зеркало из https://github.com/mozilla/gecko-dev.git
447 строки
11 KiB
C++
447 строки
11 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "nsTArray.h"
|
|
#include "gtest/gtest.h"
|
|
#include "mozilla/ArrayUtils.h"
|
|
|
|
using namespace mozilla;
|
|
|
|
namespace TestTArray {
|
|
|
|
struct Copyable {
|
|
Copyable() : mDestructionCounter(nullptr) {}
|
|
|
|
~Copyable() {
|
|
if (mDestructionCounter) {
|
|
(*mDestructionCounter)++;
|
|
}
|
|
}
|
|
|
|
Copyable(const Copyable&) = default;
|
|
Copyable& operator=(const Copyable&) = default;
|
|
|
|
uint32_t* mDestructionCounter;
|
|
};
|
|
|
|
struct Movable {
|
|
Movable() : mDestructionCounter(nullptr) {}
|
|
|
|
~Movable() {
|
|
if (mDestructionCounter) {
|
|
(*mDestructionCounter)++;
|
|
}
|
|
}
|
|
|
|
Movable(Movable&& aOther) : mDestructionCounter(aOther.mDestructionCounter) {
|
|
aOther.mDestructionCounter = nullptr;
|
|
}
|
|
|
|
uint32_t* mDestructionCounter;
|
|
};
|
|
|
|
} // namespace TestTArray
|
|
|
|
template <>
|
|
struct nsTArray_CopyChooser<TestTArray::Copyable> {
|
|
typedef nsTArray_CopyWithConstructors<TestTArray::Copyable> Type;
|
|
};
|
|
|
|
template <>
|
|
struct nsTArray_CopyChooser<TestTArray::Movable> {
|
|
typedef nsTArray_CopyWithConstructors<TestTArray::Movable> Type;
|
|
};
|
|
|
|
namespace TestTArray {
|
|
|
|
static const nsTArray<int>& DummyArray() {
|
|
static nsTArray<int> sArray;
|
|
if (sArray.IsEmpty()) {
|
|
const int data[] = {4, 1, 2, 8};
|
|
sArray.AppendElements(data, ArrayLength(data));
|
|
}
|
|
return sArray;
|
|
}
|
|
|
|
// This returns an invalid nsTArray with a huge length in order to test that
|
|
// fallible operations actually fail.
|
|
#ifdef DEBUG
|
|
static const nsTArray<int>& FakeHugeArray() {
|
|
static nsTArray<int> sArray;
|
|
if (sArray.IsEmpty()) {
|
|
sArray.AppendElement();
|
|
((nsTArrayHeader*)sArray.DebugGetHeader())->mLength = UINT32_MAX;
|
|
}
|
|
return sArray;
|
|
}
|
|
#endif
|
|
|
|
TEST(TArray, AppendElementsRvalue)
|
|
{
|
|
nsTArray<int> array;
|
|
|
|
nsTArray<int> temp(DummyArray());
|
|
array.AppendElements(std::move(temp));
|
|
ASSERT_EQ(DummyArray(), array);
|
|
ASSERT_TRUE(temp.IsEmpty());
|
|
|
|
temp = DummyArray();
|
|
array.AppendElements(std::move(temp));
|
|
nsTArray<int> expected;
|
|
expected.AppendElements(DummyArray());
|
|
expected.AppendElements(DummyArray());
|
|
ASSERT_EQ(expected, array);
|
|
ASSERT_TRUE(temp.IsEmpty());
|
|
}
|
|
|
|
TEST(TArray, Assign)
|
|
{
|
|
nsTArray<int> array;
|
|
array.Assign(DummyArray());
|
|
ASSERT_EQ(DummyArray(), array);
|
|
|
|
ASSERT_TRUE(array.Assign(DummyArray(), fallible));
|
|
ASSERT_EQ(DummyArray(), array);
|
|
|
|
#ifdef DEBUG
|
|
ASSERT_FALSE(array.Assign(FakeHugeArray(), fallible));
|
|
#endif
|
|
|
|
nsTArray<int> array2;
|
|
array2.Assign(std::move(array));
|
|
ASSERT_TRUE(array.IsEmpty());
|
|
ASSERT_EQ(DummyArray(), array2);
|
|
}
|
|
|
|
TEST(TArray, AssignmentOperatorSelfAssignment)
|
|
{
|
|
nsTArray<int> array;
|
|
array = DummyArray();
|
|
|
|
array = *&array;
|
|
ASSERT_EQ(DummyArray(), array);
|
|
|
|
#if defined(__clang__)
|
|
# pragma clang diagnostic push
|
|
# pragma clang diagnostic ignored "-Wself-move"
|
|
#endif
|
|
array = std::move(array); // self-move
|
|
ASSERT_EQ(DummyArray(), array);
|
|
#if defined(__clang__)
|
|
# pragma clang diagnostic pop
|
|
#endif
|
|
}
|
|
|
|
TEST(TArray, CopyOverlappingForwards)
|
|
{
|
|
const size_t rangeLength = 8;
|
|
const size_t initialLength = 2 * rangeLength;
|
|
uint32_t destructionCounters[initialLength];
|
|
nsTArray<Movable> array;
|
|
array.AppendElements(initialLength);
|
|
|
|
for (uint32_t i = 0; i < initialLength; ++i) {
|
|
destructionCounters[i] = 0;
|
|
}
|
|
for (uint32_t i = 0; i < initialLength; ++i) {
|
|
array[i].mDestructionCounter = &destructionCounters[i];
|
|
}
|
|
|
|
const size_t removedLength = rangeLength / 2;
|
|
array.RemoveElementsAt(0, removedLength);
|
|
|
|
for (uint32_t i = 0; i < removedLength; ++i) {
|
|
ASSERT_EQ(destructionCounters[i], 1u);
|
|
}
|
|
for (uint32_t i = removedLength; i < initialLength; ++i) {
|
|
ASSERT_EQ(destructionCounters[i], 0u);
|
|
}
|
|
}
|
|
|
|
// The code to copy overlapping regions had a bug in that it wouldn't correctly
|
|
// destroy all over the source elements being copied.
|
|
TEST(TArray, CopyOverlappingBackwards)
|
|
{
|
|
const size_t rangeLength = 8;
|
|
const size_t initialLength = 2 * rangeLength;
|
|
uint32_t destructionCounters[initialLength];
|
|
nsTArray<Copyable> array;
|
|
array.SetCapacity(3 * rangeLength);
|
|
array.AppendElements(initialLength);
|
|
// To tickle the bug, we need to copy a source region:
|
|
//
|
|
// ..XXXXX..
|
|
//
|
|
// such that it overlaps the destination region:
|
|
//
|
|
// ....XXXXX
|
|
//
|
|
// so we are forced to copy back-to-front to ensure correct behavior.
|
|
// The easiest way to do that is to call InsertElementsAt, which will force
|
|
// the desired kind of shift.
|
|
for (uint32_t i = 0; i < initialLength; ++i) {
|
|
destructionCounters[i] = 0;
|
|
}
|
|
for (uint32_t i = 0; i < initialLength; ++i) {
|
|
array[i].mDestructionCounter = &destructionCounters[i];
|
|
}
|
|
|
|
array.InsertElementsAt(0, rangeLength);
|
|
|
|
for (uint32_t i = 0; i < initialLength; ++i) {
|
|
ASSERT_EQ(destructionCounters[i], 1u);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
class E {
|
|
public:
|
|
E() : mA(-1), mB(-2) { constructCount++; }
|
|
E(int a, int b) : mA(a), mB(b) { constructCount++; }
|
|
E(E&& aRhs) : mA(aRhs.mA), mB(aRhs.mB) {
|
|
aRhs.mA = 0;
|
|
aRhs.mB = 0;
|
|
moveCount++;
|
|
}
|
|
|
|
E& operator=(E&& aRhs) {
|
|
mA = aRhs.mA;
|
|
aRhs.mA = 0;
|
|
mB = aRhs.mB;
|
|
aRhs.mB = 0;
|
|
moveCount++;
|
|
return *this;
|
|
}
|
|
|
|
int a() const { return mA; }
|
|
int b() const { return mB; }
|
|
|
|
E(const E&) = delete;
|
|
E& operator=(const E&) = delete;
|
|
|
|
static size_t constructCount;
|
|
static size_t moveCount;
|
|
|
|
private:
|
|
int mA;
|
|
int mB;
|
|
};
|
|
|
|
size_t E::constructCount = 0;
|
|
size_t E::moveCount = 0;
|
|
|
|
} // namespace
|
|
|
|
TEST(TArray, Emplace)
|
|
{
|
|
nsTArray<E> array;
|
|
array.SetCapacity(20);
|
|
|
|
ASSERT_EQ(array.Length(), 0u);
|
|
|
|
for (int i = 0; i < 10; i++) {
|
|
E s(i, i * i);
|
|
array.AppendElement(std::move(s));
|
|
}
|
|
|
|
ASSERT_EQ(array.Length(), 10u);
|
|
ASSERT_EQ(E::constructCount, 10u);
|
|
ASSERT_EQ(E::moveCount, 10u);
|
|
|
|
for (int i = 10; i < 20; i++) {
|
|
array.EmplaceBack(i, i * i);
|
|
}
|
|
|
|
ASSERT_EQ(array.Length(), 20u);
|
|
ASSERT_EQ(E::constructCount, 20u);
|
|
ASSERT_EQ(E::moveCount, 10u);
|
|
|
|
for (int i = 0; i < 20; i++) {
|
|
ASSERT_EQ(array[i].a(), i);
|
|
ASSERT_EQ(array[i].b(), i * i);
|
|
}
|
|
|
|
array.EmplaceBack();
|
|
|
|
ASSERT_EQ(array.Length(), 21u);
|
|
ASSERT_EQ(E::constructCount, 21u);
|
|
ASSERT_EQ(E::moveCount, 10u);
|
|
|
|
ASSERT_EQ(array[20].a(), -1);
|
|
ASSERT_EQ(array[20].b(), -2);
|
|
}
|
|
|
|
TEST(TArray, UnorderedRemoveElements)
|
|
{
|
|
// When removing an element from the end of the array, it can be removed in
|
|
// place, by destroying it and decrementing the length.
|
|
//
|
|
// [ 1, 2, 3 ] => [ 1, 2 ]
|
|
// ^
|
|
{
|
|
nsTArray<int> array{1, 2, 3};
|
|
array.UnorderedRemoveElementAt(2);
|
|
|
|
nsTArray<int> goal{1, 2};
|
|
ASSERT_EQ(array, goal);
|
|
}
|
|
|
|
// When removing any other single element, it is removed by swapping it with
|
|
// the last element, and then decrementing the length as before.
|
|
//
|
|
// [ 1, 2, 3, 4, 5, 6 ] => [ 1, 6, 3, 4, 5 ]
|
|
// ^
|
|
{
|
|
nsTArray<int> array{1, 2, 3, 4, 5, 6};
|
|
array.UnorderedRemoveElementAt(1);
|
|
|
|
nsTArray<int> goal{1, 6, 3, 4, 5};
|
|
ASSERT_EQ(array, goal);
|
|
}
|
|
|
|
// This method also supports efficiently removing a range of elements. If they
|
|
// are at the end, then they can all be removed like in the one element case.
|
|
//
|
|
// [ 1, 2, 3, 4, 5, 6 ] => [ 1, 2 ]
|
|
// ^--------^
|
|
{
|
|
nsTArray<int> array{1, 2, 3, 4, 5, 6};
|
|
array.UnorderedRemoveElementsAt(2, 4);
|
|
|
|
nsTArray<int> goal{1, 2};
|
|
ASSERT_EQ(array, goal);
|
|
}
|
|
|
|
// If more elements are removed than exist after the removed section, the
|
|
// remaining elements will be shifted down like in a normal removal.
|
|
//
|
|
// [ 1, 2, 3, 4, 5, 6, 7, 8 ] => [ 1, 2, 7, 8 ]
|
|
// ^--------^
|
|
{
|
|
nsTArray<int> array{1, 2, 3, 4, 5, 6, 7, 8};
|
|
array.UnorderedRemoveElementsAt(2, 4);
|
|
|
|
nsTArray<int> goal{1, 2, 7, 8};
|
|
ASSERT_EQ(array, goal);
|
|
}
|
|
|
|
// And if fewer elements are removed than exist after the removed section,
|
|
// elements will be moved from the end of the array to fill the vacated space.
|
|
//
|
|
// [ 1, 2, 3, 4, 5, 6, 7, 8 ] => [ 1, 7, 8, 4, 5, 6 ]
|
|
// ^--^
|
|
{
|
|
nsTArray<int> array{1, 2, 3, 4, 5, 6, 7, 8};
|
|
array.UnorderedRemoveElementsAt(1, 2);
|
|
|
|
nsTArray<int> goal{1, 7, 8, 4, 5, 6};
|
|
ASSERT_EQ(array, goal);
|
|
}
|
|
|
|
// We should do the right thing if we drain the entire array.
|
|
{
|
|
nsTArray<int> array{1, 2, 3, 4, 5};
|
|
array.UnorderedRemoveElementsAt(0, 5);
|
|
|
|
nsTArray<int> goal{};
|
|
ASSERT_EQ(array, goal);
|
|
}
|
|
|
|
{
|
|
nsTArray<int> array{1};
|
|
array.UnorderedRemoveElementAt(0);
|
|
|
|
nsTArray<int> goal{};
|
|
ASSERT_EQ(array, goal);
|
|
}
|
|
|
|
// We should do the right thing if we remove the same number of elements that
|
|
// we have remaining.
|
|
{
|
|
nsTArray<int> array{1, 2, 3, 4, 5, 6};
|
|
array.UnorderedRemoveElementsAt(2, 2);
|
|
|
|
nsTArray<int> goal{1, 2, 5, 6};
|
|
ASSERT_EQ(array, goal);
|
|
}
|
|
|
|
{
|
|
nsTArray<int> array{1, 2, 3};
|
|
array.UnorderedRemoveElementAt(1);
|
|
|
|
nsTArray<int> goal{1, 3};
|
|
ASSERT_EQ(array, goal);
|
|
}
|
|
|
|
// We should be able to remove elements from the front without issue.
|
|
{
|
|
nsTArray<int> array{1, 2, 3, 4, 5, 6};
|
|
array.UnorderedRemoveElementsAt(0, 2);
|
|
|
|
nsTArray<int> goal{5, 6, 3, 4};
|
|
ASSERT_EQ(array, goal);
|
|
}
|
|
|
|
{
|
|
nsTArray<int> array{1, 2, 3, 4};
|
|
array.UnorderedRemoveElementAt(0);
|
|
|
|
nsTArray<int> goal{4, 2, 3};
|
|
ASSERT_EQ(array, goal);
|
|
}
|
|
}
|
|
|
|
TEST(TArray, RemoveFromEnd)
|
|
{
|
|
{
|
|
nsTArray<int> array{1, 2, 3, 4};
|
|
ASSERT_EQ(array.PopLastElement(), 4);
|
|
array.RemoveLastElement();
|
|
ASSERT_EQ(array.PopLastElement(), 2);
|
|
array.RemoveLastElement();
|
|
ASSERT_TRUE(array.IsEmpty());
|
|
}
|
|
}
|
|
|
|
TEST(TArray, ConvertIteratorToConstIterator)
|
|
{
|
|
nsTArray<int> array{1, 2, 3, 4};
|
|
|
|
nsTArray<int>::const_iterator it = array.begin();
|
|
ASSERT_EQ(array.cbegin(), it);
|
|
}
|
|
|
|
TEST(TArray, RemoveElementAt_ByIterator)
|
|
{
|
|
nsTArray<int> array{1, 2, 3, 4};
|
|
const auto it = std::find(array.begin(), array.end(), 3);
|
|
const auto itAfter = array.RemoveElementAt(it);
|
|
|
|
// Based on the implementation of the iterator, we could compare it and
|
|
// itAfter, but we should not rely on such implementation details.
|
|
|
|
ASSERT_EQ(2, std::distance(array.cbegin(), itAfter));
|
|
const nsTArray<int> expected{1, 2, 4};
|
|
ASSERT_EQ(expected, array);
|
|
}
|
|
|
|
TEST(TArray, RemoveElementsAt_ByIterator)
|
|
{
|
|
nsTArray<int> array{1, 2, 3, 4};
|
|
const auto it = std::find(array.begin(), array.end(), 3);
|
|
const auto itAfter = array.RemoveElementsAt(it, array.end());
|
|
|
|
// Based on the implementation of the iterator, we could compare it and
|
|
// itAfter, but we should not rely on such implementation details.
|
|
|
|
ASSERT_EQ(2, std::distance(array.cbegin(), itAfter));
|
|
const nsTArray<int> expected{1, 2};
|
|
ASSERT_EQ(expected, array);
|
|
}
|
|
|
|
} // namespace TestTArray
|