зеркало из https://github.com/mozilla/gecko-dev.git
1605 строки
54 KiB
C++
1605 строки
54 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
// We're dividing JS objects into 3 categories:
|
|
//
|
|
// 1. "real" roots, held by the JS engine itself or rooted through the root
|
|
// and lock JS APIs. Roots from this category are considered black in the
|
|
// cycle collector, any cycle they participate in is uncollectable.
|
|
//
|
|
// 2. certain roots held by C++ objects that are guaranteed to be alive.
|
|
// Roots from this category are considered black in the cycle collector,
|
|
// and any cycle they participate in is uncollectable. These roots are
|
|
// traced from TraceNativeBlackRoots.
|
|
//
|
|
// 3. all other roots held by C++ objects that participate in cycle
|
|
// collection, held by us (see TraceNativeGrayRoots). Roots from this
|
|
// category are considered grey in the cycle collector; whether or not
|
|
// they are collected depends on the objects that hold them.
|
|
//
|
|
// Note that if a root is in multiple categories the fact that it is in
|
|
// category 1 or 2 that takes precedence, so it will be considered black.
|
|
//
|
|
// During garbage collection we switch to an additional mark color (gray)
|
|
// when tracing inside TraceNativeGrayRoots. This allows us to walk those
|
|
// roots later on and add all objects reachable only from them to the
|
|
// cycle collector.
|
|
//
|
|
// Phases:
|
|
//
|
|
// 1. marking of the roots in category 1 by having the JS GC do its marking
|
|
// 2. marking of the roots in category 2 by having the JS GC call us back
|
|
// (via JS_SetExtraGCRootsTracer) and running TraceNativeBlackRoots
|
|
// 3. marking of the roots in category 3 by TraceNativeGrayRoots using an
|
|
// additional color (gray).
|
|
// 4. end of GC, GC can sweep its heap
|
|
//
|
|
// At some later point, when the cycle collector runs:
|
|
//
|
|
// 5. walk gray objects and add them to the cycle collector, cycle collect
|
|
//
|
|
// JS objects that are part of cycles the cycle collector breaks will be
|
|
// collected by the next JS GC.
|
|
//
|
|
// If WantAllTraces() is false the cycle collector will not traverse roots
|
|
// from category 1 or any JS objects held by them. Any JS objects they hold
|
|
// will already be marked by the JS GC and will thus be colored black
|
|
// themselves. Any C++ objects they hold will have a missing (untraversed)
|
|
// edge from the JS object to the C++ object and so it will be marked black
|
|
// too. This decreases the number of objects that the cycle collector has to
|
|
// deal with.
|
|
// To improve debugging, if WantAllTraces() is true all JS objects are
|
|
// traversed.
|
|
|
|
#include "mozilla/CycleCollectedJSRuntime.h"
|
|
#include <algorithm>
|
|
#include "mozilla/ArrayUtils.h"
|
|
#include "mozilla/AutoRestore.h"
|
|
#include "mozilla/CycleCollectedJSContext.h"
|
|
#include "mozilla/Move.h"
|
|
#include "mozilla/MemoryReporting.h"
|
|
#include "mozilla/Sprintf.h"
|
|
#include "mozilla/Telemetry.h"
|
|
#include "mozilla/TimelineConsumers.h"
|
|
#include "mozilla/TimelineMarker.h"
|
|
#include "mozilla/Unused.h"
|
|
#include "mozilla/DebuggerOnGCRunnable.h"
|
|
#include "mozilla/dom/DOMJSClass.h"
|
|
#include "mozilla/dom/ProfileTimelineMarkerBinding.h"
|
|
#include "mozilla/dom/Promise.h"
|
|
#include "mozilla/dom/PromiseBinding.h"
|
|
#include "mozilla/dom/PromiseDebugging.h"
|
|
#include "mozilla/dom/ScriptSettings.h"
|
|
#include "js/Debug.h"
|
|
#include "js/GCAPI.h"
|
|
#include "js/Warnings.h" // JS::SetWarningReporter
|
|
#include "jsfriendapi.h"
|
|
#include "nsContentUtils.h"
|
|
#include "nsCycleCollectionNoteRootCallback.h"
|
|
#include "nsCycleCollectionParticipant.h"
|
|
#include "nsCycleCollector.h"
|
|
#include "nsDOMJSUtils.h"
|
|
#include "nsExceptionHandler.h"
|
|
#include "nsJSUtils.h"
|
|
#include "nsWrapperCache.h"
|
|
#include "nsStringBuffer.h"
|
|
#include "GeckoProfiler.h"
|
|
|
|
#ifdef MOZ_GECKO_PROFILER
|
|
# include "ProfilerMarkerPayload.h"
|
|
#endif
|
|
|
|
#if defined(XP_MACOSX)
|
|
# include "nsMacUtilsImpl.h"
|
|
#endif
|
|
|
|
#include "nsIException.h"
|
|
#include "nsThread.h"
|
|
#include "nsThreadUtils.h"
|
|
#include "xpcpublic.h"
|
|
|
|
#ifdef NIGHTLY_BUILD
|
|
// For performance reasons, we make the JS Dev Error Interceptor a Nightly-only
|
|
// feature.
|
|
# define MOZ_JS_DEV_ERROR_INTERCEPTOR = 1
|
|
#endif // NIGHTLY_BUILD
|
|
|
|
using namespace mozilla;
|
|
using namespace mozilla::dom;
|
|
|
|
namespace mozilla {
|
|
|
|
struct DeferredFinalizeFunctionHolder {
|
|
DeferredFinalizeFunction run;
|
|
void* data;
|
|
};
|
|
|
|
class IncrementalFinalizeRunnable : public CancelableRunnable {
|
|
typedef AutoTArray<DeferredFinalizeFunctionHolder, 16> DeferredFinalizeArray;
|
|
typedef CycleCollectedJSRuntime::DeferredFinalizerTable
|
|
DeferredFinalizerTable;
|
|
|
|
CycleCollectedJSRuntime* mRuntime;
|
|
DeferredFinalizeArray mDeferredFinalizeFunctions;
|
|
uint32_t mFinalizeFunctionToRun;
|
|
bool mReleasing;
|
|
|
|
static const PRTime SliceMillis = 5; /* ms */
|
|
|
|
public:
|
|
IncrementalFinalizeRunnable(CycleCollectedJSRuntime* aRt,
|
|
DeferredFinalizerTable& aFinalizerTable);
|
|
virtual ~IncrementalFinalizeRunnable();
|
|
|
|
void ReleaseNow(bool aLimited);
|
|
|
|
NS_DECL_NSIRUNNABLE
|
|
};
|
|
|
|
} // namespace mozilla
|
|
|
|
struct NoteWeakMapChildrenTracer : public JS::CallbackTracer {
|
|
NoteWeakMapChildrenTracer(JSRuntime* aRt,
|
|
nsCycleCollectionNoteRootCallback& aCb)
|
|
: JS::CallbackTracer(aRt),
|
|
mCb(aCb),
|
|
mTracedAny(false),
|
|
mMap(nullptr),
|
|
mKey(nullptr),
|
|
mKeyDelegate(nullptr) {
|
|
setCanSkipJsids(true);
|
|
}
|
|
bool onChild(const JS::GCCellPtr& aThing) override;
|
|
nsCycleCollectionNoteRootCallback& mCb;
|
|
bool mTracedAny;
|
|
JSObject* mMap;
|
|
JS::GCCellPtr mKey;
|
|
JSObject* mKeyDelegate;
|
|
};
|
|
|
|
bool NoteWeakMapChildrenTracer::onChild(const JS::GCCellPtr& aThing) {
|
|
if (aThing.is<JSString>()) {
|
|
return true;
|
|
}
|
|
|
|
if (!JS::GCThingIsMarkedGray(aThing) && !mCb.WantAllTraces()) {
|
|
return true;
|
|
}
|
|
|
|
if (JS::IsCCTraceKind(aThing.kind())) {
|
|
mCb.NoteWeakMapping(mMap, mKey, mKeyDelegate, aThing);
|
|
mTracedAny = true;
|
|
} else {
|
|
JS::TraceChildren(this, aThing);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
struct NoteWeakMapsTracer : public js::WeakMapTracer {
|
|
NoteWeakMapsTracer(JSRuntime* aRt, nsCycleCollectionNoteRootCallback& aCccb)
|
|
: js::WeakMapTracer(aRt), mCb(aCccb), mChildTracer(aRt, aCccb) {}
|
|
void trace(JSObject* aMap, JS::GCCellPtr aKey, JS::GCCellPtr aValue) override;
|
|
nsCycleCollectionNoteRootCallback& mCb;
|
|
NoteWeakMapChildrenTracer mChildTracer;
|
|
};
|
|
|
|
void NoteWeakMapsTracer::trace(JSObject* aMap, JS::GCCellPtr aKey,
|
|
JS::GCCellPtr aValue) {
|
|
// If nothing that could be held alive by this entry is marked gray, return.
|
|
if ((!aKey || !JS::GCThingIsMarkedGray(aKey)) &&
|
|
MOZ_LIKELY(!mCb.WantAllTraces())) {
|
|
if (!aValue || !JS::GCThingIsMarkedGray(aValue) || aValue.is<JSString>()) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// The cycle collector can only properly reason about weak maps if it can
|
|
// reason about the liveness of their keys, which in turn requires that
|
|
// the key can be represented in the cycle collector graph. All existing
|
|
// uses of weak maps use either objects or scripts as keys, which are okay.
|
|
MOZ_ASSERT(JS::IsCCTraceKind(aKey.kind()));
|
|
|
|
// As an emergency fallback for non-debug builds, if the key is not
|
|
// representable in the cycle collector graph, we treat it as marked. This
|
|
// can cause leaks, but is preferable to ignoring the binding, which could
|
|
// cause the cycle collector to free live objects.
|
|
if (!JS::IsCCTraceKind(aKey.kind())) {
|
|
aKey = nullptr;
|
|
}
|
|
|
|
JSObject* kdelegate = nullptr;
|
|
if (aKey.is<JSObject>()) {
|
|
kdelegate = js::UncheckedUnwrapWithoutExpose(&aKey.as<JSObject>());
|
|
}
|
|
|
|
if (JS::IsCCTraceKind(aValue.kind())) {
|
|
mCb.NoteWeakMapping(aMap, aKey, kdelegate, aValue);
|
|
} else {
|
|
mChildTracer.mTracedAny = false;
|
|
mChildTracer.mMap = aMap;
|
|
mChildTracer.mKey = aKey;
|
|
mChildTracer.mKeyDelegate = kdelegate;
|
|
|
|
if (!aValue.is<JSString>()) {
|
|
JS::TraceChildren(&mChildTracer, aValue);
|
|
}
|
|
|
|
// The delegate could hold alive the key, so report something to the CC
|
|
// if we haven't already.
|
|
if (!mChildTracer.mTracedAny && aKey && JS::GCThingIsMarkedGray(aKey) &&
|
|
kdelegate) {
|
|
mCb.NoteWeakMapping(aMap, aKey, kdelegate, nullptr);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Report whether the key or value of a weak mapping entry are gray but need to
|
|
// be marked black.
|
|
static void ShouldWeakMappingEntryBeBlack(JSObject* aMap, JS::GCCellPtr aKey,
|
|
JS::GCCellPtr aValue,
|
|
bool* aKeyShouldBeBlack,
|
|
bool* aValueShouldBeBlack) {
|
|
*aKeyShouldBeBlack = false;
|
|
*aValueShouldBeBlack = false;
|
|
|
|
// If nothing that could be held alive by this entry is marked gray, return.
|
|
bool keyMightNeedMarking = aKey && JS::GCThingIsMarkedGray(aKey);
|
|
bool valueMightNeedMarking = aValue && JS::GCThingIsMarkedGray(aValue) &&
|
|
aValue.kind() != JS::TraceKind::String;
|
|
if (!keyMightNeedMarking && !valueMightNeedMarking) {
|
|
return;
|
|
}
|
|
|
|
if (!JS::IsCCTraceKind(aKey.kind())) {
|
|
aKey = nullptr;
|
|
}
|
|
|
|
if (keyMightNeedMarking && aKey.is<JSObject>()) {
|
|
JSObject* kdelegate =
|
|
js::UncheckedUnwrapWithoutExpose(&aKey.as<JSObject>());
|
|
if (kdelegate && !JS::ObjectIsMarkedGray(kdelegate) &&
|
|
(!aMap || !JS::ObjectIsMarkedGray(aMap))) {
|
|
*aKeyShouldBeBlack = true;
|
|
}
|
|
}
|
|
|
|
if (aValue && JS::GCThingIsMarkedGray(aValue) &&
|
|
(!aKey || !JS::GCThingIsMarkedGray(aKey)) &&
|
|
(!aMap || !JS::ObjectIsMarkedGray(aMap)) &&
|
|
aValue.kind() != JS::TraceKind::Shape) {
|
|
*aValueShouldBeBlack = true;
|
|
}
|
|
}
|
|
|
|
struct FixWeakMappingGrayBitsTracer : public js::WeakMapTracer {
|
|
explicit FixWeakMappingGrayBitsTracer(JSRuntime* aRt)
|
|
: js::WeakMapTracer(aRt) {}
|
|
|
|
void FixAll() {
|
|
do {
|
|
mAnyMarked = false;
|
|
js::TraceWeakMaps(this);
|
|
} while (mAnyMarked);
|
|
}
|
|
|
|
void trace(JSObject* aMap, JS::GCCellPtr aKey,
|
|
JS::GCCellPtr aValue) override {
|
|
bool keyShouldBeBlack;
|
|
bool valueShouldBeBlack;
|
|
ShouldWeakMappingEntryBeBlack(aMap, aKey, aValue, &keyShouldBeBlack,
|
|
&valueShouldBeBlack);
|
|
if (keyShouldBeBlack && JS::UnmarkGrayGCThingRecursively(aKey)) {
|
|
mAnyMarked = true;
|
|
}
|
|
|
|
if (valueShouldBeBlack && JS::UnmarkGrayGCThingRecursively(aValue)) {
|
|
mAnyMarked = true;
|
|
}
|
|
}
|
|
|
|
MOZ_INIT_OUTSIDE_CTOR bool mAnyMarked;
|
|
};
|
|
|
|
#ifdef DEBUG
|
|
// Check whether weak maps are marked correctly according to the logic above.
|
|
struct CheckWeakMappingGrayBitsTracer : public js::WeakMapTracer {
|
|
explicit CheckWeakMappingGrayBitsTracer(JSRuntime* aRt)
|
|
: js::WeakMapTracer(aRt), mFailed(false) {}
|
|
|
|
static bool Check(JSRuntime* aRt) {
|
|
CheckWeakMappingGrayBitsTracer tracer(aRt);
|
|
js::TraceWeakMaps(&tracer);
|
|
return !tracer.mFailed;
|
|
}
|
|
|
|
void trace(JSObject* aMap, JS::GCCellPtr aKey,
|
|
JS::GCCellPtr aValue) override {
|
|
bool keyShouldBeBlack;
|
|
bool valueShouldBeBlack;
|
|
ShouldWeakMappingEntryBeBlack(aMap, aKey, aValue, &keyShouldBeBlack,
|
|
&valueShouldBeBlack);
|
|
|
|
if (keyShouldBeBlack) {
|
|
fprintf(stderr, "Weak mapping key %p of map %p should be black\n",
|
|
aKey.asCell(), aMap);
|
|
mFailed = true;
|
|
}
|
|
|
|
if (valueShouldBeBlack) {
|
|
fprintf(stderr, "Weak mapping value %p of map %p should be black\n",
|
|
aValue.asCell(), aMap);
|
|
mFailed = true;
|
|
}
|
|
}
|
|
|
|
bool mFailed;
|
|
};
|
|
#endif // DEBUG
|
|
|
|
static void CheckParticipatesInCycleCollection(JS::GCCellPtr aThing,
|
|
const char* aName,
|
|
void* aClosure) {
|
|
bool* cycleCollectionEnabled = static_cast<bool*>(aClosure);
|
|
|
|
if (*cycleCollectionEnabled) {
|
|
return;
|
|
}
|
|
|
|
if (JS::IsCCTraceKind(aThing.kind()) && JS::GCThingIsMarkedGray(aThing)) {
|
|
*cycleCollectionEnabled = true;
|
|
}
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
JSGCThingParticipant::TraverseNative(void* aPtr,
|
|
nsCycleCollectionTraversalCallback& aCb) {
|
|
auto runtime = reinterpret_cast<CycleCollectedJSRuntime*>(
|
|
reinterpret_cast<char*>(this) -
|
|
offsetof(CycleCollectedJSRuntime, mGCThingCycleCollectorGlobal));
|
|
|
|
JS::GCCellPtr cellPtr(aPtr, JS::GCThingTraceKind(aPtr));
|
|
runtime->TraverseGCThing(CycleCollectedJSRuntime::TRAVERSE_FULL, cellPtr,
|
|
aCb);
|
|
return NS_OK;
|
|
}
|
|
|
|
// NB: This is only used to initialize the participant in
|
|
// CycleCollectedJSRuntime. It should never be used directly.
|
|
static JSGCThingParticipant sGCThingCycleCollectorGlobal;
|
|
|
|
NS_IMETHODIMP
|
|
JSZoneParticipant::TraverseNative(void* aPtr,
|
|
nsCycleCollectionTraversalCallback& aCb) {
|
|
auto runtime = reinterpret_cast<CycleCollectedJSRuntime*>(
|
|
reinterpret_cast<char*>(this) -
|
|
offsetof(CycleCollectedJSRuntime, mJSZoneCycleCollectorGlobal));
|
|
|
|
MOZ_ASSERT(!aCb.WantAllTraces());
|
|
JS::Zone* zone = static_cast<JS::Zone*>(aPtr);
|
|
|
|
runtime->TraverseZone(zone, aCb);
|
|
return NS_OK;
|
|
}
|
|
|
|
struct TraversalTracer : public JS::CallbackTracer {
|
|
TraversalTracer(JSRuntime* aRt, nsCycleCollectionTraversalCallback& aCb)
|
|
: JS::CallbackTracer(aRt, DoNotTraceWeakMaps), mCb(aCb) {
|
|
setCanSkipJsids(true);
|
|
}
|
|
bool onChild(const JS::GCCellPtr& aThing) override;
|
|
nsCycleCollectionTraversalCallback& mCb;
|
|
};
|
|
|
|
bool TraversalTracer::onChild(const JS::GCCellPtr& aThing) {
|
|
// Checking strings and symbols for being gray is rather slow, and we don't
|
|
// need either of them for the cycle collector.
|
|
if (aThing.is<JSString>() || aThing.is<JS::Symbol>()) {
|
|
return true;
|
|
}
|
|
|
|
// Don't traverse non-gray objects, unless we want all traces.
|
|
if (!JS::GCThingIsMarkedGray(aThing) && !mCb.WantAllTraces()) {
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* This function needs to be careful to avoid stack overflow. Normally, when
|
|
* IsCCTraceKind is true, the recursion terminates immediately as we just add
|
|
* |thing| to the CC graph. So overflow is only possible when there are long
|
|
* or cyclic chains of non-IsCCTraceKind GC things. Places where this can
|
|
* occur use special APIs to handle such chains iteratively.
|
|
*/
|
|
if (JS::IsCCTraceKind(aThing.kind())) {
|
|
if (MOZ_UNLIKELY(mCb.WantDebugInfo())) {
|
|
char buffer[200];
|
|
getTracingEdgeName(buffer, sizeof(buffer));
|
|
mCb.NoteNextEdgeName(buffer);
|
|
}
|
|
mCb.NoteJSChild(aThing);
|
|
} else if (aThing.is<js::Shape>()) {
|
|
// The maximum depth of traversal when tracing a Shape is unbounded, due to
|
|
// the parent pointers on the shape.
|
|
JS_TraceShapeCycleCollectorChildren(this, aThing);
|
|
} else if (aThing.is<js::ObjectGroup>()) {
|
|
// The maximum depth of traversal when tracing an ObjectGroup is unbounded,
|
|
// due to information attached to the groups which can lead other groups to
|
|
// be traced.
|
|
JS_TraceObjectGroupCycleCollectorChildren(this, aThing);
|
|
} else {
|
|
JS::TraceChildren(this, aThing);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void NoteJSChildGrayWrapperShim(void* aData, JS::GCCellPtr aThing) {
|
|
TraversalTracer* trc = static_cast<TraversalTracer*>(aData);
|
|
trc->onChild(aThing);
|
|
}
|
|
|
|
/*
|
|
* The cycle collection participant for a Zone is intended to produce the same
|
|
* results as if all of the gray GCthings in a zone were merged into a single
|
|
* node, except for self-edges. This avoids the overhead of representing all of
|
|
* the GCthings in the zone in the cycle collector graph, which should be much
|
|
* faster if many of the GCthings in the zone are gray.
|
|
*
|
|
* Zone merging should not always be used, because it is a conservative
|
|
* approximation of the true cycle collector graph that can incorrectly identify
|
|
* some garbage objects as being live. For instance, consider two cycles that
|
|
* pass through a zone, where one is garbage and the other is live. If we merge
|
|
* the entire zone, the cycle collector will think that both are alive.
|
|
*
|
|
* We don't have to worry about losing track of a garbage cycle, because any
|
|
* such garbage cycle incorrectly identified as live must contain at least one
|
|
* C++ to JS edge, and XPConnect will always add the C++ object to the CC graph.
|
|
* (This is in contrast to pure C++ garbage cycles, which must always be
|
|
* properly identified, because we clear the purple buffer during every CC,
|
|
* which may contain the last reference to a garbage cycle.)
|
|
*/
|
|
|
|
// NB: This is only used to initialize the participant in
|
|
// CycleCollectedJSRuntime. It should never be used directly.
|
|
static const JSZoneParticipant sJSZoneCycleCollectorGlobal;
|
|
|
|
static void JSObjectsTenuredCb(JSContext* aContext, void* aData) {
|
|
static_cast<CycleCollectedJSRuntime*>(aData)->JSObjectsTenured();
|
|
}
|
|
|
|
static void MozCrashWarningReporter(JSContext*, JSErrorReport*) {
|
|
MOZ_CRASH("Why is someone touching JSAPI without an AutoJSAPI?");
|
|
}
|
|
|
|
CycleCollectedJSRuntime::CycleCollectedJSRuntime(JSContext* aCx)
|
|
: mGCThingCycleCollectorGlobal(sGCThingCycleCollectorGlobal),
|
|
mJSZoneCycleCollectorGlobal(sJSZoneCycleCollectorGlobal),
|
|
mJSRuntime(JS_GetRuntime(aCx)),
|
|
mHasPendingIdleGCTask(false),
|
|
mPrevGCSliceCallback(nullptr),
|
|
mPrevGCNurseryCollectionCallback(nullptr),
|
|
mJSHolderMap(256),
|
|
mOutOfMemoryState(OOMState::OK),
|
|
mLargeAllocationFailureState(OOMState::OK)
|
|
#ifdef DEBUG
|
|
,
|
|
mShutdownCalled(false)
|
|
#endif
|
|
{
|
|
MOZ_COUNT_CTOR(CycleCollectedJSRuntime);
|
|
MOZ_ASSERT(aCx);
|
|
MOZ_ASSERT(mJSRuntime);
|
|
|
|
#if defined(XP_MACOSX)
|
|
if (!XRE_IsParentProcess()) {
|
|
nsMacUtilsImpl::EnableTCSMIfAvailable();
|
|
}
|
|
#endif
|
|
|
|
if (!JS_AddExtraGCRootsTracer(aCx, TraceBlackJS, this)) {
|
|
MOZ_CRASH("JS_AddExtraGCRootsTracer failed");
|
|
}
|
|
JS_SetGrayGCRootsTracer(aCx, TraceGrayJS, this);
|
|
JS_SetGCCallback(aCx, GCCallback, this);
|
|
mPrevGCSliceCallback = JS::SetGCSliceCallback(aCx, GCSliceCallback);
|
|
|
|
if (NS_IsMainThread()) {
|
|
// We would like to support all threads here, but the way timeline consumers
|
|
// are set up currently, you can either add a marker for one specific
|
|
// docshell, or for every consumer globally. We would like to add a marker
|
|
// for every consumer observing anything on this thread, but that is not
|
|
// currently possible. For now, add global markers only when we are on the
|
|
// main thread, since the UI for this tracing data only displays data
|
|
// relevant to the main-thread.
|
|
mPrevGCNurseryCollectionCallback =
|
|
JS::SetGCNurseryCollectionCallback(aCx, GCNurseryCollectionCallback);
|
|
}
|
|
|
|
JS_SetObjectsTenuredCallback(aCx, JSObjectsTenuredCb, this);
|
|
JS::SetOutOfMemoryCallback(aCx, OutOfMemoryCallback, this);
|
|
JS_SetExternalStringSizeofCallback(aCx, SizeofExternalStringCallback);
|
|
JS::SetWarningReporter(aCx, MozCrashWarningReporter);
|
|
|
|
js::AutoEnterOOMUnsafeRegion::setAnnotateOOMAllocationSizeCallback(
|
|
CrashReporter::AnnotateOOMAllocationSize);
|
|
|
|
static js::DOMCallbacks DOMcallbacks = {InstanceClassHasProtoAtDepth};
|
|
SetDOMCallbacks(aCx, &DOMcallbacks);
|
|
js::SetScriptEnvironmentPreparer(aCx, &mEnvironmentPreparer);
|
|
|
|
JS::dbg::SetDebuggerMallocSizeOf(aCx, moz_malloc_size_of);
|
|
|
|
#ifdef MOZ_JS_DEV_ERROR_INTERCEPTOR
|
|
JS_SetErrorInterceptorCallback(mJSRuntime, &mErrorInterceptor);
|
|
#endif // MOZ_JS_DEV_ERROR_INTERCEPTOR
|
|
}
|
|
|
|
#ifdef NS_BUILD_REFCNT_LOGGING
|
|
class JSLeakTracer : public JS::CallbackTracer {
|
|
public:
|
|
explicit JSLeakTracer(JSRuntime* aRuntime)
|
|
: JS::CallbackTracer(aRuntime, TraceWeakMapKeysValues) {}
|
|
|
|
private:
|
|
bool onChild(const JS::GCCellPtr& thing) override {
|
|
const char* kindName = JS::GCTraceKindToAscii(thing.kind());
|
|
size_t size = JS::GCTraceKindSize(thing.kind());
|
|
MOZ_LOG_CTOR(thing.asCell(), kindName, size);
|
|
return true;
|
|
}
|
|
};
|
|
#endif
|
|
|
|
void CycleCollectedJSRuntime::Shutdown(JSContext* cx) {
|
|
#ifdef MOZ_JS_DEV_ERROR_INTERCEPTOR
|
|
mErrorInterceptor.Shutdown(mJSRuntime);
|
|
#endif // MOZ_JS_DEV_ERROR_INTERCEPTOR
|
|
|
|
// There should not be any roots left to trace at this point. Ensure any that
|
|
// remain are flagged as leaks.
|
|
#ifdef NS_BUILD_REFCNT_LOGGING
|
|
JSLeakTracer tracer(Runtime());
|
|
TraceNativeBlackRoots(&tracer);
|
|
TraceNativeGrayRoots(&tracer);
|
|
#endif
|
|
|
|
#ifdef DEBUG
|
|
mShutdownCalled = true;
|
|
#endif
|
|
}
|
|
|
|
CycleCollectedJSRuntime::~CycleCollectedJSRuntime() {
|
|
MOZ_COUNT_DTOR(CycleCollectedJSRuntime);
|
|
MOZ_ASSERT(!mDeferredFinalizerTable.Count());
|
|
MOZ_ASSERT(mShutdownCalled);
|
|
}
|
|
|
|
void CycleCollectedJSRuntime::AddContext(CycleCollectedJSContext* aContext) {
|
|
mContexts.insertBack(aContext);
|
|
}
|
|
|
|
void CycleCollectedJSRuntime::RemoveContext(CycleCollectedJSContext* aContext) {
|
|
aContext->removeFrom(mContexts);
|
|
}
|
|
|
|
size_t CycleCollectedJSRuntime::SizeOfExcludingThis(
|
|
MallocSizeOf aMallocSizeOf) const {
|
|
size_t n = 0;
|
|
|
|
// We're deliberately not measuring anything hanging off the entries in
|
|
// mJSHolders.
|
|
n += mJSHolders.SizeOfExcludingThis(aMallocSizeOf);
|
|
n += mJSHolderMap.ShallowSizeOfExcludingThis(aMallocSizeOf);
|
|
|
|
return n;
|
|
}
|
|
|
|
void CycleCollectedJSRuntime::UnmarkSkippableJSHolders() {
|
|
// Prevent nsWrapperCaches accessed under CanSkip from adding recorded events
|
|
// which might not replay in the same order.
|
|
recordreplay::AutoDisallowThreadEvents disallow;
|
|
|
|
for (auto iter = mJSHolders.Iter(); !iter.Done(); iter.Next()) {
|
|
void* holder = iter.Get().mHolder;
|
|
nsScriptObjectTracer* tracer = iter.Get().mTracer;
|
|
tracer->CanSkip(holder, true);
|
|
}
|
|
}
|
|
|
|
void CycleCollectedJSRuntime::DescribeGCThing(
|
|
bool aIsMarked, JS::GCCellPtr aThing,
|
|
nsCycleCollectionTraversalCallback& aCb) const {
|
|
if (!aCb.WantDebugInfo()) {
|
|
aCb.DescribeGCedNode(aIsMarked, "JS Object");
|
|
return;
|
|
}
|
|
|
|
char name[72];
|
|
uint64_t compartmentAddress = 0;
|
|
if (aThing.is<JSObject>()) {
|
|
JSObject* obj = &aThing.as<JSObject>();
|
|
compartmentAddress = (uint64_t)js::GetObjectCompartment(obj);
|
|
const JSClass* clasp = js::GetObjectClass(obj);
|
|
|
|
// Give the subclass a chance to do something
|
|
if (DescribeCustomObjects(obj, clasp, name)) {
|
|
// Nothing else to do!
|
|
} else if (js::IsFunctionObject(obj)) {
|
|
JSFunction* fun = JS_GetObjectFunction(obj);
|
|
JSString* str = JS_GetFunctionDisplayId(fun);
|
|
if (str) {
|
|
JSFlatString* flat = JS_ASSERT_STRING_IS_FLAT(str);
|
|
nsAutoString chars;
|
|
AssignJSFlatString(chars, flat);
|
|
NS_ConvertUTF16toUTF8 fname(chars);
|
|
SprintfLiteral(name, "JS Object (Function - %s)", fname.get());
|
|
} else {
|
|
SprintfLiteral(name, "JS Object (Function)");
|
|
}
|
|
} else {
|
|
SprintfLiteral(name, "JS Object (%s)", clasp->name);
|
|
}
|
|
} else {
|
|
SprintfLiteral(name, "%s", JS::GCTraceKindToAscii(aThing.kind()));
|
|
}
|
|
|
|
// Disable printing global for objects while we figure out ObjShrink fallout.
|
|
aCb.DescribeGCedNode(aIsMarked, name, compartmentAddress);
|
|
}
|
|
|
|
void CycleCollectedJSRuntime::NoteGCThingJSChildren(
|
|
JS::GCCellPtr aThing, nsCycleCollectionTraversalCallback& aCb) const {
|
|
TraversalTracer trc(mJSRuntime, aCb);
|
|
JS::TraceChildren(&trc, aThing);
|
|
}
|
|
|
|
void CycleCollectedJSRuntime::NoteGCThingXPCOMChildren(
|
|
const JSClass* aClasp, JSObject* aObj,
|
|
nsCycleCollectionTraversalCallback& aCb) const {
|
|
MOZ_ASSERT(aClasp);
|
|
MOZ_ASSERT(aClasp == js::GetObjectClass(aObj));
|
|
|
|
JS::Rooted<JSObject*> obj(RootingCx(), aObj);
|
|
|
|
if (NoteCustomGCThingXPCOMChildren(aClasp, obj, aCb)) {
|
|
// Nothing else to do!
|
|
return;
|
|
}
|
|
|
|
// XXX This test does seem fragile, we should probably whitelist classes
|
|
// that do hold a strong reference, but that might not be possible.
|
|
if (aClasp->flags & JSCLASS_HAS_PRIVATE &&
|
|
aClasp->flags & JSCLASS_PRIVATE_IS_NSISUPPORTS) {
|
|
NS_CYCLE_COLLECTION_NOTE_EDGE_NAME(aCb, "js::GetObjectPrivate(obj)");
|
|
aCb.NoteXPCOMChild(static_cast<nsISupports*>(js::GetObjectPrivate(obj)));
|
|
return;
|
|
}
|
|
|
|
const DOMJSClass* domClass = GetDOMClass(aClasp);
|
|
if (domClass) {
|
|
NS_CYCLE_COLLECTION_NOTE_EDGE_NAME(aCb, "UnwrapDOMObject(obj)");
|
|
// It's possible that our object is an unforgeable holder object, in
|
|
// which case it doesn't actually have a C++ DOM object associated with
|
|
// it. Use UnwrapPossiblyNotInitializedDOMObject, which produces null in
|
|
// that case, since NoteXPCOMChild/NoteNativeChild are null-safe.
|
|
if (domClass->mDOMObjectIsISupports) {
|
|
aCb.NoteXPCOMChild(
|
|
UnwrapPossiblyNotInitializedDOMObject<nsISupports>(obj));
|
|
} else if (domClass->mParticipant) {
|
|
aCb.NoteNativeChild(UnwrapPossiblyNotInitializedDOMObject<void>(obj),
|
|
domClass->mParticipant);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (IsRemoteObjectProxy(obj)) {
|
|
auto handler =
|
|
static_cast<const RemoteObjectProxyBase*>(js::GetProxyHandler(obj));
|
|
return handler->NoteChildren(obj, aCb);
|
|
}
|
|
|
|
JS::Value value = js::MaybeGetScriptPrivate(obj);
|
|
if (!value.isUndefined()) {
|
|
aCb.NoteXPCOMChild(static_cast<nsISupports*>(value.toPrivate()));
|
|
}
|
|
}
|
|
|
|
void CycleCollectedJSRuntime::TraverseGCThing(
|
|
TraverseSelect aTs, JS::GCCellPtr aThing,
|
|
nsCycleCollectionTraversalCallback& aCb) {
|
|
bool isMarkedGray = JS::GCThingIsMarkedGray(aThing);
|
|
|
|
if (aTs == TRAVERSE_FULL) {
|
|
DescribeGCThing(!isMarkedGray, aThing, aCb);
|
|
}
|
|
|
|
// If this object is alive, then all of its children are alive. For JS
|
|
// objects, the black-gray invariant ensures the children are also marked
|
|
// black. For C++ objects, the ref count from this object will keep them
|
|
// alive. Thus we don't need to trace our children, unless we are debugging
|
|
// using WantAllTraces.
|
|
if (!isMarkedGray && !aCb.WantAllTraces()) {
|
|
return;
|
|
}
|
|
|
|
if (aTs == TRAVERSE_FULL) {
|
|
NoteGCThingJSChildren(aThing, aCb);
|
|
}
|
|
|
|
if (aThing.is<JSObject>()) {
|
|
JSObject* obj = &aThing.as<JSObject>();
|
|
NoteGCThingXPCOMChildren(js::GetObjectClass(obj), obj, aCb);
|
|
}
|
|
}
|
|
|
|
struct TraverseObjectShimClosure {
|
|
nsCycleCollectionTraversalCallback& cb;
|
|
CycleCollectedJSRuntime* self;
|
|
};
|
|
|
|
void CycleCollectedJSRuntime::TraverseZone(
|
|
JS::Zone* aZone, nsCycleCollectionTraversalCallback& aCb) {
|
|
/*
|
|
* We treat the zone as being gray. We handle non-gray GCthings in the
|
|
* zone by not reporting their children to the CC. The black-gray invariant
|
|
* ensures that any JS children will also be non-gray, and thus don't need to
|
|
* be added to the graph. For C++ children, not representing the edge from the
|
|
* non-gray JS GCthings to the C++ object will keep the child alive.
|
|
*
|
|
* We don't allow zone merging in a WantAllTraces CC, because then these
|
|
* assumptions don't hold.
|
|
*/
|
|
aCb.DescribeGCedNode(false, "JS Zone");
|
|
|
|
/*
|
|
* Every JS child of everything in the zone is either in the zone
|
|
* or is a cross-compartment wrapper. In the former case, we don't need to
|
|
* represent these edges in the CC graph because JS objects are not ref
|
|
* counted. In the latter case, the JS engine keeps a map of these wrappers,
|
|
* which we iterate over. Edges between compartments in the same zone will add
|
|
* unnecessary loop edges to the graph (bug 842137).
|
|
*/
|
|
TraversalTracer trc(mJSRuntime, aCb);
|
|
js::VisitGrayWrapperTargets(aZone, NoteJSChildGrayWrapperShim, &trc);
|
|
|
|
/*
|
|
* To find C++ children of things in the zone, we scan every JS Object in
|
|
* the zone. Only JS Objects can have C++ children.
|
|
*/
|
|
TraverseObjectShimClosure closure = {aCb, this};
|
|
js::IterateGrayObjects(aZone, TraverseObjectShim, &closure);
|
|
}
|
|
|
|
/* static */
|
|
void CycleCollectedJSRuntime::TraverseObjectShim(void* aData,
|
|
JS::GCCellPtr aThing) {
|
|
TraverseObjectShimClosure* closure =
|
|
static_cast<TraverseObjectShimClosure*>(aData);
|
|
|
|
MOZ_ASSERT(aThing.is<JSObject>());
|
|
closure->self->TraverseGCThing(CycleCollectedJSRuntime::TRAVERSE_CPP, aThing,
|
|
closure->cb);
|
|
}
|
|
|
|
void CycleCollectedJSRuntime::TraverseNativeRoots(
|
|
nsCycleCollectionNoteRootCallback& aCb) {
|
|
// NB: This is here just to preserve the existing XPConnect order. I doubt it
|
|
// would hurt to do this after the JS holders.
|
|
TraverseAdditionalNativeRoots(aCb);
|
|
|
|
for (auto iter = mJSHolders.Iter(); !iter.Done(); iter.Next()) {
|
|
void* holder = iter.Get().mHolder;
|
|
nsScriptObjectTracer* tracer = iter.Get().mTracer;
|
|
|
|
bool noteRoot = false;
|
|
if (MOZ_UNLIKELY(aCb.WantAllTraces())) {
|
|
noteRoot = true;
|
|
} else {
|
|
tracer->Trace(holder,
|
|
TraceCallbackFunc(CheckParticipatesInCycleCollection),
|
|
¬eRoot);
|
|
}
|
|
|
|
if (noteRoot) {
|
|
aCb.NoteNativeRoot(holder, tracer);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* static */
|
|
void CycleCollectedJSRuntime::TraceBlackJS(JSTracer* aTracer, void* aData) {
|
|
CycleCollectedJSRuntime* self = static_cast<CycleCollectedJSRuntime*>(aData);
|
|
|
|
self->TraceNativeBlackRoots(aTracer);
|
|
}
|
|
|
|
/* static */
|
|
void CycleCollectedJSRuntime::TraceGrayJS(JSTracer* aTracer, void* aData) {
|
|
CycleCollectedJSRuntime* self = static_cast<CycleCollectedJSRuntime*>(aData);
|
|
|
|
// Mark these roots as gray so the CC can walk them later.
|
|
self->TraceNativeGrayRoots(aTracer);
|
|
}
|
|
|
|
/* static */
|
|
void CycleCollectedJSRuntime::GCCallback(JSContext* aContext,
|
|
JSGCStatus aStatus, void* aData) {
|
|
CycleCollectedJSRuntime* self = static_cast<CycleCollectedJSRuntime*>(aData);
|
|
|
|
MOZ_ASSERT(CycleCollectedJSContext::Get()->Context() == aContext);
|
|
MOZ_ASSERT(CycleCollectedJSContext::Get()->Runtime() == self);
|
|
|
|
self->OnGC(aContext, aStatus);
|
|
}
|
|
|
|
/* static */
|
|
void CycleCollectedJSRuntime::GCSliceCallback(JSContext* aContext,
|
|
JS::GCProgress aProgress,
|
|
const JS::GCDescription& aDesc) {
|
|
CycleCollectedJSRuntime* self = CycleCollectedJSRuntime::Get();
|
|
MOZ_ASSERT(CycleCollectedJSContext::Get()->Context() == aContext);
|
|
|
|
#ifdef MOZ_GECKO_PROFILER
|
|
if (profiler_thread_is_being_profiled()) {
|
|
if (aProgress == JS::GC_CYCLE_END) {
|
|
PROFILER_ADD_MARKER_WITH_PAYLOAD(
|
|
"GCMajor", GCCC, GCMajorMarkerPayload,
|
|
(aDesc.startTime(aContext), aDesc.endTime(aContext),
|
|
aDesc.formatJSONProfiler(aContext)));
|
|
} else if (aProgress == JS::GC_SLICE_END) {
|
|
PROFILER_ADD_MARKER_WITH_PAYLOAD(
|
|
"GCSlice", GCCC, GCSliceMarkerPayload,
|
|
(aDesc.lastSliceStart(aContext), aDesc.lastSliceEnd(aContext),
|
|
aDesc.sliceToJSONProfiler(aContext)));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (aProgress == JS::GC_CYCLE_END &&
|
|
JS::dbg::FireOnGarbageCollectionHookRequired(aContext)) {
|
|
JS::GCReason reason = aDesc.reason_;
|
|
Unused << NS_WARN_IF(
|
|
NS_FAILED(DebuggerOnGCRunnable::Enqueue(aContext, aDesc)) &&
|
|
reason != JS::GCReason::SHUTDOWN_CC &&
|
|
reason != JS::GCReason::DESTROY_RUNTIME &&
|
|
reason != JS::GCReason::XPCONNECT_SHUTDOWN);
|
|
}
|
|
|
|
if (self->mPrevGCSliceCallback) {
|
|
self->mPrevGCSliceCallback(aContext, aProgress, aDesc);
|
|
}
|
|
}
|
|
|
|
class MinorGCMarker : public TimelineMarker {
|
|
private:
|
|
JS::GCReason mReason;
|
|
|
|
public:
|
|
MinorGCMarker(MarkerTracingType aTracingType, JS::GCReason aReason)
|
|
: TimelineMarker("MinorGC", aTracingType, MarkerStackRequest::NO_STACK),
|
|
mReason(aReason) {
|
|
MOZ_ASSERT(aTracingType == MarkerTracingType::START ||
|
|
aTracingType == MarkerTracingType::END);
|
|
}
|
|
|
|
MinorGCMarker(JS::GCNurseryProgress aProgress, JS::GCReason aReason)
|
|
: TimelineMarker(
|
|
"MinorGC",
|
|
aProgress == JS::GCNurseryProgress::GC_NURSERY_COLLECTION_START
|
|
? MarkerTracingType::START
|
|
: MarkerTracingType::END,
|
|
MarkerStackRequest::NO_STACK),
|
|
mReason(aReason) {}
|
|
|
|
virtual void AddDetails(JSContext* aCx,
|
|
dom::ProfileTimelineMarker& aMarker) override {
|
|
TimelineMarker::AddDetails(aCx, aMarker);
|
|
|
|
if (GetTracingType() == MarkerTracingType::START) {
|
|
auto reason = JS::ExplainGCReason(mReason);
|
|
aMarker.mCauseName.Construct(NS_ConvertUTF8toUTF16(reason));
|
|
}
|
|
}
|
|
|
|
virtual UniquePtr<AbstractTimelineMarker> Clone() override {
|
|
auto clone = MakeUnique<MinorGCMarker>(GetTracingType(), mReason);
|
|
clone->SetCustomTime(GetTime());
|
|
return UniquePtr<AbstractTimelineMarker>(std::move(clone));
|
|
}
|
|
};
|
|
|
|
/* static */
|
|
void CycleCollectedJSRuntime::GCNurseryCollectionCallback(
|
|
JSContext* aContext, JS::GCNurseryProgress aProgress,
|
|
JS::GCReason aReason) {
|
|
CycleCollectedJSRuntime* self = CycleCollectedJSRuntime::Get();
|
|
MOZ_ASSERT(CycleCollectedJSContext::Get()->Context() == aContext);
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
|
|
RefPtr<TimelineConsumers> timelines = TimelineConsumers::Get();
|
|
if (timelines && !timelines->IsEmpty()) {
|
|
UniquePtr<AbstractTimelineMarker> abstractMarker(
|
|
MakeUnique<MinorGCMarker>(aProgress, aReason));
|
|
timelines->AddMarkerForAllObservedDocShells(abstractMarker);
|
|
}
|
|
|
|
if (aProgress == JS::GCNurseryProgress::GC_NURSERY_COLLECTION_START) {
|
|
self->mLatestNurseryCollectionStart = TimeStamp::Now();
|
|
}
|
|
#ifdef MOZ_GECKO_PROFILER
|
|
else if (aProgress == JS::GCNurseryProgress::GC_NURSERY_COLLECTION_END &&
|
|
profiler_thread_is_being_profiled()) {
|
|
PROFILER_ADD_MARKER_WITH_PAYLOAD(
|
|
"GCMinor", GCCC, GCMinorMarkerPayload,
|
|
(self->mLatestNurseryCollectionStart, TimeStamp::Now(),
|
|
JS::MinorGcToJSON(aContext)));
|
|
}
|
|
#endif
|
|
|
|
if (self->mPrevGCNurseryCollectionCallback) {
|
|
self->mPrevGCNurseryCollectionCallback(aContext, aProgress, aReason);
|
|
}
|
|
}
|
|
|
|
/* static */
|
|
void CycleCollectedJSRuntime::OutOfMemoryCallback(JSContext* aContext,
|
|
void* aData) {
|
|
CycleCollectedJSRuntime* self = static_cast<CycleCollectedJSRuntime*>(aData);
|
|
|
|
MOZ_ASSERT(CycleCollectedJSContext::Get()->Context() == aContext);
|
|
MOZ_ASSERT(CycleCollectedJSContext::Get()->Runtime() == self);
|
|
|
|
self->OnOutOfMemory();
|
|
}
|
|
|
|
/* static */
|
|
size_t CycleCollectedJSRuntime::SizeofExternalStringCallback(
|
|
JSString* aStr, MallocSizeOf aMallocSizeOf) {
|
|
// We promised the JS engine we would not GC. Enforce that:
|
|
JS::AutoCheckCannotGC autoCannotGC;
|
|
|
|
if (!XPCStringConvert::IsDOMString(aStr)) {
|
|
// Might be a literal or something we don't understand. Just claim 0.
|
|
return 0;
|
|
}
|
|
|
|
const char16_t* chars = JS_GetTwoByteExternalStringChars(aStr);
|
|
const nsStringBuffer* buf = nsStringBuffer::FromData((void*)chars);
|
|
// We want sizeof including this, because the entire string buffer is owned by
|
|
// the external string. But only report here if we're unshared; if we're
|
|
// shared then we don't know who really owns this data.
|
|
return buf->SizeOfIncludingThisIfUnshared(aMallocSizeOf);
|
|
}
|
|
|
|
struct JsGcTracer : public TraceCallbacks {
|
|
virtual void Trace(JS::Heap<JS::Value>* aPtr, const char* aName,
|
|
void* aClosure) const override {
|
|
JS::TraceEdge(static_cast<JSTracer*>(aClosure), aPtr, aName);
|
|
}
|
|
virtual void Trace(JS::Heap<jsid>* aPtr, const char* aName,
|
|
void* aClosure) const override {
|
|
JS::TraceEdge(static_cast<JSTracer*>(aClosure), aPtr, aName);
|
|
}
|
|
virtual void Trace(JS::Heap<JSObject*>* aPtr, const char* aName,
|
|
void* aClosure) const override {
|
|
JS::TraceEdge(static_cast<JSTracer*>(aClosure), aPtr, aName);
|
|
}
|
|
virtual void Trace(JSObject** aPtr, const char* aName,
|
|
void* aClosure) const override {
|
|
js::UnsafeTraceManuallyBarrieredEdge(static_cast<JSTracer*>(aClosure), aPtr,
|
|
aName);
|
|
}
|
|
virtual void Trace(JS::TenuredHeap<JSObject*>* aPtr, const char* aName,
|
|
void* aClosure) const override {
|
|
JS::TraceEdge(static_cast<JSTracer*>(aClosure), aPtr, aName);
|
|
}
|
|
virtual void Trace(JS::Heap<JSString*>* aPtr, const char* aName,
|
|
void* aClosure) const override {
|
|
JS::TraceEdge(static_cast<JSTracer*>(aClosure), aPtr, aName);
|
|
}
|
|
virtual void Trace(JS::Heap<JSScript*>* aPtr, const char* aName,
|
|
void* aClosure) const override {
|
|
JS::TraceEdge(static_cast<JSTracer*>(aClosure), aPtr, aName);
|
|
}
|
|
virtual void Trace(JS::Heap<JSFunction*>* aPtr, const char* aName,
|
|
void* aClosure) const override {
|
|
JS::TraceEdge(static_cast<JSTracer*>(aClosure), aPtr, aName);
|
|
}
|
|
};
|
|
|
|
void mozilla::TraceScriptHolder(nsISupports* aHolder, JSTracer* aTracer) {
|
|
nsXPCOMCycleCollectionParticipant* participant = nullptr;
|
|
CallQueryInterface(aHolder, &participant);
|
|
participant->Trace(aHolder, JsGcTracer(), aTracer);
|
|
}
|
|
|
|
void CycleCollectedJSRuntime::TraceNativeGrayRoots(JSTracer* aTracer) {
|
|
// NB: This is here just to preserve the existing XPConnect order. I doubt it
|
|
// would hurt to do this after the JS holders.
|
|
TraceAdditionalNativeGrayRoots(aTracer);
|
|
|
|
for (auto iter = mJSHolders.Iter(); !iter.Done(); iter.Next()) {
|
|
void* holder = iter.Get().mHolder;
|
|
nsScriptObjectTracer* tracer = iter.Get().mTracer;
|
|
tracer->Trace(holder, JsGcTracer(), aTracer);
|
|
}
|
|
}
|
|
|
|
void CycleCollectedJSRuntime::AddJSHolder(void* aHolder,
|
|
nsScriptObjectTracer* aTracer) {
|
|
auto entry = mJSHolderMap.LookupForAdd(aHolder);
|
|
if (entry) {
|
|
JSHolderInfo* info = entry.Data();
|
|
MOZ_ASSERT(info->mHolder == aHolder);
|
|
info->mTracer = aTracer;
|
|
return;
|
|
}
|
|
|
|
mJSHolders.InfallibleAppend(JSHolderInfo{aHolder, aTracer});
|
|
entry.OrInsert([&] { return &mJSHolders.GetLast(); });
|
|
}
|
|
|
|
struct ClearJSHolder : public TraceCallbacks {
|
|
virtual void Trace(JS::Heap<JS::Value>* aPtr, const char*,
|
|
void*) const override {
|
|
aPtr->setUndefined();
|
|
}
|
|
|
|
virtual void Trace(JS::Heap<jsid>* aPtr, const char*, void*) const override {
|
|
*aPtr = JSID_VOID;
|
|
}
|
|
|
|
virtual void Trace(JS::Heap<JSObject*>* aPtr, const char*,
|
|
void*) const override {
|
|
*aPtr = nullptr;
|
|
}
|
|
|
|
virtual void Trace(JSObject** aPtr, const char* aName,
|
|
void* aClosure) const override {
|
|
*aPtr = nullptr;
|
|
}
|
|
|
|
virtual void Trace(JS::TenuredHeap<JSObject*>* aPtr, const char*,
|
|
void*) const override {
|
|
*aPtr = nullptr;
|
|
}
|
|
|
|
virtual void Trace(JS::Heap<JSString*>* aPtr, const char*,
|
|
void*) const override {
|
|
*aPtr = nullptr;
|
|
}
|
|
|
|
virtual void Trace(JS::Heap<JSScript*>* aPtr, const char*,
|
|
void*) const override {
|
|
*aPtr = nullptr;
|
|
}
|
|
|
|
virtual void Trace(JS::Heap<JSFunction*>* aPtr, const char*,
|
|
void*) const override {
|
|
*aPtr = nullptr;
|
|
}
|
|
};
|
|
|
|
void CycleCollectedJSRuntime::RemoveJSHolder(void* aHolder) {
|
|
auto entry = mJSHolderMap.Lookup(aHolder);
|
|
if (entry) {
|
|
JSHolderInfo* info = entry.Data();
|
|
MOZ_ASSERT(info->mHolder == aHolder);
|
|
info->mTracer->Trace(aHolder, ClearJSHolder(), nullptr);
|
|
|
|
JSHolderInfo* lastInfo = &mJSHolders.GetLast();
|
|
bool updateLast = (info != lastInfo);
|
|
if (updateLast) {
|
|
*info = *lastInfo;
|
|
}
|
|
|
|
mJSHolders.PopLast();
|
|
entry.Remove();
|
|
|
|
if (updateLast) {
|
|
// We have to do this after removing the entry above to ensure that we
|
|
// don't trip over the hashtable generation number assertion.
|
|
mJSHolderMap.Put(info->mHolder, info);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
bool CycleCollectedJSRuntime::IsJSHolder(void* aHolder) {
|
|
return mJSHolderMap.Get(aHolder, nullptr);
|
|
}
|
|
|
|
static void AssertNoGcThing(JS::GCCellPtr aGCThing, const char* aName,
|
|
void* aClosure) {
|
|
MOZ_ASSERT(!aGCThing);
|
|
}
|
|
|
|
void CycleCollectedJSRuntime::AssertNoObjectsToTrace(void* aPossibleJSHolder) {
|
|
JSHolderInfo* info = nullptr;
|
|
if (!mJSHolderMap.Get(aPossibleJSHolder, &info)) {
|
|
return;
|
|
}
|
|
|
|
MOZ_ASSERT(info->mHolder == aPossibleJSHolder);
|
|
info->mTracer->Trace(aPossibleJSHolder, TraceCallbackFunc(AssertNoGcThing),
|
|
nullptr);
|
|
}
|
|
#endif
|
|
|
|
nsCycleCollectionParticipant* CycleCollectedJSRuntime::GCThingParticipant() {
|
|
return &mGCThingCycleCollectorGlobal;
|
|
}
|
|
|
|
nsCycleCollectionParticipant* CycleCollectedJSRuntime::ZoneParticipant() {
|
|
return &mJSZoneCycleCollectorGlobal;
|
|
}
|
|
|
|
nsresult CycleCollectedJSRuntime::TraverseRoots(
|
|
nsCycleCollectionNoteRootCallback& aCb) {
|
|
TraverseNativeRoots(aCb);
|
|
|
|
NoteWeakMapsTracer trc(mJSRuntime, aCb);
|
|
js::TraceWeakMaps(&trc);
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
bool CycleCollectedJSRuntime::UsefulToMergeZones() const { return false; }
|
|
|
|
void CycleCollectedJSRuntime::FixWeakMappingGrayBits() const {
|
|
MOZ_ASSERT(!JS::IsIncrementalGCInProgress(mJSRuntime),
|
|
"Don't call FixWeakMappingGrayBits during a GC.");
|
|
FixWeakMappingGrayBitsTracer fixer(mJSRuntime);
|
|
fixer.FixAll();
|
|
}
|
|
|
|
void CycleCollectedJSRuntime::CheckGrayBits() const {
|
|
MOZ_ASSERT(!JS::IsIncrementalGCInProgress(mJSRuntime),
|
|
"Don't call CheckGrayBits during a GC.");
|
|
|
|
#ifndef ANDROID
|
|
// Bug 1346874 - The gray state check is expensive. Android tests are already
|
|
// slow enough that this check can easily push them over the threshold to a
|
|
// timeout.
|
|
|
|
MOZ_ASSERT(js::CheckGrayMarkingState(mJSRuntime));
|
|
MOZ_ASSERT(CheckWeakMappingGrayBitsTracer::Check(mJSRuntime));
|
|
#endif
|
|
}
|
|
|
|
bool CycleCollectedJSRuntime::AreGCGrayBitsValid() const {
|
|
return js::AreGCGrayBitsValid(mJSRuntime);
|
|
}
|
|
|
|
void CycleCollectedJSRuntime::GarbageCollect(JS::GCReason aReason) const {
|
|
JSContext* cx = CycleCollectedJSContext::Get()->Context();
|
|
JS::PrepareForFullGC(cx);
|
|
JS::NonIncrementalGC(cx, GC_NORMAL, aReason);
|
|
}
|
|
|
|
void CycleCollectedJSRuntime::JSObjectsTenured() {
|
|
for (auto iter = mNurseryObjects.Iter(); !iter.Done(); iter.Next()) {
|
|
nsWrapperCache* cache = iter.Get();
|
|
JSObject* wrapper = cache->GetWrapperMaybeDead();
|
|
MOZ_DIAGNOSTIC_ASSERT(wrapper || recordreplay::IsReplaying());
|
|
if (!JS::ObjectIsTenured(wrapper)) {
|
|
MOZ_ASSERT(!cache->PreservingWrapper());
|
|
const JSClass* jsClass = js::GetObjectClass(wrapper);
|
|
jsClass->doFinalize(nullptr, wrapper);
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
for (auto iter = mPreservedNurseryObjects.Iter(); !iter.Done(); iter.Next()) {
|
|
MOZ_ASSERT(JS::ObjectIsTenured(iter.Get().get()));
|
|
}
|
|
#endif
|
|
|
|
mNurseryObjects.Clear();
|
|
mPreservedNurseryObjects.Clear();
|
|
}
|
|
|
|
void CycleCollectedJSRuntime::NurseryWrapperAdded(nsWrapperCache* aCache) {
|
|
MOZ_ASSERT(aCache);
|
|
MOZ_ASSERT(aCache->GetWrapperMaybeDead());
|
|
MOZ_ASSERT(!JS::ObjectIsTenured(aCache->GetWrapperMaybeDead()));
|
|
mNurseryObjects.InfallibleAppend(aCache);
|
|
}
|
|
|
|
void CycleCollectedJSRuntime::NurseryWrapperPreserved(JSObject* aWrapper) {
|
|
mPreservedNurseryObjects.InfallibleAppend(
|
|
JS::PersistentRooted<JSObject*>(mJSRuntime, aWrapper));
|
|
}
|
|
|
|
void CycleCollectedJSRuntime::DeferredFinalize(
|
|
DeferredFinalizeAppendFunction aAppendFunc, DeferredFinalizeFunction aFunc,
|
|
void* aThing) {
|
|
// Tell the analysis that the function pointers will not GC.
|
|
JS::AutoSuppressGCAnalysis suppress;
|
|
if (auto entry = mDeferredFinalizerTable.LookupForAdd(aFunc)) {
|
|
aAppendFunc(entry.Data(), aThing);
|
|
} else {
|
|
entry.OrInsert(
|
|
[aAppendFunc, aThing]() { return aAppendFunc(nullptr, aThing); });
|
|
}
|
|
}
|
|
|
|
void CycleCollectedJSRuntime::DeferredFinalize(nsISupports* aSupports) {
|
|
typedef DeferredFinalizerImpl<nsISupports> Impl;
|
|
DeferredFinalize(Impl::AppendDeferredFinalizePointer, Impl::DeferredFinalize,
|
|
aSupports);
|
|
}
|
|
|
|
void CycleCollectedJSRuntime::DumpJSHeap(FILE* aFile) {
|
|
JSContext* cx = CycleCollectedJSContext::Get()->Context();
|
|
|
|
mozilla::MallocSizeOf mallocSizeOf =
|
|
PR_GetEnv("MOZ_GC_LOG_SIZE") ? moz_malloc_size_of : nullptr;
|
|
js::DumpHeap(cx, aFile, js::CollectNurseryBeforeDump, mallocSizeOf);
|
|
}
|
|
|
|
IncrementalFinalizeRunnable::IncrementalFinalizeRunnable(
|
|
CycleCollectedJSRuntime* aRt, DeferredFinalizerTable& aFinalizers)
|
|
: CancelableRunnable("IncrementalFinalizeRunnable"),
|
|
mRuntime(aRt),
|
|
mFinalizeFunctionToRun(0),
|
|
mReleasing(false) {
|
|
for (auto iter = aFinalizers.Iter(); !iter.Done(); iter.Next()) {
|
|
DeferredFinalizeFunction& function = iter.Key();
|
|
void*& data = iter.Data();
|
|
|
|
DeferredFinalizeFunctionHolder* holder =
|
|
mDeferredFinalizeFunctions.AppendElement();
|
|
holder->run = function;
|
|
holder->data = data;
|
|
|
|
iter.Remove();
|
|
}
|
|
}
|
|
|
|
IncrementalFinalizeRunnable::~IncrementalFinalizeRunnable() {
|
|
MOZ_ASSERT(this != mRuntime->mFinalizeRunnable);
|
|
}
|
|
|
|
void IncrementalFinalizeRunnable::ReleaseNow(bool aLimited) {
|
|
if (mReleasing) {
|
|
NS_WARNING("Re-entering ReleaseNow");
|
|
return;
|
|
}
|
|
{
|
|
mozilla::AutoRestore<bool> ar(mReleasing);
|
|
mReleasing = true;
|
|
MOZ_ASSERT(mDeferredFinalizeFunctions.Length() != 0,
|
|
"We should have at least ReleaseSliceNow to run");
|
|
MOZ_ASSERT(mFinalizeFunctionToRun < mDeferredFinalizeFunctions.Length(),
|
|
"No more finalizers to run?");
|
|
if (recordreplay::IsRecordingOrReplaying()) {
|
|
aLimited = false;
|
|
}
|
|
|
|
TimeDuration sliceTime = TimeDuration::FromMilliseconds(SliceMillis);
|
|
TimeStamp started = aLimited ? TimeStamp::Now() : TimeStamp();
|
|
bool timeout = false;
|
|
do {
|
|
const DeferredFinalizeFunctionHolder& function =
|
|
mDeferredFinalizeFunctions[mFinalizeFunctionToRun];
|
|
if (aLimited) {
|
|
bool done = false;
|
|
while (!timeout && !done) {
|
|
/*
|
|
* We don't want to read the clock too often, so we try to
|
|
* release slices of 100 items.
|
|
*/
|
|
done = function.run(100, function.data);
|
|
timeout = TimeStamp::Now() - started >= sliceTime;
|
|
}
|
|
if (done) {
|
|
++mFinalizeFunctionToRun;
|
|
}
|
|
if (timeout) {
|
|
break;
|
|
}
|
|
} else {
|
|
while (!function.run(UINT32_MAX, function.data))
|
|
;
|
|
++mFinalizeFunctionToRun;
|
|
}
|
|
} while (mFinalizeFunctionToRun < mDeferredFinalizeFunctions.Length());
|
|
}
|
|
|
|
if (mFinalizeFunctionToRun == mDeferredFinalizeFunctions.Length()) {
|
|
MOZ_ASSERT(mRuntime->mFinalizeRunnable == this);
|
|
mDeferredFinalizeFunctions.Clear();
|
|
// NB: This may delete this!
|
|
mRuntime->mFinalizeRunnable = nullptr;
|
|
}
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
IncrementalFinalizeRunnable::Run() {
|
|
AUTO_PROFILER_LABEL("IncrementalFinalizeRunnable::Run", GCCC);
|
|
|
|
if (mRuntime->mFinalizeRunnable != this) {
|
|
/* These items were already processed synchronously in JSGC_END. */
|
|
MOZ_ASSERT(!mDeferredFinalizeFunctions.Length());
|
|
return NS_OK;
|
|
}
|
|
|
|
TimeStamp start = TimeStamp::Now();
|
|
ReleaseNow(true);
|
|
|
|
if (mDeferredFinalizeFunctions.Length()) {
|
|
nsresult rv = NS_DispatchToCurrentThread(this);
|
|
if (NS_FAILED(rv)) {
|
|
ReleaseNow(false);
|
|
}
|
|
}
|
|
|
|
uint32_t duration = (uint32_t)((TimeStamp::Now() - start).ToMilliseconds());
|
|
Telemetry::Accumulate(Telemetry::DEFERRED_FINALIZE_ASYNC, duration);
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
void CycleCollectedJSRuntime::FinalizeDeferredThings(
|
|
CycleCollectedJSContext::DeferredFinalizeType aType) {
|
|
/*
|
|
* If the previous GC created a runnable to finalize objects
|
|
* incrementally, and if it hasn't finished yet, finish it now. We
|
|
* don't want these to build up. We also don't want to allow any
|
|
* existing incremental finalize runnables to run after a
|
|
* non-incremental GC, since they are often used to detect leaks.
|
|
*/
|
|
if (mFinalizeRunnable) {
|
|
mFinalizeRunnable->ReleaseNow(false);
|
|
if (mFinalizeRunnable) {
|
|
// If we re-entered ReleaseNow, we couldn't delete mFinalizeRunnable and
|
|
// we need to just continue processing it.
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (mDeferredFinalizerTable.Count() == 0) {
|
|
return;
|
|
}
|
|
|
|
mFinalizeRunnable =
|
|
new IncrementalFinalizeRunnable(this, mDeferredFinalizerTable);
|
|
|
|
// Everything should be gone now.
|
|
MOZ_ASSERT(mDeferredFinalizerTable.Count() == 0);
|
|
|
|
if (aType == CycleCollectedJSContext::FinalizeIncrementally) {
|
|
NS_DispatchToCurrentThreadQueue(do_AddRef(mFinalizeRunnable), 2500,
|
|
EventQueuePriority::Idle);
|
|
} else {
|
|
mFinalizeRunnable->ReleaseNow(false);
|
|
MOZ_ASSERT(!mFinalizeRunnable);
|
|
}
|
|
}
|
|
|
|
const char* CycleCollectedJSRuntime::OOMStateToString(
|
|
const OOMState aOomState) const {
|
|
switch (aOomState) {
|
|
case OOMState::OK:
|
|
return "OK";
|
|
case OOMState::Reporting:
|
|
return "Reporting";
|
|
case OOMState::Reported:
|
|
return "Reported";
|
|
case OOMState::Recovered:
|
|
return "Recovered";
|
|
default:
|
|
MOZ_ASSERT_UNREACHABLE("OOMState holds an invalid value");
|
|
return "Unknown";
|
|
}
|
|
}
|
|
|
|
void CycleCollectedJSRuntime::AnnotateAndSetOutOfMemory(OOMState* aStatePtr,
|
|
OOMState aNewState) {
|
|
*aStatePtr = aNewState;
|
|
CrashReporter::Annotation annotation =
|
|
(aStatePtr == &mOutOfMemoryState)
|
|
? CrashReporter::Annotation::JSOutOfMemory
|
|
: CrashReporter::Annotation::JSLargeAllocationFailure;
|
|
|
|
CrashReporter::AnnotateCrashReport(
|
|
annotation, nsDependentCString(OOMStateToString(aNewState)));
|
|
}
|
|
|
|
void CycleCollectedJSRuntime::OnGC(JSContext* aContext, JSGCStatus aStatus) {
|
|
switch (aStatus) {
|
|
case JSGC_BEGIN:
|
|
nsCycleCollector_prepareForGarbageCollection();
|
|
mZonesWaitingForGC.Clear();
|
|
break;
|
|
case JSGC_END: {
|
|
if (mOutOfMemoryState == OOMState::Reported) {
|
|
AnnotateAndSetOutOfMemory(&mOutOfMemoryState, OOMState::Recovered);
|
|
}
|
|
if (mLargeAllocationFailureState == OOMState::Reported) {
|
|
AnnotateAndSetOutOfMemory(&mLargeAllocationFailureState,
|
|
OOMState::Recovered);
|
|
}
|
|
|
|
// Do any deferred finalization of native objects. Normally we do this
|
|
// incrementally for an incremental GC, and immediately for a
|
|
// non-incremental GC, on the basis that the type of GC reflects how
|
|
// urgently resources should be destroyed. However under some
|
|
// circumstances (such as in js::InternalCallOrConstruct) we can end up
|
|
// running a non-incremental GC when there is a pending exception, and the
|
|
// finalizers are not set up to handle that. In that case, just run them
|
|
// later, after we've returned to the event loop.
|
|
bool finalizeIncrementally =
|
|
JS::WasIncrementalGC(mJSRuntime) || JS_IsExceptionPending(aContext);
|
|
FinalizeDeferredThings(
|
|
finalizeIncrementally ? CycleCollectedJSContext::FinalizeIncrementally
|
|
: CycleCollectedJSContext::FinalizeNow);
|
|
|
|
break;
|
|
}
|
|
default:
|
|
MOZ_CRASH();
|
|
}
|
|
|
|
CustomGCCallback(aStatus);
|
|
}
|
|
|
|
void CycleCollectedJSRuntime::OnOutOfMemory() {
|
|
AnnotateAndSetOutOfMemory(&mOutOfMemoryState, OOMState::Reporting);
|
|
CustomOutOfMemoryCallback();
|
|
AnnotateAndSetOutOfMemory(&mOutOfMemoryState, OOMState::Reported);
|
|
}
|
|
|
|
void CycleCollectedJSRuntime::SetLargeAllocationFailure(OOMState aNewState) {
|
|
AnnotateAndSetOutOfMemory(&mLargeAllocationFailureState, aNewState);
|
|
}
|
|
|
|
void CycleCollectedJSRuntime::PrepareWaitingZonesForGC() {
|
|
JSContext* cx = CycleCollectedJSContext::Get()->Context();
|
|
if (mZonesWaitingForGC.Count() == 0) {
|
|
JS::PrepareForFullGC(cx);
|
|
} else {
|
|
for (auto iter = mZonesWaitingForGC.Iter(); !iter.Done(); iter.Next()) {
|
|
JS::PrepareZoneForGC(iter.Get()->GetKey());
|
|
}
|
|
mZonesWaitingForGC.Clear();
|
|
}
|
|
}
|
|
|
|
void CycleCollectedJSRuntime::EnvironmentPreparer::invoke(
|
|
JS::HandleObject global, js::ScriptEnvironmentPreparer::Closure& closure) {
|
|
MOZ_ASSERT(JS_IsGlobalObject(global));
|
|
nsIGlobalObject* nativeGlobal = xpc::NativeGlobal(global);
|
|
|
|
// Not much we can do if we simply don't have a usable global here...
|
|
NS_ENSURE_TRUE_VOID(nativeGlobal && nativeGlobal->HasJSGlobal());
|
|
|
|
AutoEntryScript aes(nativeGlobal, "JS-engine-initiated execution");
|
|
|
|
MOZ_ASSERT(!JS_IsExceptionPending(aes.cx()));
|
|
|
|
DebugOnly<bool> ok = closure(aes.cx());
|
|
|
|
MOZ_ASSERT_IF(ok, !JS_IsExceptionPending(aes.cx()));
|
|
|
|
// The AutoEntryScript will check for JS_IsExceptionPending on the
|
|
// JSContext and report it as needed as it comes off the stack.
|
|
}
|
|
|
|
/* static */
|
|
CycleCollectedJSRuntime* CycleCollectedJSRuntime::Get() {
|
|
auto context = CycleCollectedJSContext::Get();
|
|
if (context) {
|
|
return context->Runtime();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
#ifdef MOZ_JS_DEV_ERROR_INTERCEPTOR
|
|
|
|
namespace js {
|
|
extern void DumpValue(const JS::Value& val);
|
|
}
|
|
|
|
void CycleCollectedJSRuntime::ErrorInterceptor::Shutdown(JSRuntime* rt) {
|
|
JS_SetErrorInterceptorCallback(rt, nullptr);
|
|
mThrownError.reset();
|
|
}
|
|
|
|
/* virtual */
|
|
void CycleCollectedJSRuntime::ErrorInterceptor::interceptError(
|
|
JSContext* cx, JS::HandleValue exn) {
|
|
if (mThrownError) {
|
|
// We already have an error, we don't need anything more.
|
|
return;
|
|
}
|
|
|
|
if (!nsContentUtils::ThreadsafeIsSystemCaller(cx)) {
|
|
// We are only interested in chrome code.
|
|
return;
|
|
}
|
|
|
|
const auto type = JS_GetErrorType(exn);
|
|
if (!type) {
|
|
// This is not one of the primitive error types.
|
|
return;
|
|
}
|
|
|
|
switch (*type) {
|
|
case JSExnType::JSEXN_REFERENCEERR:
|
|
case JSExnType::JSEXN_SYNTAXERR:
|
|
case JSExnType::JSEXN_TYPEERR:
|
|
break;
|
|
default:
|
|
// Not one of the errors we are interested in.
|
|
return;
|
|
}
|
|
|
|
// Now copy the details of the exception locally.
|
|
// While copying the details of an exception could be expensive, in most runs,
|
|
// this will be done at most once during the execution of the process, so the
|
|
// total cost should be reasonable.
|
|
|
|
ErrorDetails details;
|
|
details.mType = *type;
|
|
// If `exn` isn't an exception object, `ExtractErrorValues` could end up
|
|
// calling `toString()`, which could in turn end up throwing an error. While
|
|
// this should work, we want to avoid that complex use case. Fortunately, we
|
|
// have already checked above that `exn` is an exception object, so nothing
|
|
// such should happen.
|
|
nsContentUtils::ExtractErrorValues(cx, exn, details.mFilename, &details.mLine,
|
|
&details.mColumn, details.mMessage);
|
|
|
|
JS::UniqueChars buf =
|
|
JS::FormatStackDump(cx, /* showArgs = */ false, /* showLocals = */ false,
|
|
/* showThisProps = */ false);
|
|
CopyUTF8toUTF16(mozilla::MakeStringSpan(buf.get()), details.mStack);
|
|
|
|
mThrownError.emplace(std::move(details));
|
|
}
|
|
|
|
void CycleCollectedJSRuntime::ClearRecentDevError() {
|
|
mErrorInterceptor.mThrownError.reset();
|
|
}
|
|
|
|
bool CycleCollectedJSRuntime::GetRecentDevError(
|
|
JSContext* cx, JS::MutableHandle<JS::Value> error) {
|
|
if (!mErrorInterceptor.mThrownError) {
|
|
return true;
|
|
}
|
|
|
|
// Create a copy of the exception.
|
|
JS::RootedObject obj(cx, JS_NewPlainObject(cx));
|
|
if (!obj) {
|
|
return false;
|
|
}
|
|
|
|
JS::RootedValue message(cx);
|
|
JS::RootedValue filename(cx);
|
|
JS::RootedValue stack(cx);
|
|
if (!ToJSValue(cx, mErrorInterceptor.mThrownError->mMessage, &message) ||
|
|
!ToJSValue(cx, mErrorInterceptor.mThrownError->mFilename, &filename) ||
|
|
!ToJSValue(cx, mErrorInterceptor.mThrownError->mStack, &stack)) {
|
|
return false;
|
|
}
|
|
|
|
// Build the object.
|
|
const auto FLAGS = JSPROP_READONLY | JSPROP_ENUMERATE | JSPROP_PERMANENT;
|
|
if (!JS_DefineProperty(cx, obj, "message", message, FLAGS) ||
|
|
!JS_DefineProperty(cx, obj, "fileName", filename, FLAGS) ||
|
|
!JS_DefineProperty(cx, obj, "lineNumber",
|
|
mErrorInterceptor.mThrownError->mLine, FLAGS) ||
|
|
!JS_DefineProperty(cx, obj, "stack", stack, FLAGS)) {
|
|
return false;
|
|
}
|
|
|
|
// Pass the result.
|
|
error.setObject(*obj);
|
|
return true;
|
|
}
|
|
#endif // MOZ_JS_DEV_ERROR_INTERCEPTOR
|
|
|
|
#undef MOZ_JS_DEV_ERROR_INTERCEPTOR
|