry.mValue, &value) ||
!JS_DefineProperty(aCx, keyframe, name, value, JSPROP_ENUMERATE)) {
aRv.Throw(NS_ERROR_FAILURE);
return;
}
++i;
} while (i < n &&
entries[i].mOffset == entries[i - 1].mOffset &&
*entries[i].mTimingFunction == *entries[i - 1].mTimingFunction);
aResult.AppendElement(keyframe);
}
}
} // namespace dom
} // namespace mozilla