gecko-dev/memory/build/rb.h

744 строки
23 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
// Portions of this file were originally under the following license:
//
// Copyright (C) 2008 Jason Evans <jasone@FreeBSD.org>.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
// notice(s), this list of conditions and the following disclaimer
// unmodified other than the allowable addition of one or more
// copyright notices.
// 2. Redistributions in binary form must reproduce the above copyright
// notice(s), this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
// OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
// EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// ****************************************************************************
//
// C++ template implementation of left-leaning red-black trees.
//
// All operations are done non-recursively. Parent pointers are not used, and
// color bits are stored in the least significant bit of right-child pointers,
// thus making node linkage as compact as is possible for red-black trees.
//
// The RedBlackTree template expects two type arguments: the type of the nodes,
// containing a RedBlackTreeNode, and a trait providing two methods:
// - a GetTreeNode method that returns a reference to the RedBlackTreeNode
// corresponding to a given node with the following signature:
// static RedBlackTreeNode<T>& GetTreeNode(T*)
// - a Compare function with the following signature:
// static int Compare(T* aNode, T* aOther)
// ^^^^^
// or aKey
//
// Interpretation of comparision function return values:
//
// -1 : aNode < aOther
// 0 : aNode == aOther
// 1 : aNode > aOther
//
// In all cases, the aNode or aKey argument is the first argument to the
// comparison function, which makes it possible to write comparison functions
// that treat the first argument specially.
//
// ***************************************************************************
#ifndef RB_H_
#define RB_H_
#include "mozilla/Alignment.h"
#include "Utils.h"
enum NodeColor
{
Black = 0,
Red = 1,
};
// Node structure.
template<typename T>
class RedBlackTreeNode
{
T* mLeft;
// The lowest bit is the color
T* mRightAndColor;
public:
T* Left() { return mLeft; }
void SetLeft(T* aValue) { mLeft = aValue; }
T* Right()
{
return reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(mRightAndColor) &
uintptr_t(~1));
}
void SetRight(T* aValue)
{
mRightAndColor = reinterpret_cast<T*>(
(reinterpret_cast<uintptr_t>(aValue) & uintptr_t(~1)) | Color());
}
NodeColor Color()
{
return static_cast<NodeColor>(reinterpret_cast<uintptr_t>(mRightAndColor) &
1);
}
bool IsBlack() { return Color() == NodeColor::Black; }
bool IsRed() { return Color() == NodeColor::Red; }
void SetColor(NodeColor aColor)
{
mRightAndColor = reinterpret_cast<T*>(
(reinterpret_cast<uintptr_t>(mRightAndColor) & uintptr_t(~1)) | aColor);
}
};
// Tree structure.
template<typename T, typename Trait>
class RedBlackTree
{
public:
void Init() { mRoot = nullptr; }
T* First(T* aStart = nullptr)
{
return First(reinterpret_cast<TreeNode*>(aStart));
}
T* Last(T* aStart = nullptr)
{
return Last(reinterpret_cast<TreeNode*>(aStart));
}
T* Next(T* aNode) { return Next(reinterpret_cast<TreeNode*>(aNode)); }
T* Prev(T* aNode) { return Prev(reinterpret_cast<TreeNode*>(aNode)); }
T* Search(T* aKey) { return Search(reinterpret_cast<TreeNode*>(aKey)); }
// Find a match if it exists. Otherwise, find the next greater node, if one
// exists.
T* SearchOrNext(T* aKey)
{
return SearchOrNext(reinterpret_cast<TreeNode*>(aKey));
}
void Insert(T* aNode) { Insert(reinterpret_cast<TreeNode*>(aNode)); }
void Remove(T* aNode) { return Remove(reinterpret_cast<TreeNode*>(aNode)); }
// Helper class to avoid having all the tree traversal code further below
// have to use Trait::GetTreeNode, adding visual noise.
struct TreeNode : public T
{
TreeNode* Left() { return (TreeNode*)Trait::GetTreeNode(this).Left(); }
void SetLeft(T* aValue) { Trait::GetTreeNode(this).SetLeft(aValue); }
TreeNode* Right() { return (TreeNode*)Trait::GetTreeNode(this).Right(); }
void SetRight(T* aValue) { Trait::GetTreeNode(this).SetRight(aValue); }
NodeColor Color() { return Trait::GetTreeNode(this).Color(); }
bool IsRed() { return Trait::GetTreeNode(this).IsRed(); }
bool IsBlack() { return Trait::GetTreeNode(this).IsBlack(); }
void SetColor(NodeColor aColor)
{
Trait::GetTreeNode(this).SetColor(aColor);
}
};
private:
TreeNode* mRoot;
TreeNode* First(TreeNode* aStart)
{
TreeNode* ret;
for (ret = aStart ? aStart : mRoot; ret && ret->Left(); ret = ret->Left()) {
}
return ret;
}
TreeNode* Last(TreeNode* aStart)
{
TreeNode* ret;
for (ret = aStart ? aStart : mRoot; ret && ret->Right();
ret = ret->Right()) {
}
return ret;
}
TreeNode* Next(TreeNode* aNode)
{
TreeNode* ret;
if (aNode->Right()) {
ret = First(aNode->Right());
} else {
TreeNode* rbp_n_t = mRoot;
MOZ_ASSERT(rbp_n_t);
ret = nullptr;
while (true) {
int rbp_n_cmp = Trait::Compare(aNode, rbp_n_t);
if (rbp_n_cmp < 0) {
ret = rbp_n_t;
rbp_n_t = rbp_n_t->Left();
} else if (rbp_n_cmp > 0) {
rbp_n_t = rbp_n_t->Right();
} else {
break;
}
MOZ_ASSERT(rbp_n_t);
}
}
return ret;
}
TreeNode* Prev(TreeNode* aNode)
{
TreeNode* ret;
if (aNode->Left()) {
ret = Last(aNode->Left());
} else {
TreeNode* rbp_p_t = mRoot;
MOZ_ASSERT(rbp_p_t);
ret = nullptr;
while (true) {
int rbp_p_cmp = Trait::Compare(aNode, rbp_p_t);
if (rbp_p_cmp < 0) {
rbp_p_t = rbp_p_t->Left();
} else if (rbp_p_cmp > 0) {
ret = rbp_p_t;
rbp_p_t = rbp_p_t->Right();
} else {
break;
}
MOZ_ASSERT(rbp_p_t);
}
}
return ret;
}
TreeNode* Search(TreeNode* aKey)
{
TreeNode* ret = mRoot;
int rbp_se_cmp;
while (ret && (rbp_se_cmp = Trait::Compare(aKey, ret)) != 0) {
if (rbp_se_cmp < 0) {
ret = ret->Left();
} else {
ret = ret->Right();
}
}
return ret;
}
TreeNode* SearchOrNext(TreeNode* aKey)
{
TreeNode* ret = nullptr;
TreeNode* rbp_ns_t = mRoot;
while (rbp_ns_t) {
int rbp_ns_cmp = Trait::Compare(aKey, rbp_ns_t);
if (rbp_ns_cmp < 0) {
ret = rbp_ns_t;
rbp_ns_t = rbp_ns_t->Left();
} else if (rbp_ns_cmp > 0) {
rbp_ns_t = rbp_ns_t->Right();
} else {
ret = rbp_ns_t;
break;
}
}
return ret;
}
void Insert(TreeNode* aNode)
{
// rbp_i_s is only used as a placeholder for its RedBlackTreeNode. Use
// AlignedStorage2 to avoid running the TreeNode base class constructor.
mozilla::AlignedStorage2<TreeNode> rbp_i_s;
TreeNode *rbp_i_g, *rbp_i_p, *rbp_i_c, *rbp_i_t, *rbp_i_u;
int rbp_i_cmp = 0;
rbp_i_g = nullptr;
rbp_i_p = rbp_i_s.addr();
rbp_i_p->SetLeft(mRoot);
rbp_i_p->SetRight(nullptr);
rbp_i_p->SetColor(NodeColor::Black);
rbp_i_c = mRoot;
// Iteratively search down the tree for the insertion point,
// splitting 4-nodes as they are encountered. At the end of each
// iteration, rbp_i_g->rbp_i_p->rbp_i_c is a 3-level path down
// the tree, assuming a sufficiently deep tree.
while (rbp_i_c) {
rbp_i_t = rbp_i_c->Left();
rbp_i_u = rbp_i_t ? rbp_i_t->Left() : nullptr;
if (rbp_i_t && rbp_i_u && rbp_i_t->IsRed() && rbp_i_u->IsRed()) {
// rbp_i_c is the top of a logical 4-node, so split it.
// This iteration does not move down the tree, due to the
// disruptiveness of node splitting.
//
// Rotate right.
rbp_i_t = RotateRight(rbp_i_c);
// Pass red links up one level.
rbp_i_u = rbp_i_t->Left();
rbp_i_u->SetColor(NodeColor::Black);
if (rbp_i_p->Left() == rbp_i_c) {
rbp_i_p->SetLeft(rbp_i_t);
rbp_i_c = rbp_i_t;
} else {
// rbp_i_c was the right child of rbp_i_p, so rotate
// left in order to maintain the left-leaning invariant.
MOZ_ASSERT(rbp_i_p->Right() == rbp_i_c);
rbp_i_p->SetRight(rbp_i_t);
rbp_i_u = LeanLeft(rbp_i_p);
if (rbp_i_g->Left() == rbp_i_p) {
rbp_i_g->SetLeft(rbp_i_u);
} else {
MOZ_ASSERT(rbp_i_g->Right() == rbp_i_p);
rbp_i_g->SetRight(rbp_i_u);
}
rbp_i_p = rbp_i_u;
rbp_i_cmp = Trait::Compare(aNode, rbp_i_p);
if (rbp_i_cmp < 0) {
rbp_i_c = rbp_i_p->Left();
} else {
MOZ_ASSERT(rbp_i_cmp > 0);
rbp_i_c = rbp_i_p->Right();
}
continue;
}
}
rbp_i_g = rbp_i_p;
rbp_i_p = rbp_i_c;
rbp_i_cmp = Trait::Compare(aNode, rbp_i_c);
if (rbp_i_cmp < 0) {
rbp_i_c = rbp_i_c->Left();
} else {
MOZ_ASSERT(rbp_i_cmp > 0);
rbp_i_c = rbp_i_c->Right();
}
}
// rbp_i_p now refers to the node under which to insert.
aNode->SetLeft(nullptr);
aNode->SetRight(nullptr);
aNode->SetColor(NodeColor::Red);
if (rbp_i_cmp > 0) {
rbp_i_p->SetRight(aNode);
rbp_i_t = LeanLeft(rbp_i_p);
if (rbp_i_g->Left() == rbp_i_p) {
rbp_i_g->SetLeft(rbp_i_t);
} else if (rbp_i_g->Right() == rbp_i_p) {
rbp_i_g->SetRight(rbp_i_t);
}
} else {
rbp_i_p->SetLeft(aNode);
}
// Update the root and make sure that it is black.
mRoot = rbp_i_s.addr()->Left();
mRoot->SetColor(NodeColor::Black);
}
void Remove(TreeNode* aNode)
{
// rbp_r_s is only used as a placeholder for its RedBlackTreeNode. Use
// AlignedStorage2 to avoid running the TreeNode base class constructor.
mozilla::AlignedStorage2<TreeNode> rbp_r_s;
TreeNode *rbp_r_p, *rbp_r_c, *rbp_r_xp, *rbp_r_t, *rbp_r_u;
int rbp_r_cmp;
rbp_r_p = rbp_r_s.addr();
rbp_r_p->SetLeft(mRoot);
rbp_r_p->SetRight(nullptr);
rbp_r_p->SetColor(NodeColor::Black);
rbp_r_c = mRoot;
rbp_r_xp = nullptr;
// Iterate down the tree, but always transform 2-nodes to 3- or
// 4-nodes in order to maintain the invariant that the current
// node is not a 2-node. This allows simple deletion once a leaf
// is reached. Handle the root specially though, since there may
// be no way to convert it from a 2-node to a 3-node.
rbp_r_cmp = Trait::Compare(aNode, rbp_r_c);
if (rbp_r_cmp < 0) {
rbp_r_t = rbp_r_c->Left();
rbp_r_u = rbp_r_t ? rbp_r_t->Left() : nullptr;
if ((!rbp_r_t || rbp_r_t->IsBlack()) &&
(!rbp_r_u || rbp_r_u->IsBlack())) {
// Apply standard transform to prepare for left move.
rbp_r_t = MoveRedLeft(rbp_r_c);
rbp_r_t->SetColor(NodeColor::Black);
rbp_r_p->SetLeft(rbp_r_t);
rbp_r_c = rbp_r_t;
} else {
// Move left.
rbp_r_p = rbp_r_c;
rbp_r_c = rbp_r_c->Left();
}
} else {
if (rbp_r_cmp == 0) {
MOZ_ASSERT(aNode == rbp_r_c);
if (!rbp_r_c->Right()) {
// Delete root node (which is also a leaf node).
if (rbp_r_c->Left()) {
rbp_r_t = LeanRight(rbp_r_c);
rbp_r_t->SetRight(nullptr);
} else {
rbp_r_t = nullptr;
}
rbp_r_p->SetLeft(rbp_r_t);
} else {
// This is the node we want to delete, but we will
// instead swap it with its successor and delete the
// successor. Record enough information to do the
// swap later. rbp_r_xp is the aNode's parent.
rbp_r_xp = rbp_r_p;
rbp_r_cmp = 1; // Note that deletion is incomplete.
}
}
if (rbp_r_cmp == 1) {
if (rbp_r_c->Right() && (!rbp_r_c->Right()->Left() ||
rbp_r_c->Right()->Left()->IsBlack())) {
rbp_r_t = rbp_r_c->Left();
if (rbp_r_t->IsRed()) {
// Standard transform.
rbp_r_t = MoveRedRight(rbp_r_c);
} else {
// Root-specific transform.
rbp_r_c->SetColor(NodeColor::Red);
rbp_r_u = rbp_r_t->Left();
if (rbp_r_u && rbp_r_u->IsRed()) {
rbp_r_u->SetColor(NodeColor::Black);
rbp_r_t = RotateRight(rbp_r_c);
rbp_r_u = RotateLeft(rbp_r_c);
rbp_r_t->SetRight(rbp_r_u);
} else {
rbp_r_t->SetColor(NodeColor::Red);
rbp_r_t = RotateLeft(rbp_r_c);
}
}
rbp_r_p->SetLeft(rbp_r_t);
rbp_r_c = rbp_r_t;
} else {
// Move right.
rbp_r_p = rbp_r_c;
rbp_r_c = rbp_r_c->Right();
}
}
}
if (rbp_r_cmp != 0) {
while (true) {
MOZ_ASSERT(rbp_r_p);
rbp_r_cmp = Trait::Compare(aNode, rbp_r_c);
if (rbp_r_cmp < 0) {
rbp_r_t = rbp_r_c->Left();
if (!rbp_r_t) {
// rbp_r_c now refers to the successor node to
// relocate, and rbp_r_xp/aNode refer to the
// context for the relocation.
if (rbp_r_xp->Left() == aNode) {
rbp_r_xp->SetLeft(rbp_r_c);
} else {
MOZ_ASSERT(rbp_r_xp->Right() == (aNode));
rbp_r_xp->SetRight(rbp_r_c);
}
rbp_r_c->SetLeft(aNode->Left());
rbp_r_c->SetRight(aNode->Right());
rbp_r_c->SetColor(aNode->Color());
if (rbp_r_p->Left() == rbp_r_c) {
rbp_r_p->SetLeft(nullptr);
} else {
MOZ_ASSERT(rbp_r_p->Right() == rbp_r_c);
rbp_r_p->SetRight(nullptr);
}
break;
}
rbp_r_u = rbp_r_t->Left();
if (rbp_r_t->IsBlack() && (!rbp_r_u || rbp_r_u->IsBlack())) {
rbp_r_t = MoveRedLeft(rbp_r_c);
if (rbp_r_p->Left() == rbp_r_c) {
rbp_r_p->SetLeft(rbp_r_t);
} else {
rbp_r_p->SetRight(rbp_r_t);
}
rbp_r_c = rbp_r_t;
} else {
rbp_r_p = rbp_r_c;
rbp_r_c = rbp_r_c->Left();
}
} else {
// Check whether to delete this node (it has to be
// the correct node and a leaf node).
if (rbp_r_cmp == 0) {
MOZ_ASSERT(aNode == rbp_r_c);
if (!rbp_r_c->Right()) {
// Delete leaf node.
if (rbp_r_c->Left()) {
rbp_r_t = LeanRight(rbp_r_c);
rbp_r_t->SetRight(nullptr);
} else {
rbp_r_t = nullptr;
}
if (rbp_r_p->Left() == rbp_r_c) {
rbp_r_p->SetLeft(rbp_r_t);
} else {
rbp_r_p->SetRight(rbp_r_t);
}
break;
}
// This is the node we want to delete, but we
// will instead swap it with its successor
// and delete the successor. Record enough
// information to do the swap later.
// rbp_r_xp is aNode's parent.
rbp_r_xp = rbp_r_p;
}
rbp_r_t = rbp_r_c->Right();
rbp_r_u = rbp_r_t->Left();
if (!rbp_r_u || rbp_r_u->IsBlack()) {
rbp_r_t = MoveRedRight(rbp_r_c);
if (rbp_r_p->Left() == rbp_r_c) {
rbp_r_p->SetLeft(rbp_r_t);
} else {
rbp_r_p->SetRight(rbp_r_t);
}
rbp_r_c = rbp_r_t;
} else {
rbp_r_p = rbp_r_c;
rbp_r_c = rbp_r_c->Right();
}
}
}
}
// Update root.
mRoot = rbp_r_s.addr()->Left();
}
TreeNode* RotateLeft(TreeNode* aNode)
{
TreeNode* node = aNode->Right();
aNode->SetRight(node->Left());
node->SetLeft(aNode);
return node;
}
TreeNode* RotateRight(TreeNode* aNode)
{
TreeNode* node = aNode->Left();
aNode->SetLeft(node->Right());
node->SetRight(aNode);
return node;
}
TreeNode* LeanLeft(TreeNode* aNode)
{
TreeNode* node = RotateLeft(aNode);
NodeColor color = aNode->Color();
node->SetColor(color);
aNode->SetColor(NodeColor::Red);
return node;
}
TreeNode* LeanRight(TreeNode* aNode)
{
TreeNode* node = RotateRight(aNode);
NodeColor color = aNode->Color();
node->SetColor(color);
aNode->SetColor(NodeColor::Red);
return node;
}
TreeNode* MoveRedLeft(TreeNode* aNode)
{
TreeNode* node;
TreeNode *rbp_mrl_t, *rbp_mrl_u;
rbp_mrl_t = aNode->Left();
rbp_mrl_t->SetColor(NodeColor::Red);
rbp_mrl_t = aNode->Right();
rbp_mrl_u = rbp_mrl_t ? rbp_mrl_t->Left() : nullptr;
if (rbp_mrl_u && rbp_mrl_u->IsRed()) {
rbp_mrl_u = RotateRight(rbp_mrl_t);
aNode->SetRight(rbp_mrl_u);
node = RotateLeft(aNode);
rbp_mrl_t = aNode->Right();
if (rbp_mrl_t && rbp_mrl_t->IsRed()) {
rbp_mrl_t->SetColor(NodeColor::Black);
aNode->SetColor(NodeColor::Red);
rbp_mrl_t = RotateLeft(aNode);
node->SetLeft(rbp_mrl_t);
} else {
aNode->SetColor(NodeColor::Black);
}
} else {
aNode->SetColor(NodeColor::Red);
node = RotateLeft(aNode);
}
return node;
}
TreeNode* MoveRedRight(TreeNode* aNode)
{
TreeNode* node;
TreeNode* rbp_mrr_t;
rbp_mrr_t = aNode->Left();
if (rbp_mrr_t && rbp_mrr_t->IsRed()) {
TreeNode *rbp_mrr_u, *rbp_mrr_v;
rbp_mrr_u = rbp_mrr_t->Right();
rbp_mrr_v = rbp_mrr_u ? rbp_mrr_u->Left() : nullptr;
if (rbp_mrr_v && rbp_mrr_v->IsRed()) {
rbp_mrr_u->SetColor(aNode->Color());
rbp_mrr_v->SetColor(NodeColor::Black);
rbp_mrr_u = RotateLeft(rbp_mrr_t);
aNode->SetLeft(rbp_mrr_u);
node = RotateRight(aNode);
rbp_mrr_t = RotateLeft(aNode);
node->SetRight(rbp_mrr_t);
} else {
rbp_mrr_t->SetColor(aNode->Color());
rbp_mrr_u->SetColor(NodeColor::Red);
node = RotateRight(aNode);
rbp_mrr_t = RotateLeft(aNode);
node->SetRight(rbp_mrr_t);
}
aNode->SetColor(NodeColor::Red);
} else {
rbp_mrr_t->SetColor(NodeColor::Red);
rbp_mrr_t = rbp_mrr_t->Left();
if (rbp_mrr_t && rbp_mrr_t->IsRed()) {
rbp_mrr_t->SetColor(NodeColor::Black);
node = RotateRight(aNode);
rbp_mrr_t = RotateLeft(aNode);
node->SetRight(rbp_mrr_t);
} else {
node = RotateLeft(aNode);
}
}
return node;
}
// The iterator simulates recursion via an array of pointers that store the
// current path. This is critical to performance, since a series of calls to
// rb_{next,prev}() would require time proportional to (n lg n), whereas this
// implementation only requires time proportional to (n).
//
// Since the iterator caches a path down the tree, any tree modification may
// cause the cached path to become invalid. Don't modify the tree during an
// iteration.
// Size the path arrays such that they are always large enough, even if a
// tree consumes all of memory. Since each node must contain a minimum of
// two pointers, there can never be more nodes than:
//
// 1 << ((sizeof(void*)<<3) - (log2(sizeof(void*))+1))
//
// Since the depth of a tree is limited to 3*lg(#nodes), the maximum depth
// is:
//
// (3 * ((sizeof(void*)<<3) - (log2(sizeof(void*))+1)))
//
// This works out to a maximum depth of 87 and 180 for 32- and 64-bit
// systems, respectively (approximately 348 and 1440 bytes, respectively).
public:
class Iterator
{
TreeNode* mPath[3 * ((sizeof(void*) << 3) - (LOG2(sizeof(void*)) + 1))];
unsigned mDepth;
public:
explicit Iterator(RedBlackTree<T, Trait>* aTree)
: mDepth(0)
{
// Initialize the path to contain the left spine.
if (aTree->mRoot) {
TreeNode* node;
mPath[mDepth++] = aTree->mRoot;
while ((node = mPath[mDepth - 1]->Left())) {
mPath[mDepth++] = node;
}
}
}
template<typename Iterator>
class Item
{
Iterator* mIterator;
T* mItem;
public:
Item(Iterator* aIterator, T* aItem)
: mIterator(aIterator)
, mItem(aItem)
{
}
bool operator!=(const Item& aOther) const
{
return (mIterator != aOther.mIterator) || (mItem != aOther.mItem);
}
T* operator*() const { return mItem; }
const Item& operator++()
{
mItem = mIterator->Next();
return *this;
}
};
Item<Iterator> begin()
{
return Item<Iterator>(this, mDepth > 0 ? mPath[mDepth - 1] : nullptr);
}
Item<Iterator> end() { return Item<Iterator>(this, nullptr); }
TreeNode* Next()
{
TreeNode* node;
if ((node = mPath[mDepth - 1]->Right())) {
// The successor is the left-most node in the right subtree.
mPath[mDepth++] = node;
while ((node = mPath[mDepth - 1]->Left())) {
mPath[mDepth++] = node;
}
} else {
// The successor is above the current node. Unwind until a
// left-leaning edge is removed from the path, of the path is empty.
for (mDepth--; mDepth > 0; mDepth--) {
if (mPath[mDepth - 1]->Left() == mPath[mDepth]) {
break;
}
}
}
return mDepth > 0 ? mPath[mDepth - 1] : nullptr;
}
};
Iterator iter() { return Iterator(this); }
};
#endif // RB_H_