зеркало из https://github.com/mozilla/gecko-dev.git
2038 строки
67 KiB
C++
2038 строки
67 KiB
C++
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim:set ts=2 sw=2 sts=2 et cindent: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "nsError.h"
|
|
#include "MediaDecoderStateMachine.h"
|
|
#include "OggDemuxer.h"
|
|
#include "OggCodecState.h"
|
|
#include "mozilla/AbstractThread.h"
|
|
#include "mozilla/Atomics.h"
|
|
#include "mozilla/PodOperations.h"
|
|
#include "mozilla/SharedThreadPool.h"
|
|
#include "mozilla/Telemetry.h"
|
|
#include "mozilla/TimeStamp.h"
|
|
#include "MediaDataDemuxer.h"
|
|
#include "nsAutoRef.h"
|
|
#include "XiphExtradata.h"
|
|
#include "MediaPrefs.h"
|
|
|
|
#include <algorithm>
|
|
|
|
extern mozilla::LazyLogModule gMediaDemuxerLog;
|
|
#define OGG_DEBUG(arg, ...) \
|
|
DDMOZ_LOG(gMediaDemuxerLog, \
|
|
mozilla::LogLevel::Debug, \
|
|
"::%s: " arg, \
|
|
__func__, \
|
|
##__VA_ARGS__)
|
|
|
|
// Un-comment to enable logging of seek bisections.
|
|
//#define SEEK_LOGGING
|
|
#ifdef SEEK_LOGGING
|
|
#define SEEK_LOG(type, msg) MOZ_LOG(gMediaDemuxerLog, type, msg)
|
|
#else
|
|
#define SEEK_LOG(type, msg)
|
|
#endif
|
|
|
|
namespace mozilla
|
|
{
|
|
|
|
using media::TimeUnit;
|
|
using media::TimeInterval;
|
|
using media::TimeIntervals;
|
|
|
|
// The number of microseconds of "fuzz" we use in a bisection search over
|
|
// HTTP. When we're seeking with fuzz, we'll stop the search if a bisection
|
|
// lands between the seek target and OGG_SEEK_FUZZ_USECS microseconds before the
|
|
// seek target. This is becaue it's usually quicker to just keep downloading
|
|
// from an exisiting connection than to do another bisection inside that
|
|
// small range, which would open a new HTTP connetion.
|
|
static const uint32_t OGG_SEEK_FUZZ_USECS = 500000;
|
|
|
|
// The number of microseconds of "pre-roll" we use for Opus streams.
|
|
// The specification recommends 80 ms.
|
|
static const int64_t OGG_SEEK_OPUS_PREROLL = 80 * USECS_PER_MS;
|
|
|
|
static Atomic<uint32_t> sStreamSourceID(0u);
|
|
|
|
// Return the corresponding category in aKind based on the following specs.
|
|
// (https://www.whatwg.org/specs/web-apps/current-
|
|
// work/multipage/embedded-content.html#dom-audiotrack-kind) &
|
|
// (http://wiki.xiph.org/SkeletonHeaders)
|
|
const nsString
|
|
OggDemuxer::GetKind(const nsCString& aRole)
|
|
{
|
|
if (aRole.Find("audio/main") != -1 || aRole.Find("video/main") != -1) {
|
|
return NS_LITERAL_STRING("main");
|
|
} else if (aRole.Find("audio/alternate") != -1 ||
|
|
aRole.Find("video/alternate") != -1) {
|
|
return NS_LITERAL_STRING("alternative");
|
|
} else if (aRole.Find("audio/audiodesc") != -1) {
|
|
return NS_LITERAL_STRING("descriptions");
|
|
} else if (aRole.Find("audio/described") != -1) {
|
|
return NS_LITERAL_STRING("main-desc");
|
|
} else if (aRole.Find("audio/dub") != -1) {
|
|
return NS_LITERAL_STRING("translation");
|
|
} else if (aRole.Find("audio/commentary") != -1) {
|
|
return NS_LITERAL_STRING("commentary");
|
|
} else if (aRole.Find("video/sign") != -1) {
|
|
return NS_LITERAL_STRING("sign");
|
|
} else if (aRole.Find("video/captioned") != -1) {
|
|
return NS_LITERAL_STRING("captions");
|
|
} else if (aRole.Find("video/subtitled") != -1) {
|
|
return NS_LITERAL_STRING("subtitles");
|
|
}
|
|
return EmptyString();
|
|
}
|
|
|
|
void
|
|
OggDemuxer::InitTrack(MessageField* aMsgInfo,
|
|
TrackInfo* aInfo,
|
|
bool aEnable)
|
|
{
|
|
MOZ_ASSERT(aMsgInfo);
|
|
MOZ_ASSERT(aInfo);
|
|
|
|
nsCString* sName = aMsgInfo->mValuesStore.Get(eName);
|
|
nsCString* sRole = aMsgInfo->mValuesStore.Get(eRole);
|
|
nsCString* sTitle = aMsgInfo->mValuesStore.Get(eTitle);
|
|
nsCString* sLanguage = aMsgInfo->mValuesStore.Get(eLanguage);
|
|
aInfo->Init(sName? NS_ConvertUTF8toUTF16(*sName):EmptyString(),
|
|
sRole? GetKind(*sRole):EmptyString(),
|
|
sTitle? NS_ConvertUTF8toUTF16(*sTitle):EmptyString(),
|
|
sLanguage? NS_ConvertUTF8toUTF16(*sLanguage):EmptyString(),
|
|
aEnable);
|
|
}
|
|
|
|
OggDemuxer::OggDemuxer(MediaResource* aResource)
|
|
: mTheoraState(nullptr)
|
|
, mVorbisState(nullptr)
|
|
, mOpusState(nullptr)
|
|
, mFlacState(nullptr)
|
|
, mOpusEnabled(MediaDecoder::IsOpusEnabled())
|
|
, mSkeletonState(nullptr)
|
|
, mAudioOggState(aResource)
|
|
, mVideoOggState(aResource)
|
|
, mIsChained(false)
|
|
, mTimedMetadataEvent(nullptr)
|
|
, mOnSeekableEvent(nullptr)
|
|
{
|
|
MOZ_COUNT_CTOR(OggDemuxer);
|
|
// aResource is referenced through inner m{Audio,Video}OffState members.
|
|
DDLINKCHILD("resource", aResource);
|
|
}
|
|
|
|
OggDemuxer::~OggDemuxer()
|
|
{
|
|
MOZ_COUNT_DTOR(OggDemuxer);
|
|
Reset(TrackInfo::kAudioTrack);
|
|
Reset(TrackInfo::kVideoTrack);
|
|
if (HasAudio() || HasVideo()) {
|
|
// If we were able to initialize our decoders, report whether we encountered
|
|
// a chained stream or not.
|
|
bool isChained = mIsChained;
|
|
void* ptr = this;
|
|
nsCOMPtr<nsIRunnable> task = NS_NewRunnableFunction(
|
|
"OggDemuxer::~OggDemuxer", [ptr, isChained]() -> void {
|
|
// We can't use OGG_DEBUG here because it implicitly refers to `this`,
|
|
// which we can't capture in this runnable.
|
|
MOZ_LOG(gMediaDemuxerLog,
|
|
mozilla::LogLevel::Debug,
|
|
("OggDemuxer(%p)::%s: Reporting telemetry "
|
|
"MEDIA_OGG_LOADED_IS_CHAINED=%d",
|
|
ptr,
|
|
__func__,
|
|
isChained));
|
|
Telemetry::Accumulate(
|
|
Telemetry::HistogramID::MEDIA_OGG_LOADED_IS_CHAINED, isChained);
|
|
});
|
|
SystemGroup::Dispatch(TaskCategory::Other, task.forget());
|
|
}
|
|
}
|
|
|
|
void
|
|
OggDemuxer::SetChainingEvents(TimedMetadataEventProducer* aMetadataEvent,
|
|
MediaEventProducer<void>* aOnSeekableEvent)
|
|
{
|
|
mTimedMetadataEvent = aMetadataEvent;
|
|
mOnSeekableEvent = aOnSeekableEvent;
|
|
}
|
|
|
|
|
|
bool
|
|
OggDemuxer::HasAudio()
|
|
const
|
|
{
|
|
return mVorbisState || mOpusState || mFlacState;
|
|
}
|
|
|
|
bool
|
|
OggDemuxer::HasVideo()
|
|
const
|
|
{
|
|
return mTheoraState;
|
|
}
|
|
|
|
bool
|
|
OggDemuxer::HaveStartTime()
|
|
const
|
|
{
|
|
return mStartTime.isSome();
|
|
}
|
|
|
|
int64_t
|
|
OggDemuxer::StartTime() const
|
|
{
|
|
return mStartTime.refOr(0);
|
|
}
|
|
|
|
bool
|
|
OggDemuxer::HaveStartTime(TrackInfo::TrackType aType)
|
|
{
|
|
return OggState(aType).mStartTime.isSome();
|
|
}
|
|
|
|
int64_t
|
|
OggDemuxer::StartTime(TrackInfo::TrackType aType)
|
|
{
|
|
return OggState(aType).mStartTime.refOr(TimeUnit::Zero()).ToMicroseconds();
|
|
}
|
|
|
|
RefPtr<OggDemuxer::InitPromise>
|
|
OggDemuxer::Init()
|
|
{
|
|
int ret = ogg_sync_init(OggSyncState(TrackInfo::kAudioTrack));
|
|
if (ret != 0) {
|
|
return InitPromise::CreateAndReject(NS_ERROR_OUT_OF_MEMORY, __func__);
|
|
}
|
|
ret = ogg_sync_init(OggSyncState(TrackInfo::kVideoTrack));
|
|
if (ret != 0) {
|
|
return InitPromise::CreateAndReject(NS_ERROR_OUT_OF_MEMORY, __func__);
|
|
}
|
|
if (ReadMetadata() != NS_OK) {
|
|
return InitPromise::CreateAndReject(NS_ERROR_DOM_MEDIA_METADATA_ERR, __func__);
|
|
}
|
|
|
|
if (!GetNumberTracks(TrackInfo::kAudioTrack) &&
|
|
!GetNumberTracks(TrackInfo::kVideoTrack)) {
|
|
return InitPromise::CreateAndReject(NS_ERROR_DOM_MEDIA_METADATA_ERR, __func__);
|
|
}
|
|
|
|
return InitPromise::CreateAndResolve(NS_OK, __func__);
|
|
}
|
|
|
|
OggCodecState*
|
|
OggDemuxer::GetTrackCodecState(TrackInfo::TrackType aType) const
|
|
{
|
|
switch(aType) {
|
|
case TrackInfo::kAudioTrack:
|
|
if (mVorbisState) {
|
|
return mVorbisState;
|
|
} else if (mOpusState) {
|
|
return mOpusState;
|
|
} else {
|
|
return mFlacState;
|
|
}
|
|
case TrackInfo::kVideoTrack:
|
|
return mTheoraState;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
TrackInfo::TrackType
|
|
OggDemuxer::GetCodecStateType(OggCodecState* aState) const
|
|
{
|
|
switch (aState->GetType()) {
|
|
case OggCodecState::TYPE_THEORA:
|
|
return TrackInfo::kVideoTrack;
|
|
case OggCodecState::TYPE_OPUS:
|
|
case OggCodecState::TYPE_VORBIS:
|
|
case OggCodecState::TYPE_FLAC:
|
|
return TrackInfo::kAudioTrack;
|
|
default:
|
|
return TrackInfo::kUndefinedTrack;
|
|
}
|
|
}
|
|
|
|
uint32_t
|
|
OggDemuxer::GetNumberTracks(TrackInfo::TrackType aType) const
|
|
{
|
|
switch(aType) {
|
|
case TrackInfo::kAudioTrack:
|
|
return HasAudio() ? 1 : 0;
|
|
case TrackInfo::kVideoTrack:
|
|
return HasVideo() ? 1 : 0;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
UniquePtr<TrackInfo>
|
|
OggDemuxer::GetTrackInfo(TrackInfo::TrackType aType, size_t aTrackNumber) const
|
|
{
|
|
switch(aType) {
|
|
case TrackInfo::kAudioTrack:
|
|
return mInfo.mAudio.Clone();
|
|
case TrackInfo::kVideoTrack:
|
|
return mInfo.mVideo.Clone();
|
|
default:
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
already_AddRefed<MediaTrackDemuxer>
|
|
OggDemuxer::GetTrackDemuxer(TrackInfo::TrackType aType, uint32_t aTrackNumber)
|
|
{
|
|
if (GetNumberTracks(aType) <= aTrackNumber) {
|
|
return nullptr;
|
|
}
|
|
RefPtr<OggTrackDemuxer> e = new OggTrackDemuxer(this, aType, aTrackNumber);
|
|
DDLINKCHILD("track demuxer", e.get());
|
|
mDemuxers.AppendElement(e);
|
|
|
|
return e.forget();
|
|
}
|
|
|
|
nsresult
|
|
OggDemuxer::Reset(TrackInfo::TrackType aType)
|
|
{
|
|
// Discard any previously buffered packets/pages.
|
|
ogg_sync_reset(OggSyncState(aType));
|
|
OggCodecState* trackState = GetTrackCodecState(aType);
|
|
if (trackState) {
|
|
return trackState->Reset();
|
|
}
|
|
OggState(aType).mNeedKeyframe = true;
|
|
return NS_OK;
|
|
}
|
|
|
|
bool
|
|
OggDemuxer::ReadHeaders(TrackInfo::TrackType aType,
|
|
OggCodecState* aState)
|
|
{
|
|
while (!aState->DoneReadingHeaders()) {
|
|
DemuxUntilPacketAvailable(aType, aState);
|
|
OggPacketPtr packet = aState->PacketOut();
|
|
if (!packet) {
|
|
OGG_DEBUG("Ran out of header packets early; deactivating stream %" PRIu32, aState->mSerial);
|
|
aState->Deactivate();
|
|
return false;
|
|
}
|
|
|
|
// Local OggCodecState needs to decode headers in order to process
|
|
// packet granulepos -> time mappings, etc.
|
|
if (!aState->DecodeHeader(Move(packet))) {
|
|
OGG_DEBUG("Failed to decode ogg header packet; deactivating stream %" PRIu32, aState->mSerial);
|
|
aState->Deactivate();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return aState->Init();
|
|
}
|
|
|
|
void
|
|
OggDemuxer::BuildSerialList(nsTArray<uint32_t>& aTracks)
|
|
{
|
|
// Obtaining seek index information for currently active bitstreams.
|
|
if (HasVideo()) {
|
|
aTracks.AppendElement(mTheoraState->mSerial);
|
|
}
|
|
if (HasAudio()) {
|
|
if (mVorbisState) {
|
|
aTracks.AppendElement(mVorbisState->mSerial);
|
|
} else if (mOpusState) {
|
|
aTracks.AppendElement(mOpusState->mSerial);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
OggDemuxer::SetupTarget(OggCodecState** aSavedState, OggCodecState* aNewState)
|
|
{
|
|
if (*aSavedState) {
|
|
(*aSavedState)->Reset();
|
|
}
|
|
|
|
if (aNewState->GetInfo()->GetAsAudioInfo()) {
|
|
mInfo.mAudio = *aNewState->GetInfo()->GetAsAudioInfo();
|
|
} else {
|
|
mInfo.mVideo = *aNewState->GetInfo()->GetAsVideoInfo();
|
|
}
|
|
*aSavedState = aNewState;
|
|
}
|
|
|
|
void
|
|
OggDemuxer::SetupTargetSkeleton()
|
|
{
|
|
// Setup skeleton related information after mVorbisState & mTheroState
|
|
// being set (if they exist).
|
|
if (mSkeletonState) {
|
|
if (!HasAudio() && !HasVideo()) {
|
|
// We have a skeleton track, but no audio or video, may as well disable
|
|
// the skeleton, we can't do anything useful with this media.
|
|
OGG_DEBUG("Deactivating skeleton stream %" PRIu32, mSkeletonState->mSerial);
|
|
mSkeletonState->Deactivate();
|
|
} else if (ReadHeaders(TrackInfo::kAudioTrack, mSkeletonState) &&
|
|
mSkeletonState->HasIndex()) {
|
|
// We don't particularly care about which track we are currently using
|
|
// as both MediaResource points to the same content.
|
|
// Extract the duration info out of the index, so we don't need to seek to
|
|
// the end of resource to get it.
|
|
nsTArray<uint32_t> tracks;
|
|
BuildSerialList(tracks);
|
|
int64_t duration = 0;
|
|
if (NS_SUCCEEDED(mSkeletonState->GetDuration(tracks, duration))) {
|
|
OGG_DEBUG("Got duration from Skeleton index %" PRId64, duration);
|
|
mInfo.mMetadataDuration.emplace(TimeUnit::FromMicroseconds(duration));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
OggDemuxer::SetupMediaTracksInfo(const nsTArray<uint32_t>& aSerials)
|
|
{
|
|
// For each serial number
|
|
// 1. Retrieve a codecState from mCodecStore by this serial number.
|
|
// 2. Retrieve a message field from mMsgFieldStore by this serial number.
|
|
// 3. For now, skip if the serial number refers to a non-primary bitstream.
|
|
// 4. Setup track and other audio/video related information per different types.
|
|
for (size_t i = 0; i < aSerials.Length(); i++) {
|
|
uint32_t serial = aSerials[i];
|
|
OggCodecState* codecState = mCodecStore.Get(serial);
|
|
|
|
MessageField* msgInfo = nullptr;
|
|
if (mSkeletonState) {
|
|
mSkeletonState->mMsgFieldStore.Get(serial, &msgInfo);
|
|
}
|
|
|
|
OggCodecState* primeState = nullptr;
|
|
switch (codecState->GetType()) {
|
|
case OggCodecState::TYPE_THEORA:
|
|
primeState = mTheoraState;
|
|
break;
|
|
case OggCodecState::TYPE_VORBIS:
|
|
primeState = mVorbisState;
|
|
break;
|
|
case OggCodecState::TYPE_OPUS:
|
|
primeState = mOpusState;
|
|
break;
|
|
case OggCodecState::TYPE_FLAC:
|
|
primeState = mFlacState;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (primeState && primeState == codecState) {
|
|
bool isAudio = primeState->GetInfo()->GetAsAudioInfo();
|
|
if (msgInfo) {
|
|
InitTrack(msgInfo, isAudio ? static_cast<TrackInfo*>(&mInfo.mAudio)
|
|
: &mInfo.mVideo,
|
|
true);
|
|
}
|
|
FillTags(isAudio ? static_cast<TrackInfo*>(&mInfo.mAudio) : &mInfo.mVideo,
|
|
primeState->GetTags());
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
OggDemuxer::FillTags(TrackInfo* aInfo, MetadataTags* aTags)
|
|
{
|
|
if (!aTags) {
|
|
return;
|
|
}
|
|
nsAutoPtr<MetadataTags> tags(aTags);
|
|
for (auto iter = aTags->Iter(); !iter.Done(); iter.Next()) {
|
|
aInfo->mTags.AppendElement(MetadataTag(iter.Key(), iter.Data()));
|
|
}
|
|
}
|
|
|
|
nsresult
|
|
OggDemuxer::ReadMetadata()
|
|
{
|
|
OGG_DEBUG("OggDemuxer::ReadMetadata called!");
|
|
|
|
// We read packets until all bitstreams have read all their header packets.
|
|
// We record the offset of the first non-header page so that we know
|
|
// what page to seek to when seeking to the media start.
|
|
|
|
// @FIXME we have to read all the header packets on all the streams
|
|
// and THEN we can run SetupTarget*
|
|
// @fixme fixme
|
|
|
|
TrackInfo::TrackType tracks[2] =
|
|
{ TrackInfo::kAudioTrack, TrackInfo::kVideoTrack };
|
|
|
|
nsTArray<OggCodecState*> bitstreams;
|
|
nsTArray<uint32_t> serials;
|
|
|
|
for (uint32_t i = 0; i < ArrayLength(tracks); i++) {
|
|
ogg_page page;
|
|
bool readAllBOS = false;
|
|
while (!readAllBOS) {
|
|
if (!ReadOggPage(tracks[i], &page)) {
|
|
// Some kind of error...
|
|
OGG_DEBUG("OggDemuxer::ReadOggPage failed? leaving ReadMetadata...");
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
int serial = ogg_page_serialno(&page);
|
|
|
|
if (!ogg_page_bos(&page)) {
|
|
// We've encountered a non Beginning Of Stream page. No more BOS pages
|
|
// can follow in this Ogg segment, so there will be no other bitstreams
|
|
// in the Ogg (unless it's invalid).
|
|
readAllBOS = true;
|
|
} else if (!mCodecStore.Contains(serial)) {
|
|
// We've not encountered a stream with this serial number before. Create
|
|
// an OggCodecState to demux it, and map that to the OggCodecState
|
|
// in mCodecStates.
|
|
OggCodecState* codecState = OggCodecState::Create(&page);
|
|
mCodecStore.Add(serial, codecState);
|
|
bitstreams.AppendElement(codecState);
|
|
serials.AppendElement(serial);
|
|
}
|
|
if (NS_FAILED(DemuxOggPage(tracks[i], &page))) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
}
|
|
}
|
|
|
|
// We've read all BOS pages, so we know the streams contained in the media.
|
|
// 1. Find the first encountered Theora/Vorbis/Opus bitstream, and configure
|
|
// it as the target A/V bitstream.
|
|
// 2. Deactivate the rest of bitstreams for now, until we have MediaInfo
|
|
// support multiple track infos.
|
|
for (uint32_t i = 0; i < bitstreams.Length(); ++i) {
|
|
OggCodecState* s = bitstreams[i];
|
|
if (s) {
|
|
if (s->GetType() == OggCodecState::TYPE_THEORA &&
|
|
ReadHeaders(TrackInfo::kVideoTrack, s)) {
|
|
if (!mTheoraState) {
|
|
SetupTarget(&mTheoraState, s);
|
|
} else {
|
|
s->Deactivate();
|
|
}
|
|
} else if (s->GetType() == OggCodecState::TYPE_VORBIS &&
|
|
ReadHeaders(TrackInfo::kAudioTrack, s)) {
|
|
if (!mVorbisState) {
|
|
SetupTarget(&mVorbisState, s);
|
|
} else {
|
|
s->Deactivate();
|
|
}
|
|
} else if (s->GetType() == OggCodecState::TYPE_OPUS &&
|
|
ReadHeaders(TrackInfo::kAudioTrack, s)) {
|
|
if (mOpusEnabled) {
|
|
if (!mOpusState) {
|
|
SetupTarget(&mOpusState, s);
|
|
} else {
|
|
s->Deactivate();
|
|
}
|
|
} else {
|
|
NS_WARNING("Opus decoding disabled."
|
|
" See media.opus.enabled in about:config");
|
|
}
|
|
} else if (MediaPrefs::FlacInOgg() &&
|
|
s->GetType() == OggCodecState::TYPE_FLAC &&
|
|
ReadHeaders(TrackInfo::kAudioTrack, s)) {
|
|
if (!mFlacState) {
|
|
SetupTarget(&mFlacState, s);
|
|
} else {
|
|
s->Deactivate();
|
|
}
|
|
} else if (s->GetType() == OggCodecState::TYPE_SKELETON && !mSkeletonState) {
|
|
mSkeletonState = static_cast<SkeletonState*>(s);
|
|
} else {
|
|
// Deactivate any non-primary bitstreams.
|
|
s->Deactivate();
|
|
}
|
|
}
|
|
}
|
|
|
|
SetupTargetSkeleton();
|
|
SetupMediaTracksInfo(serials);
|
|
|
|
if (HasAudio() || HasVideo()) {
|
|
int64_t startTime = -1;
|
|
FindStartTime(startTime);
|
|
if (startTime >= 0) {
|
|
OGG_DEBUG("Detected stream start time %" PRId64, startTime);
|
|
mStartTime.emplace(startTime);
|
|
}
|
|
|
|
if (mInfo.mMetadataDuration.isNothing() &&
|
|
Resource(TrackInfo::kAudioTrack)->GetLength() >= 0) {
|
|
// We didn't get a duration from the index or a Content-Duration header.
|
|
// Seek to the end of file to find the end time.
|
|
int64_t length = Resource(TrackInfo::kAudioTrack)->GetLength();
|
|
|
|
MOZ_ASSERT(length > 0, "Must have a content length to get end time");
|
|
|
|
int64_t endTime = RangeEndTime(TrackInfo::kAudioTrack, length);
|
|
|
|
if (endTime != -1) {
|
|
mInfo.mUnadjustedMetadataEndTime.emplace(TimeUnit::FromMicroseconds(endTime));
|
|
mInfo.mMetadataDuration.emplace(TimeUnit::FromMicroseconds(endTime - mStartTime.refOr(0)));
|
|
OGG_DEBUG("Got Ogg duration from seeking to end %" PRId64, endTime);
|
|
}
|
|
}
|
|
if (mInfo.mMetadataDuration.isNothing()) {
|
|
mInfo.mMetadataDuration.emplace(TimeUnit::FromInfinity());
|
|
}
|
|
if (HasAudio()) {
|
|
mInfo.mAudio.mDuration = mInfo.mMetadataDuration.ref();
|
|
}
|
|
if (HasVideo()) {
|
|
mInfo.mVideo.mDuration = mInfo.mMetadataDuration.ref();
|
|
}
|
|
} else {
|
|
OGG_DEBUG("no audio or video tracks");
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
OGG_DEBUG("success?!");
|
|
return NS_OK;
|
|
}
|
|
|
|
void
|
|
OggDemuxer::SetChained() {
|
|
{
|
|
if (mIsChained) {
|
|
return;
|
|
}
|
|
mIsChained = true;
|
|
}
|
|
if (mOnSeekableEvent) {
|
|
mOnSeekableEvent->Notify();
|
|
}
|
|
}
|
|
|
|
bool
|
|
OggDemuxer::ReadOggChain(const media::TimeUnit& aLastEndTime)
|
|
{
|
|
bool chained = false;
|
|
OpusState* newOpusState = nullptr;
|
|
VorbisState* newVorbisState = nullptr;
|
|
FlacState* newFlacState = nullptr;
|
|
nsAutoPtr<MetadataTags> tags;
|
|
|
|
if (HasVideo() || HasSkeleton() || !HasAudio()) {
|
|
return false;
|
|
}
|
|
|
|
ogg_page page;
|
|
if (!ReadOggPage(TrackInfo::kAudioTrack, &page) || !ogg_page_bos(&page)) {
|
|
// Chaining is only supported for audio only ogg files.
|
|
return false;
|
|
}
|
|
|
|
int serial = ogg_page_serialno(&page);
|
|
if (mCodecStore.Contains(serial)) {
|
|
return false;
|
|
}
|
|
|
|
nsAutoPtr<OggCodecState> codecState;
|
|
codecState = OggCodecState::Create(&page);
|
|
if (!codecState) {
|
|
return false;
|
|
}
|
|
|
|
if (mVorbisState && (codecState->GetType() == OggCodecState::TYPE_VORBIS)) {
|
|
newVorbisState = static_cast<VorbisState*>(codecState.get());
|
|
} else if (mOpusState && (codecState->GetType() == OggCodecState::TYPE_OPUS)) {
|
|
newOpusState = static_cast<OpusState*>(codecState.get());
|
|
} else if (mFlacState && (codecState->GetType() == OggCodecState::TYPE_FLAC)) {
|
|
newFlacState = static_cast<FlacState*>(codecState.get());
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
OggCodecState* state;
|
|
|
|
mCodecStore.Add(serial, codecState.forget());
|
|
state = mCodecStore.Get(serial);
|
|
|
|
NS_ENSURE_TRUE(state != nullptr, false);
|
|
|
|
if (NS_FAILED(state->PageIn(&page))) {
|
|
return false;
|
|
}
|
|
|
|
MessageField* msgInfo = nullptr;
|
|
if (mSkeletonState) {
|
|
mSkeletonState->mMsgFieldStore.Get(serial, &msgInfo);
|
|
}
|
|
|
|
if ((newVorbisState &&
|
|
ReadHeaders(TrackInfo::kAudioTrack, newVorbisState)) &&
|
|
(mVorbisState->GetInfo()->GetAsAudioInfo()->mRate ==
|
|
newVorbisState->GetInfo()->GetAsAudioInfo()->mRate) &&
|
|
(mVorbisState->GetInfo()->GetAsAudioInfo()->mChannels ==
|
|
newVorbisState->GetInfo()->GetAsAudioInfo()->mChannels)) {
|
|
|
|
SetupTarget(&mVorbisState, newVorbisState);
|
|
OGG_DEBUG("New vorbis ogg link, serial=%d\n", mVorbisState->mSerial);
|
|
|
|
if (msgInfo) {
|
|
InitTrack(msgInfo, &mInfo.mAudio, true);
|
|
}
|
|
|
|
chained = true;
|
|
tags = newVorbisState->GetTags();
|
|
}
|
|
|
|
if ((newOpusState &&
|
|
ReadHeaders(TrackInfo::kAudioTrack, newOpusState)) &&
|
|
(mOpusState->GetInfo()->GetAsAudioInfo()->mRate ==
|
|
newOpusState->GetInfo()->GetAsAudioInfo()->mRate) &&
|
|
(mOpusState->GetInfo()->GetAsAudioInfo()->mChannels ==
|
|
newOpusState->GetInfo()->GetAsAudioInfo()->mChannels)) {
|
|
|
|
SetupTarget(&mOpusState, newOpusState);
|
|
|
|
if (msgInfo) {
|
|
InitTrack(msgInfo, &mInfo.mAudio, true);
|
|
}
|
|
|
|
chained = true;
|
|
tags = newOpusState->GetTags();
|
|
}
|
|
|
|
if ((newFlacState &&
|
|
ReadHeaders(TrackInfo::kAudioTrack, newFlacState)) &&
|
|
(mFlacState->GetInfo()->GetAsAudioInfo()->mRate ==
|
|
newFlacState->GetInfo()->GetAsAudioInfo()->mRate) &&
|
|
(mFlacState->GetInfo()->GetAsAudioInfo()->mChannels ==
|
|
newFlacState->GetInfo()->GetAsAudioInfo()->mChannels)) {
|
|
|
|
SetupTarget(&mFlacState, newFlacState);
|
|
OGG_DEBUG("New flac ogg link, serial=%d\n", mFlacState->mSerial);
|
|
|
|
if (msgInfo) {
|
|
InitTrack(msgInfo, &mInfo.mAudio, true);
|
|
}
|
|
|
|
chained = true;
|
|
tags = newFlacState->GetTags();
|
|
}
|
|
|
|
if (chained) {
|
|
SetChained();
|
|
mInfo.mMediaSeekable = false;
|
|
mDecodedAudioDuration += aLastEndTime;
|
|
if (mTimedMetadataEvent) {
|
|
mTimedMetadataEvent->Notify(
|
|
TimedMetadata(mDecodedAudioDuration,
|
|
Move(tags),
|
|
nsAutoPtr<MediaInfo>(new MediaInfo(mInfo))));
|
|
}
|
|
// Setup a new TrackInfo so that the MediaFormatReader will flush the
|
|
// current decoder.
|
|
mSharedAudioTrackInfo = new TrackInfoSharedPtr(mInfo.mAudio, ++sStreamSourceID);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
OggDemuxer::OggStateContext&
|
|
OggDemuxer::OggState(TrackInfo::TrackType aType)
|
|
{
|
|
if (aType == TrackInfo::kVideoTrack) {
|
|
return mVideoOggState;
|
|
}
|
|
return mAudioOggState;
|
|
}
|
|
|
|
ogg_sync_state*
|
|
OggDemuxer::OggSyncState(TrackInfo::TrackType aType)
|
|
{
|
|
return &OggState(aType).mOggState.mState;
|
|
}
|
|
|
|
MediaResourceIndex*
|
|
OggDemuxer::Resource(TrackInfo::TrackType aType)
|
|
{
|
|
return &OggState(aType).mResource;
|
|
}
|
|
|
|
MediaResourceIndex*
|
|
OggDemuxer::CommonResource()
|
|
{
|
|
return &mAudioOggState.mResource;
|
|
}
|
|
|
|
bool
|
|
OggDemuxer::ReadOggPage(TrackInfo::TrackType aType, ogg_page* aPage)
|
|
{
|
|
int ret = 0;
|
|
while((ret = ogg_sync_pageseek(OggSyncState(aType), aPage)) <= 0) {
|
|
if (ret < 0) {
|
|
// Lost page sync, have to skip up to next page.
|
|
continue;
|
|
}
|
|
// Returns a buffer that can be written too
|
|
// with the given size. This buffer is stored
|
|
// in the ogg synchronisation structure.
|
|
char* buffer = ogg_sync_buffer(OggSyncState(aType), 4096);
|
|
MOZ_ASSERT(buffer, "ogg_sync_buffer failed");
|
|
|
|
// Read from the resource into the buffer
|
|
uint32_t bytesRead = 0;
|
|
|
|
nsresult rv = Resource(aType)->Read(buffer, 4096, &bytesRead);
|
|
if (NS_FAILED(rv) || !bytesRead) {
|
|
// End of file or error.
|
|
return false;
|
|
}
|
|
|
|
// Update the synchronisation layer with the number
|
|
// of bytes written to the buffer
|
|
ret = ogg_sync_wrote(OggSyncState(aType), bytesRead);
|
|
NS_ENSURE_TRUE(ret == 0, false);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
nsresult
|
|
OggDemuxer::DemuxOggPage(TrackInfo::TrackType aType, ogg_page* aPage)
|
|
{
|
|
int serial = ogg_page_serialno(aPage);
|
|
OggCodecState* codecState = mCodecStore.Get(serial);
|
|
if (codecState == nullptr) {
|
|
OGG_DEBUG("encountered packet for unrecognized codecState");
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
if (GetCodecStateType(codecState) != aType &&
|
|
codecState->GetType() != OggCodecState::TYPE_SKELETON) {
|
|
// Not a page we're interested in.
|
|
return NS_OK;
|
|
}
|
|
if (NS_FAILED(codecState->PageIn(aPage))) {
|
|
OGG_DEBUG("codecState->PageIn failed");
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
bool
|
|
OggDemuxer::IsSeekable() const
|
|
{
|
|
if (mIsChained) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
UniquePtr<EncryptionInfo>
|
|
OggDemuxer::GetCrypto()
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
ogg_packet*
|
|
OggDemuxer::GetNextPacket(TrackInfo::TrackType aType)
|
|
{
|
|
OggCodecState* state = GetTrackCodecState(aType);
|
|
ogg_packet* packet = nullptr;
|
|
OggStateContext& context = OggState(aType);
|
|
|
|
while (true) {
|
|
if (packet) {
|
|
Unused << state->PacketOut();
|
|
}
|
|
DemuxUntilPacketAvailable(aType, state);
|
|
|
|
packet = state->PacketPeek();
|
|
if (!packet) {
|
|
break;
|
|
}
|
|
if (state->IsHeader(packet)) {
|
|
continue;
|
|
}
|
|
if (context.mNeedKeyframe && !state->IsKeyframe(packet)) {
|
|
continue;
|
|
}
|
|
context.mNeedKeyframe = false;
|
|
break;
|
|
}
|
|
|
|
return packet;
|
|
}
|
|
|
|
void
|
|
OggDemuxer::DemuxUntilPacketAvailable(TrackInfo::TrackType aType,
|
|
OggCodecState* aState)
|
|
{
|
|
while (!aState->IsPacketReady()) {
|
|
OGG_DEBUG("no packet yet, reading some more");
|
|
ogg_page page;
|
|
if (!ReadOggPage(aType, &page)) {
|
|
OGG_DEBUG("no more pages to read in resource?");
|
|
return;
|
|
}
|
|
DemuxOggPage(aType, &page);
|
|
}
|
|
}
|
|
|
|
TimeIntervals
|
|
OggDemuxer::GetBuffered(TrackInfo::TrackType aType)
|
|
{
|
|
if (!HaveStartTime(aType)) {
|
|
return TimeIntervals();
|
|
}
|
|
if (mIsChained) {
|
|
return TimeIntervals::Invalid();
|
|
}
|
|
TimeIntervals buffered;
|
|
// HasAudio and HasVideo are not used here as they take a lock and cause
|
|
// a deadlock. Accessing mInfo doesn't require a lock - it doesn't change
|
|
// after metadata is read.
|
|
if (!mInfo.HasValidMedia()) {
|
|
// No need to search through the file if there are no audio or video tracks
|
|
return buffered;
|
|
}
|
|
|
|
AutoPinned<MediaResource> resource(Resource(aType)->GetResource());
|
|
MediaByteRangeSet ranges;
|
|
nsresult res = resource->GetCachedRanges(ranges);
|
|
NS_ENSURE_SUCCESS(res, TimeIntervals::Invalid());
|
|
|
|
// Traverse across the buffered byte ranges, determining the time ranges
|
|
// they contain. MediaResource::GetNextCachedData(offset) returns -1 when
|
|
// offset is after the end of the media resource, or there's no more cached
|
|
// data after the offset. This loop will run until we've checked every
|
|
// buffered range in the media, in increasing order of offset.
|
|
nsAutoOggSyncState sync;
|
|
for (uint32_t index = 0; index < ranges.Length(); index++) {
|
|
// Ensure the offsets are after the header pages.
|
|
int64_t startOffset = ranges[index].mStart;
|
|
int64_t endOffset = ranges[index].mEnd;
|
|
|
|
// Because the granulepos time is actually the end time of the page,
|
|
// we special-case (startOffset == 0) so that the first
|
|
// buffered range always appears to be buffered from the media start
|
|
// time, rather than from the end-time of the first page.
|
|
int64_t startTime = (startOffset == 0) ? StartTime() : -1;
|
|
|
|
// Find the start time of the range. Read pages until we find one with a
|
|
// granulepos which we can convert into a timestamp to use as the time of
|
|
// the start of the buffered range.
|
|
ogg_sync_reset(&sync.mState);
|
|
while (startTime == -1) {
|
|
ogg_page page;
|
|
int32_t discard;
|
|
PageSyncResult pageSyncResult = PageSync(Resource(aType),
|
|
&sync.mState,
|
|
true,
|
|
startOffset,
|
|
endOffset,
|
|
&page,
|
|
discard);
|
|
if (pageSyncResult == PAGE_SYNC_ERROR) {
|
|
return TimeIntervals::Invalid();
|
|
} else if (pageSyncResult == PAGE_SYNC_END_OF_RANGE) {
|
|
// Hit the end of range without reading a page, give up trying to
|
|
// find a start time for this buffered range, skip onto the next one.
|
|
break;
|
|
}
|
|
|
|
int64_t granulepos = ogg_page_granulepos(&page);
|
|
if (granulepos == -1) {
|
|
// Page doesn't have an end time, advance to the next page
|
|
// until we find one.
|
|
startOffset += page.header_len + page.body_len;
|
|
continue;
|
|
}
|
|
|
|
uint32_t serial = ogg_page_serialno(&page);
|
|
if (aType == TrackInfo::kAudioTrack && mVorbisState &&
|
|
serial == mVorbisState->mSerial) {
|
|
startTime = mVorbisState->Time(granulepos);
|
|
MOZ_ASSERT(startTime > 0, "Must have positive start time");
|
|
} else if (aType == TrackInfo::kAudioTrack && mOpusState &&
|
|
serial == mOpusState->mSerial) {
|
|
startTime = mOpusState->Time(granulepos);
|
|
MOZ_ASSERT(startTime > 0, "Must have positive start time");
|
|
} else if (aType == TrackInfo::kAudioTrack && mFlacState &&
|
|
serial == mFlacState->mSerial) {
|
|
startTime = mFlacState->Time(granulepos);
|
|
MOZ_ASSERT(startTime > 0, "Must have positive start time");
|
|
} else if (aType == TrackInfo::kVideoTrack && mTheoraState &&
|
|
serial == mTheoraState->mSerial) {
|
|
startTime = mTheoraState->Time(granulepos);
|
|
MOZ_ASSERT(startTime > 0, "Must have positive start time");
|
|
} else if (mCodecStore.Contains(serial)) {
|
|
// Stream is not the theora or vorbis stream we're playing,
|
|
// but is one that we have header data for.
|
|
startOffset += page.header_len + page.body_len;
|
|
continue;
|
|
} else {
|
|
// Page is for a stream we don't know about (possibly a chained
|
|
// ogg), return OK to abort the finding any further ranges. This
|
|
// prevents us searching through the rest of the media when we
|
|
// may not be able to extract timestamps from it.
|
|
SetChained();
|
|
return buffered;
|
|
}
|
|
}
|
|
|
|
if (startTime != -1) {
|
|
// We were able to find a start time for that range, see if we can
|
|
// find an end time.
|
|
int64_t endTime = RangeEndTime(aType, startOffset, endOffset, true);
|
|
if (endTime > startTime) {
|
|
buffered += TimeInterval(
|
|
TimeUnit::FromMicroseconds(startTime - StartTime()),
|
|
TimeUnit::FromMicroseconds(endTime - StartTime()));
|
|
}
|
|
}
|
|
}
|
|
|
|
return buffered;
|
|
}
|
|
|
|
void
|
|
OggDemuxer::FindStartTime(int64_t& aOutStartTime)
|
|
{
|
|
// Extract the start times of the bitstreams in order to calculate
|
|
// the duration.
|
|
int64_t videoStartTime = INT64_MAX;
|
|
int64_t audioStartTime = INT64_MAX;
|
|
|
|
if (HasVideo()) {
|
|
FindStartTime(TrackInfo::kVideoTrack, videoStartTime);
|
|
if (videoStartTime != INT64_MAX) {
|
|
OGG_DEBUG("OggDemuxer::FindStartTime() video=%" PRId64, videoStartTime);
|
|
mVideoOggState.mStartTime =
|
|
Some(TimeUnit::FromMicroseconds(videoStartTime));
|
|
}
|
|
}
|
|
if (HasAudio()) {
|
|
FindStartTime(TrackInfo::kAudioTrack, audioStartTime);
|
|
if (audioStartTime != INT64_MAX) {
|
|
OGG_DEBUG("OggDemuxer::FindStartTime() audio=%" PRId64, audioStartTime);
|
|
mAudioOggState.mStartTime =
|
|
Some(TimeUnit::FromMicroseconds(audioStartTime));
|
|
}
|
|
}
|
|
|
|
int64_t startTime = std::min(videoStartTime, audioStartTime);
|
|
if (startTime != INT64_MAX) {
|
|
aOutStartTime = startTime;
|
|
}
|
|
}
|
|
|
|
void
|
|
OggDemuxer::FindStartTime(TrackInfo::TrackType aType, int64_t& aOutStartTime)
|
|
{
|
|
int64_t startTime = INT64_MAX;
|
|
|
|
OggCodecState* state = GetTrackCodecState(aType);
|
|
ogg_packet* pkt = GetNextPacket(aType);
|
|
if (pkt) {
|
|
startTime = state->PacketStartTime(pkt);
|
|
}
|
|
|
|
if (startTime != INT64_MAX) {
|
|
aOutStartTime = startTime;
|
|
}
|
|
}
|
|
|
|
nsresult
|
|
OggDemuxer::SeekInternal(TrackInfo::TrackType aType, const TimeUnit& aTarget)
|
|
{
|
|
int64_t target = aTarget.ToMicroseconds();
|
|
OGG_DEBUG("About to seek to %" PRId64, target);
|
|
nsresult res;
|
|
int64_t adjustedTarget = target;
|
|
int64_t startTime = StartTime(aType);
|
|
int64_t endTime = mInfo.mMetadataDuration->ToMicroseconds() + startTime;
|
|
if (aType == TrackInfo::kAudioTrack && mOpusState){
|
|
adjustedTarget = std::max(startTime, target - OGG_SEEK_OPUS_PREROLL);
|
|
}
|
|
|
|
if (!HaveStartTime(aType) || adjustedTarget == startTime) {
|
|
// We've seeked to the media start or we can't seek.
|
|
// Just seek to the offset of the first content page.
|
|
res = Resource(aType)->Seek(nsISeekableStream::NS_SEEK_SET, 0);
|
|
NS_ENSURE_SUCCESS(res,res);
|
|
|
|
res = Reset(aType);
|
|
NS_ENSURE_SUCCESS(res,res);
|
|
} else {
|
|
// TODO: This may seek back unnecessarily far in the video, but we don't
|
|
// have a way of asking Skeleton to seek to a different target for each
|
|
// stream yet. Using adjustedTarget here is at least correct, if slow.
|
|
IndexedSeekResult sres = SeekToKeyframeUsingIndex(aType, adjustedTarget);
|
|
NS_ENSURE_TRUE(sres != SEEK_FATAL_ERROR, NS_ERROR_FAILURE);
|
|
if (sres == SEEK_INDEX_FAIL) {
|
|
// No index or other non-fatal index-related failure. Try to seek
|
|
// using a bisection search. Determine the already downloaded data
|
|
// in the media cache, so we can try to seek in the cached data first.
|
|
AutoTArray<SeekRange, 16> ranges;
|
|
res = GetSeekRanges(aType, ranges);
|
|
NS_ENSURE_SUCCESS(res,res);
|
|
|
|
// Figure out if the seek target lies in a buffered range.
|
|
SeekRange r = SelectSeekRange(aType, ranges, target, startTime, endTime, true);
|
|
|
|
if (!r.IsNull()) {
|
|
// We know the buffered range in which the seek target lies, do a
|
|
// bisection search in that buffered range.
|
|
res = SeekInBufferedRange(aType, target, adjustedTarget, startTime, endTime, ranges, r);
|
|
NS_ENSURE_SUCCESS(res,res);
|
|
} else {
|
|
// The target doesn't lie in a buffered range. Perform a bisection
|
|
// search over the whole media, using the known buffered ranges to
|
|
// reduce the search space.
|
|
res = SeekInUnbuffered(aType, target, startTime, endTime, ranges);
|
|
NS_ENSURE_SUCCESS(res,res);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Demux forwards until we find the first keyframe prior the target.
|
|
// there may be non-keyframes in the page before the keyframe.
|
|
// Additionally, we may have seeked to the first page referenced by the
|
|
// page index which may be quite far off the target.
|
|
// When doing fastSeek we display the first frame after the seek, so
|
|
// we need to advance the decode to the keyframe otherwise we'll get
|
|
// visual artifacts in the first frame output after the seek.
|
|
OggCodecState* state = GetTrackCodecState(aType);
|
|
OggPacketQueue tempPackets;
|
|
bool foundKeyframe = false;
|
|
while (true) {
|
|
DemuxUntilPacketAvailable(aType, state);
|
|
ogg_packet* packet = state->PacketPeek();
|
|
if (packet == nullptr) {
|
|
OGG_DEBUG("End of stream reached before keyframe found in indexed seek");
|
|
break;
|
|
}
|
|
int64_t startTstamp = state->PacketStartTime(packet);
|
|
if (foundKeyframe && startTstamp > adjustedTarget) {
|
|
break;
|
|
}
|
|
if (state->IsKeyframe(packet)) {
|
|
OGG_DEBUG("keyframe found after seeking at %" PRId64, startTstamp);
|
|
tempPackets.Erase();
|
|
foundKeyframe = true;
|
|
}
|
|
if (foundKeyframe && startTstamp == adjustedTarget) {
|
|
break;
|
|
}
|
|
if (foundKeyframe) {
|
|
tempPackets.Append(state->PacketOut());
|
|
} else {
|
|
// Discard video packets before the first keyframe.
|
|
Unused << state->PacketOut();
|
|
}
|
|
}
|
|
// Re-add all packet into the codec state in order.
|
|
state->PushFront(Move(tempPackets));
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
OggDemuxer::IndexedSeekResult
|
|
OggDemuxer::RollbackIndexedSeek(TrackInfo::TrackType aType, int64_t aOffset)
|
|
{
|
|
if (mSkeletonState) {
|
|
mSkeletonState->Deactivate();
|
|
}
|
|
nsresult res = Resource(aType)->Seek(nsISeekableStream::NS_SEEK_SET, aOffset);
|
|
NS_ENSURE_SUCCESS(res, SEEK_FATAL_ERROR);
|
|
return SEEK_INDEX_FAIL;
|
|
}
|
|
|
|
OggDemuxer::IndexedSeekResult
|
|
OggDemuxer::SeekToKeyframeUsingIndex(TrackInfo::TrackType aType, int64_t aTarget)
|
|
{
|
|
if (!HasSkeleton() || !mSkeletonState->HasIndex()) {
|
|
return SEEK_INDEX_FAIL;
|
|
}
|
|
// We have an index from the Skeleton track, try to use it to seek.
|
|
AutoTArray<uint32_t, 2> tracks;
|
|
BuildSerialList(tracks);
|
|
SkeletonState::nsSeekTarget keyframe;
|
|
if (NS_FAILED(mSkeletonState->IndexedSeekTarget(aTarget,
|
|
tracks,
|
|
keyframe))) {
|
|
// Could not locate a keypoint for the target in the index.
|
|
return SEEK_INDEX_FAIL;
|
|
}
|
|
|
|
// Remember original resource read cursor position so we can rollback on failure.
|
|
int64_t tell = Resource(aType)->Tell();
|
|
|
|
// Seek to the keypoint returned by the index.
|
|
if (keyframe.mKeyPoint.mOffset > Resource(aType)->GetLength() ||
|
|
keyframe.mKeyPoint.mOffset < 0) {
|
|
// Index must be invalid.
|
|
return RollbackIndexedSeek(aType, tell);
|
|
}
|
|
OGG_DEBUG("Seeking using index to keyframe at offset %" PRId64 "\n",
|
|
keyframe.mKeyPoint.mOffset);
|
|
nsresult res = Resource(aType)->Seek(nsISeekableStream::NS_SEEK_SET,
|
|
keyframe.mKeyPoint.mOffset);
|
|
NS_ENSURE_SUCCESS(res, SEEK_FATAL_ERROR);
|
|
|
|
// We've moved the read set, so reset decode.
|
|
res = Reset(aType);
|
|
NS_ENSURE_SUCCESS(res, SEEK_FATAL_ERROR);
|
|
|
|
// Check that the page the index thinks is exactly here is actually exactly
|
|
// here. If not, the index is invalid.
|
|
ogg_page page;
|
|
int skippedBytes = 0;
|
|
PageSyncResult syncres = PageSync(Resource(aType),
|
|
OggSyncState(aType),
|
|
false,
|
|
keyframe.mKeyPoint.mOffset,
|
|
Resource(aType)->GetLength(),
|
|
&page,
|
|
skippedBytes);
|
|
NS_ENSURE_TRUE(syncres != PAGE_SYNC_ERROR, SEEK_FATAL_ERROR);
|
|
if (syncres != PAGE_SYNC_OK || skippedBytes != 0) {
|
|
OGG_DEBUG("Indexed-seek failure: Ogg Skeleton Index is invalid "
|
|
"or sync error after seek");
|
|
return RollbackIndexedSeek(aType, tell);
|
|
}
|
|
uint32_t serial = ogg_page_serialno(&page);
|
|
if (serial != keyframe.mSerial) {
|
|
// Serialno of page at offset isn't what the index told us to expect.
|
|
// Assume the index is invalid.
|
|
return RollbackIndexedSeek(aType, tell);
|
|
}
|
|
OggCodecState* codecState = mCodecStore.Get(serial);
|
|
if (codecState && codecState->mActive &&
|
|
ogg_stream_pagein(&codecState->mState, &page) != 0) {
|
|
// Couldn't insert page into the ogg resource, or somehow the resource
|
|
// is no longer active.
|
|
return RollbackIndexedSeek(aType, tell);
|
|
}
|
|
return SEEK_OK;
|
|
}
|
|
|
|
// Reads a page from the media resource.
|
|
OggDemuxer::PageSyncResult
|
|
OggDemuxer::PageSync(MediaResourceIndex* aResource,
|
|
ogg_sync_state* aState,
|
|
bool aCachedDataOnly,
|
|
int64_t aOffset,
|
|
int64_t aEndOffset,
|
|
ogg_page* aPage,
|
|
int& aSkippedBytes)
|
|
{
|
|
aSkippedBytes = 0;
|
|
// Sync to the next page.
|
|
int ret = 0;
|
|
uint32_t bytesRead = 0;
|
|
int64_t readHead = aOffset;
|
|
while (ret <= 0) {
|
|
ret = ogg_sync_pageseek(aState, aPage);
|
|
if (ret == 0) {
|
|
char* buffer = ogg_sync_buffer(aState, PAGE_STEP);
|
|
MOZ_ASSERT(buffer, "Must have a buffer");
|
|
|
|
// Read from the file into the buffer
|
|
int64_t bytesToRead = std::min(static_cast<int64_t>(PAGE_STEP),
|
|
aEndOffset - readHead);
|
|
MOZ_ASSERT(bytesToRead <= UINT32_MAX, "bytesToRead range check");
|
|
if (bytesToRead <= 0) {
|
|
return PAGE_SYNC_END_OF_RANGE;
|
|
}
|
|
nsresult rv = NS_OK;
|
|
if (aCachedDataOnly) {
|
|
rv = aResource->GetResource()->ReadFromCache(buffer, readHead,
|
|
static_cast<uint32_t>(bytesToRead));
|
|
NS_ENSURE_SUCCESS(rv,PAGE_SYNC_ERROR);
|
|
bytesRead = static_cast<uint32_t>(bytesToRead);
|
|
} else {
|
|
rv = aResource->Seek(nsISeekableStream::NS_SEEK_SET, readHead);
|
|
NS_ENSURE_SUCCESS(rv,PAGE_SYNC_ERROR);
|
|
rv = aResource->Read(buffer,
|
|
static_cast<uint32_t>(bytesToRead),
|
|
&bytesRead);
|
|
NS_ENSURE_SUCCESS(rv,PAGE_SYNC_ERROR);
|
|
}
|
|
if (bytesRead == 0 && NS_SUCCEEDED(rv)) {
|
|
// End of file.
|
|
return PAGE_SYNC_END_OF_RANGE;
|
|
}
|
|
readHead += bytesRead;
|
|
|
|
// Update the synchronisation layer with the number
|
|
// of bytes written to the buffer
|
|
ret = ogg_sync_wrote(aState, bytesRead);
|
|
NS_ENSURE_TRUE(ret == 0, PAGE_SYNC_ERROR);
|
|
continue;
|
|
}
|
|
|
|
if (ret < 0) {
|
|
MOZ_ASSERT(aSkippedBytes >= 0, "Offset >= 0");
|
|
aSkippedBytes += -ret;
|
|
MOZ_ASSERT(aSkippedBytes >= 0, "Offset >= 0");
|
|
continue;
|
|
}
|
|
}
|
|
|
|
return PAGE_SYNC_OK;
|
|
}
|
|
|
|
//OggTrackDemuxer
|
|
OggTrackDemuxer::OggTrackDemuxer(OggDemuxer* aParent,
|
|
TrackInfo::TrackType aType,
|
|
uint32_t aTrackNumber)
|
|
: mParent(aParent)
|
|
, mType(aType)
|
|
{
|
|
mInfo = mParent->GetTrackInfo(aType, aTrackNumber);
|
|
MOZ_ASSERT(mInfo);
|
|
}
|
|
|
|
OggTrackDemuxer::~OggTrackDemuxer()
|
|
{
|
|
}
|
|
|
|
UniquePtr<TrackInfo>
|
|
OggTrackDemuxer::GetInfo() const
|
|
{
|
|
return mInfo->Clone();
|
|
}
|
|
|
|
RefPtr<OggTrackDemuxer::SeekPromise>
|
|
OggTrackDemuxer::Seek(const TimeUnit& aTime)
|
|
{
|
|
// Seeks to aTime. Upon success, SeekPromise will be resolved with the
|
|
// actual time seeked to. Typically the random access point time
|
|
mQueuedSample = nullptr;
|
|
TimeUnit seekTime = aTime;
|
|
if (mParent->SeekInternal(mType, aTime) == NS_OK) {
|
|
RefPtr<MediaRawData> sample(NextSample());
|
|
|
|
// Check what time we actually seeked to.
|
|
if (sample != nullptr) {
|
|
seekTime = sample->mTime;
|
|
OGG_DEBUG("%p seeked to time %" PRId64, this, seekTime.ToMicroseconds());
|
|
}
|
|
mQueuedSample = sample;
|
|
|
|
return SeekPromise::CreateAndResolve(seekTime, __func__);
|
|
} else {
|
|
return SeekPromise::CreateAndReject(NS_ERROR_DOM_MEDIA_DEMUXER_ERR, __func__);
|
|
}
|
|
}
|
|
|
|
RefPtr<MediaRawData>
|
|
OggTrackDemuxer::NextSample()
|
|
{
|
|
if (mQueuedSample) {
|
|
RefPtr<MediaRawData> nextSample = mQueuedSample;
|
|
mQueuedSample = nullptr;
|
|
if (mType == TrackInfo::kAudioTrack) {
|
|
nextSample->mTrackInfo = mParent->mSharedAudioTrackInfo;
|
|
}
|
|
return nextSample;
|
|
}
|
|
ogg_packet* packet = mParent->GetNextPacket(mType);
|
|
if (!packet) {
|
|
return nullptr;
|
|
}
|
|
// Check the eos state in case we need to look for chained streams.
|
|
bool eos = packet->e_o_s;
|
|
OggCodecState* state = mParent->GetTrackCodecState(mType);
|
|
RefPtr<MediaRawData> data = state->PacketOutAsMediaRawData();
|
|
if (!data) {
|
|
return nullptr;
|
|
}
|
|
if (mType == TrackInfo::kAudioTrack) {
|
|
data->mTrackInfo = mParent->mSharedAudioTrackInfo;
|
|
}
|
|
// mDecodedAudioDuration gets adjusted during ReadOggChain().
|
|
TimeUnit totalDuration = mParent->mDecodedAudioDuration;
|
|
if (eos) {
|
|
// We've encountered an end of bitstream packet; check for a chained
|
|
// bitstream following this one.
|
|
// This will also update mSharedAudioTrackInfo.
|
|
mParent->ReadOggChain(data->GetEndTime());
|
|
}
|
|
data->mOffset = mParent->Resource(mType)->Tell();
|
|
// We adjust the start time of the sample to account for the potential ogg chaining.
|
|
data->mTime += totalDuration;
|
|
return data;
|
|
}
|
|
|
|
RefPtr<OggTrackDemuxer::SamplesPromise>
|
|
OggTrackDemuxer::GetSamples(int32_t aNumSamples)
|
|
{
|
|
RefPtr<SamplesHolder> samples = new SamplesHolder;
|
|
if (!aNumSamples) {
|
|
return SamplesPromise::CreateAndReject(NS_ERROR_DOM_MEDIA_DEMUXER_ERR, __func__);
|
|
}
|
|
|
|
while (aNumSamples) {
|
|
RefPtr<MediaRawData> sample(NextSample());
|
|
if (!sample) {
|
|
break;
|
|
}
|
|
samples->mSamples.AppendElement(sample);
|
|
aNumSamples--;
|
|
}
|
|
|
|
if (samples->mSamples.IsEmpty()) {
|
|
return SamplesPromise::CreateAndReject(NS_ERROR_DOM_MEDIA_END_OF_STREAM, __func__);
|
|
} else {
|
|
return SamplesPromise::CreateAndResolve(samples, __func__);
|
|
}
|
|
}
|
|
|
|
void
|
|
OggTrackDemuxer::Reset()
|
|
{
|
|
mParent->Reset(mType);
|
|
mQueuedSample = nullptr;
|
|
}
|
|
|
|
RefPtr<OggTrackDemuxer::SkipAccessPointPromise>
|
|
OggTrackDemuxer::SkipToNextRandomAccessPoint(const TimeUnit& aTimeThreshold)
|
|
{
|
|
uint32_t parsed = 0;
|
|
bool found = false;
|
|
RefPtr<MediaRawData> sample;
|
|
|
|
OGG_DEBUG("TimeThreshold: %f", aTimeThreshold.ToSeconds());
|
|
while (!found && (sample = NextSample())) {
|
|
parsed++;
|
|
if (sample->mKeyframe && sample->mTime >= aTimeThreshold) {
|
|
found = true;
|
|
mQueuedSample = sample;
|
|
}
|
|
}
|
|
if (found) {
|
|
OGG_DEBUG("next sample: %f (parsed: %d)",
|
|
sample->mTime.ToSeconds(), parsed);
|
|
return SkipAccessPointPromise::CreateAndResolve(parsed, __func__);
|
|
} else {
|
|
SkipFailureHolder failure(NS_ERROR_DOM_MEDIA_END_OF_STREAM, parsed);
|
|
return SkipAccessPointPromise::CreateAndReject(Move(failure), __func__);
|
|
}
|
|
}
|
|
|
|
TimeIntervals
|
|
OggTrackDemuxer::GetBuffered()
|
|
{
|
|
return mParent->GetBuffered(mType);
|
|
}
|
|
|
|
void
|
|
OggTrackDemuxer::BreakCycles()
|
|
{
|
|
mParent = nullptr;
|
|
}
|
|
|
|
|
|
// Returns an ogg page's checksum.
|
|
ogg_uint32_t
|
|
OggDemuxer::GetPageChecksum(ogg_page* page)
|
|
{
|
|
if (page == 0 || page->header == 0 || page->header_len < 25) {
|
|
return 0;
|
|
}
|
|
const unsigned char* p = page->header + 22;
|
|
uint32_t c = p[0] + (p[1] << 8) + (p[2] << 16) + (p[3] << 24);
|
|
return c;
|
|
}
|
|
|
|
int64_t
|
|
OggDemuxer::RangeStartTime(TrackInfo::TrackType aType, int64_t aOffset)
|
|
{
|
|
int64_t position = Resource(aType)->Tell();
|
|
nsresult res = Resource(aType)->Seek(nsISeekableStream::NS_SEEK_SET, aOffset);
|
|
NS_ENSURE_SUCCESS(res, 0);
|
|
int64_t startTime = 0;
|
|
FindStartTime(aType, startTime);
|
|
res = Resource(aType)->Seek(nsISeekableStream::NS_SEEK_SET, position);
|
|
NS_ENSURE_SUCCESS(res, -1);
|
|
return startTime;
|
|
}
|
|
|
|
struct nsDemuxerAutoOggSyncState
|
|
{
|
|
nsDemuxerAutoOggSyncState()
|
|
{
|
|
ogg_sync_init(&mState);
|
|
}
|
|
~nsDemuxerAutoOggSyncState()
|
|
{
|
|
ogg_sync_clear(&mState);
|
|
}
|
|
ogg_sync_state mState;
|
|
};
|
|
|
|
int64_t
|
|
OggDemuxer::RangeEndTime(TrackInfo::TrackType aType, int64_t aEndOffset)
|
|
{
|
|
int64_t position = Resource(aType)->Tell();
|
|
int64_t endTime = RangeEndTime(aType, 0, aEndOffset, false);
|
|
nsresult res = Resource(aType)->Seek(nsISeekableStream::NS_SEEK_SET, position);
|
|
NS_ENSURE_SUCCESS(res, -1);
|
|
return endTime;
|
|
}
|
|
|
|
int64_t
|
|
OggDemuxer::RangeEndTime(TrackInfo::TrackType aType,
|
|
int64_t aStartOffset,
|
|
int64_t aEndOffset,
|
|
bool aCachedDataOnly)
|
|
{
|
|
nsDemuxerAutoOggSyncState sync;
|
|
|
|
// We need to find the last page which ends before aEndOffset that
|
|
// has a granulepos that we can convert to a timestamp. We do this by
|
|
// backing off from aEndOffset until we encounter a page on which we can
|
|
// interpret the granulepos. If while backing off we encounter a page which
|
|
// we've previously encountered before, we'll either backoff again if we
|
|
// haven't found an end time yet, or return the last end time found.
|
|
const int step = 5000;
|
|
const int maxOggPageSize = 65306;
|
|
int64_t readStartOffset = aEndOffset;
|
|
int64_t readLimitOffset = aEndOffset;
|
|
int64_t readHead = aEndOffset;
|
|
int64_t endTime = -1;
|
|
uint32_t checksumAfterSeek = 0;
|
|
uint32_t prevChecksumAfterSeek = 0;
|
|
bool mustBackOff = false;
|
|
while (true) {
|
|
ogg_page page;
|
|
int ret = ogg_sync_pageseek(&sync.mState, &page);
|
|
if (ret == 0) {
|
|
// We need more data if we've not encountered a page we've seen before,
|
|
// or we've read to the end of file.
|
|
if (mustBackOff || readHead == aEndOffset || readHead == aStartOffset) {
|
|
if (endTime != -1 || readStartOffset == 0) {
|
|
// We have encountered a page before, or we're at the end of file.
|
|
break;
|
|
}
|
|
mustBackOff = false;
|
|
prevChecksumAfterSeek = checksumAfterSeek;
|
|
checksumAfterSeek = 0;
|
|
ogg_sync_reset(&sync.mState);
|
|
readStartOffset = std::max(static_cast<int64_t>(0), readStartOffset - step);
|
|
// There's no point reading more than the maximum size of
|
|
// an Ogg page into data we've previously scanned. Any data
|
|
// between readLimitOffset and aEndOffset must be garbage
|
|
// and we can ignore it thereafter.
|
|
readLimitOffset = std::min(readLimitOffset,
|
|
readStartOffset + maxOggPageSize);
|
|
readHead = std::max(aStartOffset, readStartOffset);
|
|
}
|
|
|
|
int64_t limit = std::min(static_cast<int64_t>(UINT32_MAX),
|
|
aEndOffset - readHead);
|
|
limit = std::max(static_cast<int64_t>(0), limit);
|
|
limit = std::min(limit, static_cast<int64_t>(step));
|
|
uint32_t bytesToRead = static_cast<uint32_t>(limit);
|
|
uint32_t bytesRead = 0;
|
|
char* buffer = ogg_sync_buffer(&sync.mState, bytesToRead);
|
|
MOZ_ASSERT(buffer, "Must have buffer");
|
|
nsresult res;
|
|
if (aCachedDataOnly) {
|
|
res = Resource(aType)->GetResource()->ReadFromCache(buffer, readHead, bytesToRead);
|
|
NS_ENSURE_SUCCESS(res, -1);
|
|
bytesRead = bytesToRead;
|
|
} else {
|
|
MOZ_ASSERT(readHead < aEndOffset,
|
|
"resource pos must be before range end");
|
|
res = Resource(aType)->Seek(nsISeekableStream::NS_SEEK_SET, readHead);
|
|
NS_ENSURE_SUCCESS(res, -1);
|
|
res = Resource(aType)->Read(buffer, bytesToRead, &bytesRead);
|
|
NS_ENSURE_SUCCESS(res, -1);
|
|
}
|
|
readHead += bytesRead;
|
|
if (readHead > readLimitOffset) {
|
|
mustBackOff = true;
|
|
}
|
|
|
|
// Update the synchronisation layer with the number
|
|
// of bytes written to the buffer
|
|
ret = ogg_sync_wrote(&sync.mState, bytesRead);
|
|
if (ret != 0) {
|
|
endTime = -1;
|
|
break;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (ret < 0 || ogg_page_granulepos(&page) < 0) {
|
|
continue;
|
|
}
|
|
|
|
uint32_t checksum = GetPageChecksum(&page);
|
|
if (checksumAfterSeek == 0) {
|
|
// This is the first page we've decoded after a backoff/seek. Remember
|
|
// the page checksum. If we backoff further and encounter this page
|
|
// again, we'll know that we won't find a page with an end time after
|
|
// this one, so we'll know to back off again.
|
|
checksumAfterSeek = checksum;
|
|
}
|
|
if (checksum == prevChecksumAfterSeek) {
|
|
// This page has the same checksum as the first page we encountered
|
|
// after the last backoff/seek. Since we've already scanned after this
|
|
// page and failed to find an end time, we may as well backoff again and
|
|
// try to find an end time from an earlier page.
|
|
mustBackOff = true;
|
|
continue;
|
|
}
|
|
|
|
int64_t granulepos = ogg_page_granulepos(&page);
|
|
int serial = ogg_page_serialno(&page);
|
|
|
|
OggCodecState* codecState = nullptr;
|
|
codecState = mCodecStore.Get(serial);
|
|
if (!codecState) {
|
|
// This page is from a bitstream which we haven't encountered yet.
|
|
// It's probably from a new "link" in a "chained" ogg. Don't
|
|
// bother even trying to find a duration...
|
|
SetChained();
|
|
endTime = -1;
|
|
break;
|
|
}
|
|
|
|
int64_t t = codecState->Time(granulepos);
|
|
if (t != -1) {
|
|
endTime = t;
|
|
}
|
|
}
|
|
|
|
return endTime;
|
|
}
|
|
|
|
nsresult
|
|
OggDemuxer::GetSeekRanges(TrackInfo::TrackType aType,
|
|
nsTArray<SeekRange>& aRanges)
|
|
{
|
|
AutoPinned<MediaResource> resource(Resource(aType)->GetResource());
|
|
MediaByteRangeSet cached;
|
|
nsresult res = resource->GetCachedRanges(cached);
|
|
NS_ENSURE_SUCCESS(res, res);
|
|
|
|
for (uint32_t index = 0; index < cached.Length(); index++) {
|
|
auto& range = cached[index];
|
|
int64_t startTime = -1;
|
|
int64_t endTime = -1;
|
|
if (NS_FAILED(Reset(aType))) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
int64_t startOffset = range.mStart;
|
|
int64_t endOffset = range.mEnd;
|
|
startTime = RangeStartTime(aType, startOffset);
|
|
if (startTime != -1 &&
|
|
((endTime = RangeEndTime(aType, endOffset)) != -1)) {
|
|
NS_WARNING_ASSERTION(startTime < endTime,
|
|
"Start time must be before end time");
|
|
aRanges.AppendElement(SeekRange(startOffset,
|
|
endOffset,
|
|
startTime,
|
|
endTime));
|
|
}
|
|
}
|
|
if (NS_FAILED(Reset(aType))) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
OggDemuxer::SeekRange
|
|
OggDemuxer::SelectSeekRange(TrackInfo::TrackType aType,
|
|
const nsTArray<SeekRange>& ranges,
|
|
int64_t aTarget,
|
|
int64_t aStartTime,
|
|
int64_t aEndTime,
|
|
bool aExact)
|
|
{
|
|
int64_t so = 0;
|
|
int64_t eo = Resource(aType)->GetLength();
|
|
int64_t st = aStartTime;
|
|
int64_t et = aEndTime;
|
|
for (uint32_t i = 0; i < ranges.Length(); i++) {
|
|
const SeekRange& r = ranges[i];
|
|
if (r.mTimeStart < aTarget) {
|
|
so = r.mOffsetStart;
|
|
st = r.mTimeStart;
|
|
}
|
|
if (r.mTimeEnd >= aTarget && r.mTimeEnd < et) {
|
|
eo = r.mOffsetEnd;
|
|
et = r.mTimeEnd;
|
|
}
|
|
|
|
if (r.mTimeStart < aTarget && aTarget <= r.mTimeEnd) {
|
|
// Target lies exactly in this range.
|
|
return ranges[i];
|
|
}
|
|
}
|
|
if (aExact || eo == -1) {
|
|
return SeekRange();
|
|
}
|
|
return SeekRange(so, eo, st, et);
|
|
}
|
|
|
|
|
|
nsresult
|
|
OggDemuxer::SeekInBufferedRange(TrackInfo::TrackType aType,
|
|
int64_t aTarget,
|
|
int64_t aAdjustedTarget,
|
|
int64_t aStartTime,
|
|
int64_t aEndTime,
|
|
const nsTArray<SeekRange>& aRanges,
|
|
const SeekRange& aRange)
|
|
{
|
|
OGG_DEBUG("Seeking in buffered data to %" PRId64 " using bisection search", aTarget);
|
|
if (aType == TrackInfo::kVideoTrack || aAdjustedTarget >= aTarget) {
|
|
// We know the exact byte range in which the target must lie. It must
|
|
// be buffered in the media cache. Seek there.
|
|
nsresult res = SeekBisection(aType, aTarget, aRange, 0);
|
|
if (NS_FAILED(res) || aType != TrackInfo::kVideoTrack) {
|
|
return res;
|
|
}
|
|
|
|
// We have an active Theora bitstream. Peek the next Theora frame, and
|
|
// extract its keyframe's time.
|
|
DemuxUntilPacketAvailable(aType, mTheoraState);
|
|
ogg_packet* packet = mTheoraState->PacketPeek();
|
|
if (packet && !mTheoraState->IsKeyframe(packet)) {
|
|
// First post-seek frame isn't a keyframe, seek back to previous keyframe,
|
|
// otherwise we'll get visual artifacts.
|
|
MOZ_ASSERT(packet->granulepos != -1, "Must have a granulepos");
|
|
int shift = mTheoraState->KeyFrameGranuleJobs();
|
|
int64_t keyframeGranulepos = (packet->granulepos >> shift) << shift;
|
|
int64_t keyframeTime = mTheoraState->StartTime(keyframeGranulepos);
|
|
SEEK_LOG(LogLevel::Debug,
|
|
("Keyframe for %lld is at %lld, seeking back to it", frameTime,
|
|
keyframeTime));
|
|
aAdjustedTarget = std::min(aAdjustedTarget, keyframeTime);
|
|
}
|
|
}
|
|
|
|
nsresult res = NS_OK;
|
|
if (aAdjustedTarget < aTarget) {
|
|
SeekRange k = SelectSeekRange(aType,
|
|
aRanges,
|
|
aAdjustedTarget,
|
|
aStartTime,
|
|
aEndTime,
|
|
false);
|
|
res = SeekBisection(aType, aAdjustedTarget, k, OGG_SEEK_FUZZ_USECS);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
nsresult
|
|
OggDemuxer::SeekInUnbuffered(TrackInfo::TrackType aType,
|
|
int64_t aTarget,
|
|
int64_t aStartTime,
|
|
int64_t aEndTime,
|
|
const nsTArray<SeekRange>& aRanges)
|
|
{
|
|
OGG_DEBUG("Seeking in unbuffered data to %" PRId64 " using bisection search", aTarget);
|
|
|
|
// If we've got an active Theora bitstream, determine the maximum possible
|
|
// time in usecs which a keyframe could be before a given interframe. We
|
|
// subtract this from our seek target, seek to the new target, and then
|
|
// will decode forward to the original seek target. We should encounter a
|
|
// keyframe in that interval. This prevents us from needing to run two
|
|
// bisections; one for the seek target frame, and another to find its
|
|
// keyframe. It's usually faster to just download this extra data, rather
|
|
// tham perform two bisections to find the seek target's keyframe. We
|
|
// don't do this offsetting when seeking in a buffered range,
|
|
// as the extra decoding causes a noticeable speed hit when all the data
|
|
// is buffered (compared to just doing a bisection to exactly find the
|
|
// keyframe).
|
|
int64_t keyframeOffsetMs = 0;
|
|
if (aType == TrackInfo::kVideoTrack && mTheoraState) {
|
|
keyframeOffsetMs = mTheoraState->MaxKeyframeOffset();
|
|
}
|
|
// Add in the Opus pre-roll if necessary, as well.
|
|
if (aType == TrackInfo::kAudioTrack && mOpusState) {
|
|
keyframeOffsetMs = std::max(keyframeOffsetMs, OGG_SEEK_OPUS_PREROLL);
|
|
}
|
|
int64_t seekTarget = std::max(aStartTime, aTarget - keyframeOffsetMs);
|
|
// Minimize the bisection search space using the known timestamps from the
|
|
// buffered ranges.
|
|
SeekRange k =
|
|
SelectSeekRange(aType, aRanges, seekTarget, aStartTime, aEndTime, false);
|
|
return SeekBisection(aType, seekTarget, k, OGG_SEEK_FUZZ_USECS);
|
|
}
|
|
|
|
nsresult
|
|
OggDemuxer::SeekBisection(TrackInfo::TrackType aType,
|
|
int64_t aTarget,
|
|
const SeekRange& aRange,
|
|
uint32_t aFuzz)
|
|
{
|
|
nsresult res;
|
|
|
|
if (aTarget <= aRange.mTimeStart) {
|
|
if (NS_FAILED(Reset(aType))) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
res = Resource(aType)->Seek(nsISeekableStream::NS_SEEK_SET, 0);
|
|
NS_ENSURE_SUCCESS(res,res);
|
|
return NS_OK;
|
|
}
|
|
|
|
// Bisection search, find start offset of last page with end time less than
|
|
// the seek target.
|
|
ogg_int64_t startOffset = aRange.mOffsetStart;
|
|
ogg_int64_t startTime = aRange.mTimeStart;
|
|
ogg_int64_t startLength = 0; // Length of the page at startOffset.
|
|
ogg_int64_t endOffset = aRange.mOffsetEnd;
|
|
ogg_int64_t endTime = aRange.mTimeEnd;
|
|
|
|
ogg_int64_t seekTarget = aTarget;
|
|
int64_t seekLowerBound = std::max(static_cast<int64_t>(0), aTarget - aFuzz);
|
|
int hops = 0;
|
|
DebugOnly<ogg_int64_t> previousGuess = -1;
|
|
int backsteps = 0;
|
|
const int maxBackStep = 10;
|
|
MOZ_ASSERT(static_cast<uint64_t>(PAGE_STEP) * pow(2.0, maxBackStep) < INT32_MAX,
|
|
"Backstep calculation must not overflow");
|
|
|
|
// Seek via bisection search. Loop until we find the offset where the page
|
|
// before the offset is before the seek target, and the page after the offset
|
|
// is after the seek target.
|
|
while (true) {
|
|
ogg_int64_t duration = 0;
|
|
double target = 0;
|
|
ogg_int64_t interval = 0;
|
|
ogg_int64_t guess = 0;
|
|
ogg_page page;
|
|
int skippedBytes = 0;
|
|
ogg_int64_t pageOffset = 0;
|
|
ogg_int64_t pageLength = 0;
|
|
ogg_int64_t granuleTime = -1;
|
|
bool mustBackoff = false;
|
|
|
|
// Guess where we should bisect to, based on the bit rate and the time
|
|
// remaining in the interval. Loop until we can determine the time at
|
|
// the guess offset.
|
|
while (true) {
|
|
|
|
// Discard any previously buffered packets/pages.
|
|
if (NS_FAILED(Reset(aType))) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
interval = endOffset - startOffset - startLength;
|
|
if (interval == 0) {
|
|
// Our interval is empty, we've found the optimal seek point, as the
|
|
// page at the start offset is before the seek target, and the page
|
|
// at the end offset is after the seek target.
|
|
SEEK_LOG(LogLevel::Debug, ("Interval narrowed, terminating bisection."));
|
|
break;
|
|
}
|
|
|
|
// Guess bisection point.
|
|
duration = endTime - startTime;
|
|
target = (double)(seekTarget - startTime) / (double)duration;
|
|
guess = startOffset + startLength +
|
|
static_cast<ogg_int64_t>((double)interval * target);
|
|
guess = std::min(guess, endOffset - PAGE_STEP);
|
|
if (mustBackoff) {
|
|
// We previously failed to determine the time at the guess offset,
|
|
// probably because we ran out of data to decode. This usually happens
|
|
// when we guess very close to the end offset. So reduce the guess
|
|
// offset using an exponential backoff until we determine the time.
|
|
SEEK_LOG(LogLevel::Debug, ("Backing off %d bytes, backsteps=%d",
|
|
static_cast<int32_t>(PAGE_STEP * pow(2.0, backsteps)), backsteps));
|
|
guess -= PAGE_STEP * static_cast<ogg_int64_t>(pow(2.0, backsteps));
|
|
|
|
if (guess <= startOffset) {
|
|
// We've tried to backoff to before the start offset of our seek
|
|
// range. This means we couldn't find a seek termination position
|
|
// near the end of the seek range, so just set the seek termination
|
|
// condition, and break out of the bisection loop. We'll begin
|
|
// decoding from the start of the seek range.
|
|
interval = 0;
|
|
break;
|
|
}
|
|
|
|
backsteps = std::min(backsteps + 1, maxBackStep);
|
|
// We reset mustBackoff. If we still need to backoff further, it will
|
|
// be set to true again.
|
|
mustBackoff = false;
|
|
} else {
|
|
backsteps = 0;
|
|
}
|
|
guess = std::max(guess, startOffset + startLength);
|
|
|
|
SEEK_LOG(LogLevel::Debug, ("Seek loop start[o=%lld..%lld t=%lld] "
|
|
"end[o=%lld t=%lld] "
|
|
"interval=%lld target=%lf guess=%lld",
|
|
startOffset, (startOffset+startLength), startTime,
|
|
endOffset, endTime, interval, target, guess));
|
|
|
|
MOZ_ASSERT(guess >= startOffset + startLength, "Guess must be after range start");
|
|
MOZ_ASSERT(guess < endOffset, "Guess must be before range end");
|
|
MOZ_ASSERT(guess != previousGuess, "Guess should be different to previous");
|
|
previousGuess = guess;
|
|
|
|
hops++;
|
|
|
|
// Locate the next page after our seek guess, and then figure out the
|
|
// granule time of the audio and video bitstreams there. We can then
|
|
// make a bisection decision based on our location in the media.
|
|
PageSyncResult pageSyncResult = PageSync(Resource(aType),
|
|
OggSyncState(aType),
|
|
false,
|
|
guess,
|
|
endOffset,
|
|
&page,
|
|
skippedBytes);
|
|
NS_ENSURE_TRUE(pageSyncResult != PAGE_SYNC_ERROR, NS_ERROR_FAILURE);
|
|
|
|
if (pageSyncResult == PAGE_SYNC_END_OF_RANGE) {
|
|
// Our guess was too close to the end, we've ended up reading the end
|
|
// page. Backoff exponentially from the end point, in case the last
|
|
// page/frame/sample is huge.
|
|
mustBackoff = true;
|
|
SEEK_LOG(LogLevel::Debug, ("Hit the end of range, backing off"));
|
|
continue;
|
|
}
|
|
|
|
// We've located a page of length |ret| at |guess + skippedBytes|.
|
|
// Remember where the page is located.
|
|
pageOffset = guess + skippedBytes;
|
|
pageLength = page.header_len + page.body_len;
|
|
|
|
// Read pages until we can determine the granule time of the audio and
|
|
// video bitstream.
|
|
ogg_int64_t audioTime = -1;
|
|
ogg_int64_t videoTime = -1;
|
|
do {
|
|
// Add the page to its codec state, determine its granule time.
|
|
uint32_t serial = ogg_page_serialno(&page);
|
|
OggCodecState* codecState = mCodecStore.Get(serial);
|
|
if (codecState && GetCodecStateType(codecState) == aType) {
|
|
if (codecState->mActive) {
|
|
int ret = ogg_stream_pagein(&codecState->mState, &page);
|
|
NS_ENSURE_TRUE(ret == 0, NS_ERROR_FAILURE);
|
|
}
|
|
|
|
ogg_int64_t granulepos = ogg_page_granulepos(&page);
|
|
|
|
if (aType == TrackInfo::kAudioTrack &&
|
|
granulepos > 0 && audioTime == -1) {
|
|
if (mVorbisState && serial == mVorbisState->mSerial) {
|
|
audioTime = mVorbisState->Time(granulepos);
|
|
} else if (mOpusState && serial == mOpusState->mSerial) {
|
|
audioTime = mOpusState->Time(granulepos);
|
|
} else if (mFlacState && serial == mFlacState->mSerial) {
|
|
audioTime = mFlacState->Time(granulepos);
|
|
}
|
|
}
|
|
|
|
if (aType == TrackInfo::kVideoTrack &&
|
|
granulepos > 0 && serial == mTheoraState->mSerial &&
|
|
videoTime == -1) {
|
|
videoTime = mTheoraState->Time(granulepos);
|
|
}
|
|
|
|
if (pageOffset + pageLength >= endOffset) {
|
|
// Hit end of readable data.
|
|
break;
|
|
}
|
|
}
|
|
if (!ReadOggPage(aType, &page)) {
|
|
break;
|
|
}
|
|
|
|
} while ((aType == TrackInfo::kAudioTrack && audioTime == -1) ||
|
|
(aType == TrackInfo::kVideoTrack && videoTime == -1));
|
|
|
|
|
|
if ((aType == TrackInfo::kAudioTrack && audioTime == -1) ||
|
|
(aType == TrackInfo::kVideoTrack && videoTime == -1)) {
|
|
// We don't have timestamps for all active tracks...
|
|
if (pageOffset == startOffset + startLength &&
|
|
pageOffset + pageLength >= endOffset) {
|
|
// We read the entire interval without finding timestamps for all
|
|
// active tracks. We know the interval start offset is before the seek
|
|
// target, and the interval end is after the seek target, and we can't
|
|
// terminate inside the interval, so we terminate the seek at the
|
|
// start of the interval.
|
|
interval = 0;
|
|
break;
|
|
}
|
|
|
|
// We should backoff; cause the guess to back off from the end, so
|
|
// that we've got more room to capture.
|
|
mustBackoff = true;
|
|
continue;
|
|
}
|
|
|
|
// We've found appropriate time stamps here. Proceed to bisect
|
|
// the search space.
|
|
granuleTime = aType == TrackInfo::kAudioTrack ? audioTime : videoTime;
|
|
MOZ_ASSERT(granuleTime > 0, "Must get a granuletime");
|
|
break;
|
|
} // End of "until we determine time at guess offset" loop.
|
|
|
|
if (interval == 0) {
|
|
// Seek termination condition; we've found the page boundary of the
|
|
// last page before the target, and the first page after the target.
|
|
SEEK_LOG(LogLevel::Debug, ("Terminating seek at offset=%lld", startOffset));
|
|
MOZ_ASSERT(startTime < aTarget, "Start time must always be less than target");
|
|
res = Resource(aType)->Seek(nsISeekableStream::NS_SEEK_SET, startOffset);
|
|
NS_ENSURE_SUCCESS(res,res);
|
|
if (NS_FAILED(Reset(aType))) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
break;
|
|
}
|
|
|
|
SEEK_LOG(LogLevel::Debug, ("Time at offset %lld is %lld", guess, granuleTime));
|
|
if (granuleTime < seekTarget && granuleTime > seekLowerBound) {
|
|
// We're within the fuzzy region in which we want to terminate the search.
|
|
res = Resource(aType)->Seek(nsISeekableStream::NS_SEEK_SET, pageOffset);
|
|
NS_ENSURE_SUCCESS(res,res);
|
|
if (NS_FAILED(Reset(aType))) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
SEEK_LOG(LogLevel::Debug, ("Terminating seek at offset=%lld", pageOffset));
|
|
break;
|
|
}
|
|
|
|
if (granuleTime >= seekTarget) {
|
|
// We've landed after the seek target.
|
|
MOZ_ASSERT(pageOffset < endOffset, "offset_end must decrease");
|
|
endOffset = pageOffset;
|
|
endTime = granuleTime;
|
|
} else if (granuleTime < seekTarget) {
|
|
// Landed before seek target.
|
|
MOZ_ASSERT(pageOffset >= startOffset + startLength,
|
|
"Bisection point should be at or after end of first page in interval");
|
|
startOffset = pageOffset;
|
|
startLength = pageLength;
|
|
startTime = granuleTime;
|
|
}
|
|
MOZ_ASSERT(startTime <= seekTarget, "Must be before seek target");
|
|
MOZ_ASSERT(endTime >= seekTarget, "End must be after seek target");
|
|
}
|
|
|
|
SEEK_LOG(LogLevel::Debug, ("Seek complete in %d bisections.", hops));
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
#undef OGG_DEBUG
|
|
#undef SEEK_DEBUG
|
|
} // namespace mozilla
|