gecko-dev/third_party/aom/aom_dsp/variance.c

1589 строки
72 KiB
C

/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "config/av1_rtcd.h"
#include "aom/aom_integer.h"
#include "aom_ports/mem.h"
#include "aom_dsp/aom_filter.h"
#include "aom_dsp/blend.h"
#include "aom_dsp/variance.h"
#include "av1/common/filter.h"
#include "av1/common/onyxc_int.h"
#include "av1/common/reconinter.h"
uint32_t aom_get4x4sse_cs_c(const uint8_t *a, int a_stride, const uint8_t *b,
int b_stride) {
int distortion = 0;
int r, c;
for (r = 0; r < 4; ++r) {
for (c = 0; c < 4; ++c) {
int diff = a[c] - b[c];
distortion += diff * diff;
}
a += a_stride;
b += b_stride;
}
return distortion;
}
uint32_t aom_get_mb_ss_c(const int16_t *a) {
unsigned int i, sum = 0;
for (i = 0; i < 256; ++i) {
sum += a[i] * a[i];
}
return sum;
}
uint32_t aom_variance_halfpixvar16x16_h_c(const uint8_t *a, int a_stride,
const uint8_t *b, int b_stride,
uint32_t *sse) {
return aom_sub_pixel_variance16x16_c(a, a_stride, 4, 0, b, b_stride, sse);
}
uint32_t aom_variance_halfpixvar16x16_v_c(const uint8_t *a, int a_stride,
const uint8_t *b, int b_stride,
uint32_t *sse) {
return aom_sub_pixel_variance16x16_c(a, a_stride, 0, 4, b, b_stride, sse);
}
uint32_t aom_variance_halfpixvar16x16_hv_c(const uint8_t *a, int a_stride,
const uint8_t *b, int b_stride,
uint32_t *sse) {
return aom_sub_pixel_variance16x16_c(a, a_stride, 4, 4, b, b_stride, sse);
}
static void variance(const uint8_t *a, int a_stride, const uint8_t *b,
int b_stride, int w, int h, uint32_t *sse, int *sum) {
int i, j;
*sum = 0;
*sse = 0;
for (i = 0; i < h; ++i) {
for (j = 0; j < w; ++j) {
const int diff = a[j] - b[j];
*sum += diff;
*sse += diff * diff;
}
a += a_stride;
b += b_stride;
}
}
uint32_t aom_sse_odd_size(const uint8_t *a, int a_stride, const uint8_t *b,
int b_stride, int w, int h) {
uint32_t sse;
int sum;
variance(a, a_stride, b, b_stride, w, h, &sse, &sum);
return sse;
}
// Applies a 1-D 2-tap bilinear filter to the source block in either horizontal
// or vertical direction to produce the filtered output block. Used to implement
// the first-pass of 2-D separable filter.
//
// Produces int16_t output to retain precision for the next pass. Two filter
// taps should sum to FILTER_WEIGHT. pixel_step defines whether the filter is
// applied horizontally (pixel_step = 1) or vertically (pixel_step = stride).
// It defines the offset required to move from one input to the next.
void aom_var_filter_block2d_bil_first_pass_c(const uint8_t *a, uint16_t *b,
unsigned int src_pixels_per_line,
unsigned int pixel_step,
unsigned int output_height,
unsigned int output_width,
const uint8_t *filter) {
unsigned int i, j;
for (i = 0; i < output_height; ++i) {
for (j = 0; j < output_width; ++j) {
b[j] = ROUND_POWER_OF_TWO(
(int)a[0] * filter[0] + (int)a[pixel_step] * filter[1], FILTER_BITS);
++a;
}
a += src_pixels_per_line - output_width;
b += output_width;
}
}
// Applies a 1-D 2-tap bilinear filter to the source block in either horizontal
// or vertical direction to produce the filtered output block. Used to implement
// the second-pass of 2-D separable filter.
//
// Requires 16-bit input as produced by filter_block2d_bil_first_pass. Two
// filter taps should sum to FILTER_WEIGHT. pixel_step defines whether the
// filter is applied horizontally (pixel_step = 1) or vertically
// (pixel_step = stride). It defines the offset required to move from one input
// to the next. Output is 8-bit.
void aom_var_filter_block2d_bil_second_pass_c(const uint16_t *a, uint8_t *b,
unsigned int src_pixels_per_line,
unsigned int pixel_step,
unsigned int output_height,
unsigned int output_width,
const uint8_t *filter) {
unsigned int i, j;
for (i = 0; i < output_height; ++i) {
for (j = 0; j < output_width; ++j) {
b[j] = ROUND_POWER_OF_TWO(
(int)a[0] * filter[0] + (int)a[pixel_step] * filter[1], FILTER_BITS);
++a;
}
a += src_pixels_per_line - output_width;
b += output_width;
}
}
#define VAR(W, H) \
uint32_t aom_variance##W##x##H##_c(const uint8_t *a, int a_stride, \
const uint8_t *b, int b_stride, \
uint32_t *sse) { \
int sum; \
variance(a, a_stride, b, b_stride, W, H, sse, &sum); \
return *sse - (uint32_t)(((int64_t)sum * sum) / (W * H)); \
}
#define SUBPIX_VAR(W, H) \
uint32_t aom_sub_pixel_variance##W##x##H##_c( \
const uint8_t *a, int a_stride, int xoffset, int yoffset, \
const uint8_t *b, int b_stride, uint32_t *sse) { \
uint16_t fdata3[(H + 1) * W]; \
uint8_t temp2[H * W]; \
\
aom_var_filter_block2d_bil_first_pass_c(a, fdata3, a_stride, 1, H + 1, W, \
bilinear_filters_2t[xoffset]); \
aom_var_filter_block2d_bil_second_pass_c(fdata3, temp2, W, W, H, W, \
bilinear_filters_2t[yoffset]); \
\
return aom_variance##W##x##H##_c(temp2, W, b, b_stride, sse); \
}
#define SUBPIX_AVG_VAR(W, H) \
uint32_t aom_sub_pixel_avg_variance##W##x##H##_c( \
const uint8_t *a, int a_stride, int xoffset, int yoffset, \
const uint8_t *b, int b_stride, uint32_t *sse, \
const uint8_t *second_pred) { \
uint16_t fdata3[(H + 1) * W]; \
uint8_t temp2[H * W]; \
DECLARE_ALIGNED(16, uint8_t, temp3[H * W]); \
\
aom_var_filter_block2d_bil_first_pass_c(a, fdata3, a_stride, 1, H + 1, W, \
bilinear_filters_2t[xoffset]); \
aom_var_filter_block2d_bil_second_pass_c(fdata3, temp2, W, W, H, W, \
bilinear_filters_2t[yoffset]); \
\
aom_comp_avg_pred(temp3, second_pred, W, H, temp2, W); \
\
return aom_variance##W##x##H##_c(temp3, W, b, b_stride, sse); \
} \
uint32_t aom_jnt_sub_pixel_avg_variance##W##x##H##_c( \
const uint8_t *a, int a_stride, int xoffset, int yoffset, \
const uint8_t *b, int b_stride, uint32_t *sse, \
const uint8_t *second_pred, const JNT_COMP_PARAMS *jcp_param) { \
uint16_t fdata3[(H + 1) * W]; \
uint8_t temp2[H * W]; \
DECLARE_ALIGNED(16, uint8_t, temp3[H * W]); \
\
aom_var_filter_block2d_bil_first_pass_c(a, fdata3, a_stride, 1, H + 1, W, \
bilinear_filters_2t[xoffset]); \
aom_var_filter_block2d_bil_second_pass_c(fdata3, temp2, W, W, H, W, \
bilinear_filters_2t[yoffset]); \
\
aom_jnt_comp_avg_pred(temp3, second_pred, W, H, temp2, W, jcp_param); \
\
return aom_variance##W##x##H(temp3, W, b, b_stride, sse); \
}
/* Identical to the variance call except it takes an additional parameter, sum,
* and returns that value using pass-by-reference instead of returning
* sse - sum^2 / w*h
*/
#define GET_VAR(W, H) \
void aom_get##W##x##H##var_c(const uint8_t *a, int a_stride, \
const uint8_t *b, int b_stride, uint32_t *sse, \
int *sum) { \
variance(a, a_stride, b, b_stride, W, H, sse, sum); \
}
/* Identical to the variance call except it does not calculate the
* sse - sum^2 / w*h and returns sse in addtion to modifying the passed in
* variable.
*/
#define MSE(W, H) \
uint32_t aom_mse##W##x##H##_c(const uint8_t *a, int a_stride, \
const uint8_t *b, int b_stride, \
uint32_t *sse) { \
int sum; \
variance(a, a_stride, b, b_stride, W, H, sse, &sum); \
return *sse; \
}
/* All three forms of the variance are available in the same sizes. */
#define VARIANCES(W, H) \
VAR(W, H) \
SUBPIX_VAR(W, H) \
SUBPIX_AVG_VAR(W, H)
VARIANCES(128, 128)
VARIANCES(128, 64)
VARIANCES(64, 128)
VARIANCES(64, 64)
VARIANCES(64, 32)
VARIANCES(32, 64)
VARIANCES(32, 32)
VARIANCES(32, 16)
VARIANCES(16, 32)
VARIANCES(16, 16)
VARIANCES(16, 8)
VARIANCES(8, 16)
VARIANCES(8, 8)
VARIANCES(8, 4)
VARIANCES(4, 8)
VARIANCES(4, 4)
VARIANCES(4, 2)
VARIANCES(2, 4)
VARIANCES(2, 2)
VARIANCES(4, 16)
VARIANCES(16, 4)
VARIANCES(8, 32)
VARIANCES(32, 8)
VARIANCES(16, 64)
VARIANCES(64, 16)
GET_VAR(16, 16)
GET_VAR(8, 8)
MSE(16, 16)
MSE(16, 8)
MSE(8, 16)
MSE(8, 8)
void aom_comp_avg_pred_c(uint8_t *comp_pred, const uint8_t *pred, int width,
int height, const uint8_t *ref, int ref_stride) {
int i, j;
for (i = 0; i < height; ++i) {
for (j = 0; j < width; ++j) {
const int tmp = pred[j] + ref[j];
comp_pred[j] = ROUND_POWER_OF_TWO(tmp, 1);
}
comp_pred += width;
pred += width;
ref += ref_stride;
}
}
// Get pred block from up-sampled reference.
void aom_upsampled_pred_c(MACROBLOCKD *xd, const AV1_COMMON *const cm,
int mi_row, int mi_col, const MV *const mv,
uint8_t *comp_pred, int width, int height,
int subpel_x_q3, int subpel_y_q3, const uint8_t *ref,
int ref_stride) {
// expect xd == NULL only in tests
if (xd != NULL) {
const MB_MODE_INFO *mi = xd->mi[0];
const int ref_num = 0;
const int is_intrabc = is_intrabc_block(mi);
const struct scale_factors *const sf =
is_intrabc ? &cm->sf_identity : &xd->block_refs[ref_num]->sf;
const int is_scaled = av1_is_scaled(sf);
if (is_scaled) {
// Note: This is mostly a copy from the >=8X8 case in
// build_inter_predictors() function, with some small tweaks.
// Some assumptions.
const int plane = 0;
// Get pre-requisites.
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int ssx = pd->subsampling_x;
const int ssy = pd->subsampling_y;
assert(ssx == 0 && ssy == 0);
const struct buf_2d *const dst_buf = &pd->dst;
const struct buf_2d *const pre_buf =
is_intrabc ? dst_buf : &pd->pre[ref_num];
const int mi_x = mi_col * MI_SIZE;
const int mi_y = mi_row * MI_SIZE;
// Calculate subpel_x/y and x/y_step.
const int row_start = 0; // Because ss_y is 0.
const int col_start = 0; // Because ss_x is 0.
const int pre_x = (mi_x + MI_SIZE * col_start) >> ssx;
const int pre_y = (mi_y + MI_SIZE * row_start) >> ssy;
int orig_pos_y = pre_y << SUBPEL_BITS;
orig_pos_y += mv->row * (1 << (1 - ssy));
int orig_pos_x = pre_x << SUBPEL_BITS;
orig_pos_x += mv->col * (1 << (1 - ssx));
int pos_y = sf->scale_value_y(orig_pos_y, sf);
int pos_x = sf->scale_value_x(orig_pos_x, sf);
pos_x += SCALE_EXTRA_OFF;
pos_y += SCALE_EXTRA_OFF;
const int top = -AOM_LEFT_TOP_MARGIN_SCALED(ssy);
const int left = -AOM_LEFT_TOP_MARGIN_SCALED(ssx);
const int bottom = (pre_buf->height + AOM_INTERP_EXTEND)
<< SCALE_SUBPEL_BITS;
const int right = (pre_buf->width + AOM_INTERP_EXTEND)
<< SCALE_SUBPEL_BITS;
pos_y = clamp(pos_y, top, bottom);
pos_x = clamp(pos_x, left, right);
const uint8_t *const pre =
pre_buf->buf0 + (pos_y >> SCALE_SUBPEL_BITS) * pre_buf->stride +
(pos_x >> SCALE_SUBPEL_BITS);
const SubpelParams subpel_params = { sf->x_step_q4, sf->y_step_q4,
pos_x & SCALE_SUBPEL_MASK,
pos_y & SCALE_SUBPEL_MASK };
// Get warp types.
const WarpedMotionParams *const wm =
&xd->global_motion[mi->ref_frame[ref_num]];
const int is_global = is_global_mv_block(mi, wm->wmtype);
WarpTypesAllowed warp_types;
warp_types.global_warp_allowed = is_global;
warp_types.local_warp_allowed = mi->motion_mode == WARPED_CAUSAL;
// Get convolve parameters.
ConvolveParams conv_params = get_conv_params(ref_num, 0, plane, xd->bd);
const InterpFilters filters =
av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
// Get the inter predictor.
const int build_for_obmc = 0;
av1_make_inter_predictor(pre, pre_buf->stride, comp_pred, width,
&subpel_params, sf, width, height, &conv_params,
filters, &warp_types, mi_x >> pd->subsampling_x,
mi_y >> pd->subsampling_y, plane, ref_num, mi,
build_for_obmc, xd, cm->allow_warped_motion);
return;
}
}
const InterpFilterParams *filter =
av1_get_interp_filter_params_with_block_size(EIGHTTAP_REGULAR, 8);
if (!subpel_x_q3 && !subpel_y_q3) {
for (int i = 0; i < height; i++) {
memcpy(comp_pred, ref, width * sizeof(*comp_pred));
comp_pred += width;
ref += ref_stride;
}
} else if (!subpel_y_q3) {
const int16_t *const kernel =
av1_get_interp_filter_subpel_kernel(filter, subpel_x_q3 << 1);
aom_convolve8_horiz(ref, ref_stride, comp_pred, width, kernel, 16, NULL, -1,
width, height);
} else if (!subpel_x_q3) {
const int16_t *const kernel =
av1_get_interp_filter_subpel_kernel(filter, subpel_y_q3 << 1);
aom_convolve8_vert(ref, ref_stride, comp_pred, width, NULL, -1, kernel, 16,
width, height);
} else {
DECLARE_ALIGNED(16, uint8_t,
temp[((MAX_SB_SIZE * 2 + 16) + 16) * MAX_SB_SIZE]);
const int16_t *const kernel_x =
av1_get_interp_filter_subpel_kernel(filter, subpel_x_q3 << 1);
const int16_t *const kernel_y =
av1_get_interp_filter_subpel_kernel(filter, subpel_y_q3 << 1);
const int intermediate_height =
(((height - 1) * 8 + subpel_y_q3) >> 3) + filter->taps;
assert(intermediate_height <= (MAX_SB_SIZE * 2 + 16) + 16);
aom_convolve8_horiz(ref - ref_stride * ((filter->taps >> 1) - 1),
ref_stride, temp, MAX_SB_SIZE, kernel_x, 16, NULL, -1,
width, intermediate_height);
aom_convolve8_vert(temp + MAX_SB_SIZE * ((filter->taps >> 1) - 1),
MAX_SB_SIZE, comp_pred, width, NULL, -1, kernel_y, 16,
width, height);
}
}
void aom_comp_avg_upsampled_pred_c(MACROBLOCKD *xd, const AV1_COMMON *const cm,
int mi_row, int mi_col, const MV *const mv,
uint8_t *comp_pred, const uint8_t *pred,
int width, int height, int subpel_x_q3,
int subpel_y_q3, const uint8_t *ref,
int ref_stride) {
int i, j;
aom_upsampled_pred(xd, cm, mi_row, mi_col, mv, comp_pred, width, height,
subpel_x_q3, subpel_y_q3, ref, ref_stride);
for (i = 0; i < height; i++) {
for (j = 0; j < width; j++) {
comp_pred[j] = ROUND_POWER_OF_TWO(comp_pred[j] + pred[j], 1);
}
comp_pred += width;
pred += width;
}
}
void aom_jnt_comp_avg_pred_c(uint8_t *comp_pred, const uint8_t *pred, int width,
int height, const uint8_t *ref, int ref_stride,
const JNT_COMP_PARAMS *jcp_param) {
int i, j;
const int fwd_offset = jcp_param->fwd_offset;
const int bck_offset = jcp_param->bck_offset;
for (i = 0; i < height; ++i) {
for (j = 0; j < width; ++j) {
int tmp = pred[j] * bck_offset + ref[j] * fwd_offset;
tmp = ROUND_POWER_OF_TWO(tmp, DIST_PRECISION_BITS);
comp_pred[j] = (uint8_t)tmp;
}
comp_pred += width;
pred += width;
ref += ref_stride;
}
}
void aom_jnt_comp_avg_upsampled_pred_c(
MACROBLOCKD *xd, const AV1_COMMON *const cm, int mi_row, int mi_col,
const MV *const mv, uint8_t *comp_pred, const uint8_t *pred, int width,
int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref,
int ref_stride, const JNT_COMP_PARAMS *jcp_param) {
int i, j;
const int fwd_offset = jcp_param->fwd_offset;
const int bck_offset = jcp_param->bck_offset;
aom_upsampled_pred(xd, cm, mi_row, mi_col, mv, comp_pred, width, height,
subpel_x_q3, subpel_y_q3, ref, ref_stride);
for (i = 0; i < height; i++) {
for (j = 0; j < width; j++) {
int tmp = pred[j] * bck_offset + comp_pred[j] * fwd_offset;
tmp = ROUND_POWER_OF_TWO(tmp, DIST_PRECISION_BITS);
comp_pred[j] = (uint8_t)tmp;
}
comp_pred += width;
pred += width;
}
}
static void highbd_variance64(const uint8_t *a8, int a_stride,
const uint8_t *b8, int b_stride, int w, int h,
uint64_t *sse, int64_t *sum) {
const uint16_t *a = CONVERT_TO_SHORTPTR(a8);
const uint16_t *b = CONVERT_TO_SHORTPTR(b8);
int64_t tsum = 0;
uint64_t tsse = 0;
for (int i = 0; i < h; ++i) {
int32_t lsum = 0;
for (int j = 0; j < w; ++j) {
const int diff = a[j] - b[j];
lsum += diff;
tsse += (uint32_t)(diff * diff);
}
tsum += lsum;
a += a_stride;
b += b_stride;
}
*sum = tsum;
*sse = tsse;
}
uint64_t aom_highbd_sse_odd_size(const uint8_t *a, int a_stride,
const uint8_t *b, int b_stride, int w, int h) {
uint64_t sse;
int64_t sum;
highbd_variance64(a, a_stride, b, b_stride, w, h, &sse, &sum);
return sse;
}
static void highbd_8_variance(const uint8_t *a8, int a_stride,
const uint8_t *b8, int b_stride, int w, int h,
uint32_t *sse, int *sum) {
uint64_t sse_long = 0;
int64_t sum_long = 0;
highbd_variance64(a8, a_stride, b8, b_stride, w, h, &sse_long, &sum_long);
*sse = (uint32_t)sse_long;
*sum = (int)sum_long;
}
static void highbd_10_variance(const uint8_t *a8, int a_stride,
const uint8_t *b8, int b_stride, int w, int h,
uint32_t *sse, int *sum) {
uint64_t sse_long = 0;
int64_t sum_long = 0;
highbd_variance64(a8, a_stride, b8, b_stride, w, h, &sse_long, &sum_long);
*sse = (uint32_t)ROUND_POWER_OF_TWO(sse_long, 4);
*sum = (int)ROUND_POWER_OF_TWO(sum_long, 2);
}
static void highbd_12_variance(const uint8_t *a8, int a_stride,
const uint8_t *b8, int b_stride, int w, int h,
uint32_t *sse, int *sum) {
uint64_t sse_long = 0;
int64_t sum_long = 0;
highbd_variance64(a8, a_stride, b8, b_stride, w, h, &sse_long, &sum_long);
*sse = (uint32_t)ROUND_POWER_OF_TWO(sse_long, 8);
*sum = (int)ROUND_POWER_OF_TWO(sum_long, 4);
}
#define HIGHBD_VAR(W, H) \
uint32_t aom_highbd_8_variance##W##x##H##_c(const uint8_t *a, int a_stride, \
const uint8_t *b, int b_stride, \
uint32_t *sse) { \
int sum; \
highbd_8_variance(a, a_stride, b, b_stride, W, H, sse, &sum); \
return *sse - (uint32_t)(((int64_t)sum * sum) / (W * H)); \
} \
\
uint32_t aom_highbd_10_variance##W##x##H##_c(const uint8_t *a, int a_stride, \
const uint8_t *b, int b_stride, \
uint32_t *sse) { \
int sum; \
int64_t var; \
highbd_10_variance(a, a_stride, b, b_stride, W, H, sse, &sum); \
var = (int64_t)(*sse) - (((int64_t)sum * sum) / (W * H)); \
return (var >= 0) ? (uint32_t)var : 0; \
} \
\
uint32_t aom_highbd_12_variance##W##x##H##_c(const uint8_t *a, int a_stride, \
const uint8_t *b, int b_stride, \
uint32_t *sse) { \
int sum; \
int64_t var; \
highbd_12_variance(a, a_stride, b, b_stride, W, H, sse, &sum); \
var = (int64_t)(*sse) - (((int64_t)sum * sum) / (W * H)); \
return (var >= 0) ? (uint32_t)var : 0; \
}
#define HIGHBD_GET_VAR(S) \
void aom_highbd_8_get##S##x##S##var_c(const uint8_t *src, int src_stride, \
const uint8_t *ref, int ref_stride, \
uint32_t *sse, int *sum) { \
highbd_8_variance(src, src_stride, ref, ref_stride, S, S, sse, sum); \
} \
\
void aom_highbd_10_get##S##x##S##var_c(const uint8_t *src, int src_stride, \
const uint8_t *ref, int ref_stride, \
uint32_t *sse, int *sum) { \
highbd_10_variance(src, src_stride, ref, ref_stride, S, S, sse, sum); \
} \
\
void aom_highbd_12_get##S##x##S##var_c(const uint8_t *src, int src_stride, \
const uint8_t *ref, int ref_stride, \
uint32_t *sse, int *sum) { \
highbd_12_variance(src, src_stride, ref, ref_stride, S, S, sse, sum); \
}
#define HIGHBD_MSE(W, H) \
uint32_t aom_highbd_8_mse##W##x##H##_c(const uint8_t *src, int src_stride, \
const uint8_t *ref, int ref_stride, \
uint32_t *sse) { \
int sum; \
highbd_8_variance(src, src_stride, ref, ref_stride, W, H, sse, &sum); \
return *sse; \
} \
\
uint32_t aom_highbd_10_mse##W##x##H##_c(const uint8_t *src, int src_stride, \
const uint8_t *ref, int ref_stride, \
uint32_t *sse) { \
int sum; \
highbd_10_variance(src, src_stride, ref, ref_stride, W, H, sse, &sum); \
return *sse; \
} \
\
uint32_t aom_highbd_12_mse##W##x##H##_c(const uint8_t *src, int src_stride, \
const uint8_t *ref, int ref_stride, \
uint32_t *sse) { \
int sum; \
highbd_12_variance(src, src_stride, ref, ref_stride, W, H, sse, &sum); \
return *sse; \
}
void aom_highbd_var_filter_block2d_bil_first_pass(
const uint8_t *src_ptr8, uint16_t *output_ptr,
unsigned int src_pixels_per_line, int pixel_step,
unsigned int output_height, unsigned int output_width,
const uint8_t *filter) {
unsigned int i, j;
uint16_t *src_ptr = CONVERT_TO_SHORTPTR(src_ptr8);
for (i = 0; i < output_height; ++i) {
for (j = 0; j < output_width; ++j) {
output_ptr[j] = ROUND_POWER_OF_TWO(
(int)src_ptr[0] * filter[0] + (int)src_ptr[pixel_step] * filter[1],
FILTER_BITS);
++src_ptr;
}
// Next row...
src_ptr += src_pixels_per_line - output_width;
output_ptr += output_width;
}
}
void aom_highbd_var_filter_block2d_bil_second_pass(
const uint16_t *src_ptr, uint16_t *output_ptr,
unsigned int src_pixels_per_line, unsigned int pixel_step,
unsigned int output_height, unsigned int output_width,
const uint8_t *filter) {
unsigned int i, j;
for (i = 0; i < output_height; ++i) {
for (j = 0; j < output_width; ++j) {
output_ptr[j] = ROUND_POWER_OF_TWO(
(int)src_ptr[0] * filter[0] + (int)src_ptr[pixel_step] * filter[1],
FILTER_BITS);
++src_ptr;
}
src_ptr += src_pixels_per_line - output_width;
output_ptr += output_width;
}
}
#define HIGHBD_SUBPIX_VAR(W, H) \
uint32_t aom_highbd_8_sub_pixel_variance##W##x##H##_c( \
const uint8_t *src, int src_stride, int xoffset, int yoffset, \
const uint8_t *dst, int dst_stride, uint32_t *sse) { \
uint16_t fdata3[(H + 1) * W]; \
uint16_t temp2[H * W]; \
\
aom_highbd_var_filter_block2d_bil_first_pass( \
src, fdata3, src_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \
aom_highbd_var_filter_block2d_bil_second_pass( \
fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \
\
return aom_highbd_8_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp2), W, \
dst, dst_stride, sse); \
} \
\
uint32_t aom_highbd_10_sub_pixel_variance##W##x##H##_c( \
const uint8_t *src, int src_stride, int xoffset, int yoffset, \
const uint8_t *dst, int dst_stride, uint32_t *sse) { \
uint16_t fdata3[(H + 1) * W]; \
uint16_t temp2[H * W]; \
\
aom_highbd_var_filter_block2d_bil_first_pass( \
src, fdata3, src_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \
aom_highbd_var_filter_block2d_bil_second_pass( \
fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \
\
return aom_highbd_10_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp2), W, \
dst, dst_stride, sse); \
} \
\
uint32_t aom_highbd_12_sub_pixel_variance##W##x##H##_c( \
const uint8_t *src, int src_stride, int xoffset, int yoffset, \
const uint8_t *dst, int dst_stride, uint32_t *sse) { \
uint16_t fdata3[(H + 1) * W]; \
uint16_t temp2[H * W]; \
\
aom_highbd_var_filter_block2d_bil_first_pass( \
src, fdata3, src_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \
aom_highbd_var_filter_block2d_bil_second_pass( \
fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \
\
return aom_highbd_12_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp2), W, \
dst, dst_stride, sse); \
}
#define HIGHBD_SUBPIX_AVG_VAR(W, H) \
uint32_t aom_highbd_8_sub_pixel_avg_variance##W##x##H##_c( \
const uint8_t *src, int src_stride, int xoffset, int yoffset, \
const uint8_t *dst, int dst_stride, uint32_t *sse, \
const uint8_t *second_pred) { \
uint16_t fdata3[(H + 1) * W]; \
uint16_t temp2[H * W]; \
DECLARE_ALIGNED(16, uint16_t, temp3[H * W]); \
\
aom_highbd_var_filter_block2d_bil_first_pass( \
src, fdata3, src_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \
aom_highbd_var_filter_block2d_bil_second_pass( \
fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \
\
aom_highbd_comp_avg_pred_c(temp3, second_pred, W, H, \
CONVERT_TO_BYTEPTR(temp2), W); \
\
return aom_highbd_8_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp3), W, \
dst, dst_stride, sse); \
} \
\
uint32_t aom_highbd_10_sub_pixel_avg_variance##W##x##H##_c( \
const uint8_t *src, int src_stride, int xoffset, int yoffset, \
const uint8_t *dst, int dst_stride, uint32_t *sse, \
const uint8_t *second_pred) { \
uint16_t fdata3[(H + 1) * W]; \
uint16_t temp2[H * W]; \
DECLARE_ALIGNED(16, uint16_t, temp3[H * W]); \
\
aom_highbd_var_filter_block2d_bil_first_pass( \
src, fdata3, src_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \
aom_highbd_var_filter_block2d_bil_second_pass( \
fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \
\
aom_highbd_comp_avg_pred_c(temp3, second_pred, W, H, \
CONVERT_TO_BYTEPTR(temp2), W); \
\
return aom_highbd_10_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp3), W, \
dst, dst_stride, sse); \
} \
\
uint32_t aom_highbd_12_sub_pixel_avg_variance##W##x##H##_c( \
const uint8_t *src, int src_stride, int xoffset, int yoffset, \
const uint8_t *dst, int dst_stride, uint32_t *sse, \
const uint8_t *second_pred) { \
uint16_t fdata3[(H + 1) * W]; \
uint16_t temp2[H * W]; \
DECLARE_ALIGNED(16, uint16_t, temp3[H * W]); \
\
aom_highbd_var_filter_block2d_bil_first_pass( \
src, fdata3, src_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \
aom_highbd_var_filter_block2d_bil_second_pass( \
fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \
\
aom_highbd_comp_avg_pred_c(temp3, second_pred, W, H, \
CONVERT_TO_BYTEPTR(temp2), W); \
\
return aom_highbd_12_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp3), W, \
dst, dst_stride, sse); \
} \
\
uint32_t aom_highbd_8_jnt_sub_pixel_avg_variance##W##x##H##_c( \
const uint8_t *src, int src_stride, int xoffset, int yoffset, \
const uint8_t *dst, int dst_stride, uint32_t *sse, \
const uint8_t *second_pred, const JNT_COMP_PARAMS *jcp_param) { \
uint16_t fdata3[(H + 1) * W]; \
uint16_t temp2[H * W]; \
DECLARE_ALIGNED(16, uint16_t, temp3[H * W]); \
\
aom_highbd_var_filter_block2d_bil_first_pass( \
src, fdata3, src_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \
aom_highbd_var_filter_block2d_bil_second_pass( \
fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \
\
aom_highbd_jnt_comp_avg_pred(temp3, second_pred, W, H, \
CONVERT_TO_BYTEPTR(temp2), W, jcp_param); \
\
return aom_highbd_8_variance##W##x##H(CONVERT_TO_BYTEPTR(temp3), W, dst, \
dst_stride, sse); \
} \
\
uint32_t aom_highbd_10_jnt_sub_pixel_avg_variance##W##x##H##_c( \
const uint8_t *src, int src_stride, int xoffset, int yoffset, \
const uint8_t *dst, int dst_stride, uint32_t *sse, \
const uint8_t *second_pred, const JNT_COMP_PARAMS *jcp_param) { \
uint16_t fdata3[(H + 1) * W]; \
uint16_t temp2[H * W]; \
DECLARE_ALIGNED(16, uint16_t, temp3[H * W]); \
\
aom_highbd_var_filter_block2d_bil_first_pass( \
src, fdata3, src_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \
aom_highbd_var_filter_block2d_bil_second_pass( \
fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \
\
aom_highbd_jnt_comp_avg_pred(temp3, second_pred, W, H, \
CONVERT_TO_BYTEPTR(temp2), W, jcp_param); \
\
return aom_highbd_10_variance##W##x##H(CONVERT_TO_BYTEPTR(temp3), W, dst, \
dst_stride, sse); \
} \
\
uint32_t aom_highbd_12_jnt_sub_pixel_avg_variance##W##x##H##_c( \
const uint8_t *src, int src_stride, int xoffset, int yoffset, \
const uint8_t *dst, int dst_stride, uint32_t *sse, \
const uint8_t *second_pred, const JNT_COMP_PARAMS *jcp_param) { \
uint16_t fdata3[(H + 1) * W]; \
uint16_t temp2[H * W]; \
DECLARE_ALIGNED(16, uint16_t, temp3[H * W]); \
\
aom_highbd_var_filter_block2d_bil_first_pass( \
src, fdata3, src_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \
aom_highbd_var_filter_block2d_bil_second_pass( \
fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \
\
aom_highbd_jnt_comp_avg_pred(temp3, second_pred, W, H, \
CONVERT_TO_BYTEPTR(temp2), W, jcp_param); \
\
return aom_highbd_12_variance##W##x##H(CONVERT_TO_BYTEPTR(temp3), W, dst, \
dst_stride, sse); \
}
/* All three forms of the variance are available in the same sizes. */
#define HIGHBD_VARIANCES(W, H) \
HIGHBD_VAR(W, H) \
HIGHBD_SUBPIX_VAR(W, H) \
HIGHBD_SUBPIX_AVG_VAR(W, H)
HIGHBD_VARIANCES(128, 128)
HIGHBD_VARIANCES(128, 64)
HIGHBD_VARIANCES(64, 128)
HIGHBD_VARIANCES(64, 64)
HIGHBD_VARIANCES(64, 32)
HIGHBD_VARIANCES(32, 64)
HIGHBD_VARIANCES(32, 32)
HIGHBD_VARIANCES(32, 16)
HIGHBD_VARIANCES(16, 32)
HIGHBD_VARIANCES(16, 16)
HIGHBD_VARIANCES(16, 8)
HIGHBD_VARIANCES(8, 16)
HIGHBD_VARIANCES(8, 8)
HIGHBD_VARIANCES(8, 4)
HIGHBD_VARIANCES(4, 8)
HIGHBD_VARIANCES(4, 4)
HIGHBD_VARIANCES(4, 2)
HIGHBD_VARIANCES(2, 4)
HIGHBD_VARIANCES(2, 2)
HIGHBD_VARIANCES(4, 16)
HIGHBD_VARIANCES(16, 4)
HIGHBD_VARIANCES(8, 32)
HIGHBD_VARIANCES(32, 8)
HIGHBD_VARIANCES(16, 64)
HIGHBD_VARIANCES(64, 16)
HIGHBD_GET_VAR(8)
HIGHBD_GET_VAR(16)
HIGHBD_MSE(16, 16)
HIGHBD_MSE(16, 8)
HIGHBD_MSE(8, 16)
HIGHBD_MSE(8, 8)
void aom_highbd_comp_avg_pred_c(uint16_t *comp_pred, const uint8_t *pred8,
int width, int height, const uint8_t *ref8,
int ref_stride) {
int i, j;
uint16_t *pred = CONVERT_TO_SHORTPTR(pred8);
uint16_t *ref = CONVERT_TO_SHORTPTR(ref8);
for (i = 0; i < height; ++i) {
for (j = 0; j < width; ++j) {
const int tmp = pred[j] + ref[j];
comp_pred[j] = ROUND_POWER_OF_TWO(tmp, 1);
}
comp_pred += width;
pred += width;
ref += ref_stride;
}
}
void aom_highbd_upsampled_pred_c(MACROBLOCKD *xd,
const struct AV1Common *const cm, int mi_row,
int mi_col, const MV *const mv,
uint16_t *comp_pred, int width, int height,
int subpel_x_q3, int subpel_y_q3,
const uint8_t *ref8, int ref_stride, int bd) {
// expect xd == NULL only in tests
if (xd != NULL) {
const MB_MODE_INFO *mi = xd->mi[0];
const int ref_num = 0;
const int is_intrabc = is_intrabc_block(mi);
const struct scale_factors *const sf =
is_intrabc ? &cm->sf_identity : &xd->block_refs[ref_num]->sf;
const int is_scaled = av1_is_scaled(sf);
if (is_scaled) {
// Note: This is mostly a copy from the >=8X8 case in
// build_inter_predictors() function, with some small tweaks.
uint8_t *comp_pred8 = CONVERT_TO_BYTEPTR(comp_pred);
// Some assumptions.
const int plane = 0;
// Get pre-requisites.
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int ssx = pd->subsampling_x;
const int ssy = pd->subsampling_y;
assert(ssx == 0 && ssy == 0);
const struct buf_2d *const dst_buf = &pd->dst;
const struct buf_2d *const pre_buf =
is_intrabc ? dst_buf : &pd->pre[ref_num];
const int mi_x = mi_col * MI_SIZE;
const int mi_y = mi_row * MI_SIZE;
// Calculate subpel_x/y and x/y_step.
const int row_start = 0; // Because ss_y is 0.
const int col_start = 0; // Because ss_x is 0.
const int pre_x = (mi_x + MI_SIZE * col_start) >> ssx;
const int pre_y = (mi_y + MI_SIZE * row_start) >> ssy;
int orig_pos_y = pre_y << SUBPEL_BITS;
orig_pos_y += mv->row * (1 << (1 - ssy));
int orig_pos_x = pre_x << SUBPEL_BITS;
orig_pos_x += mv->col * (1 << (1 - ssx));
int pos_y = sf->scale_value_y(orig_pos_y, sf);
int pos_x = sf->scale_value_x(orig_pos_x, sf);
pos_x += SCALE_EXTRA_OFF;
pos_y += SCALE_EXTRA_OFF;
const int top = -AOM_LEFT_TOP_MARGIN_SCALED(ssy);
const int left = -AOM_LEFT_TOP_MARGIN_SCALED(ssx);
const int bottom = (pre_buf->height + AOM_INTERP_EXTEND)
<< SCALE_SUBPEL_BITS;
const int right = (pre_buf->width + AOM_INTERP_EXTEND)
<< SCALE_SUBPEL_BITS;
pos_y = clamp(pos_y, top, bottom);
pos_x = clamp(pos_x, left, right);
const uint8_t *const pre =
pre_buf->buf0 + (pos_y >> SCALE_SUBPEL_BITS) * pre_buf->stride +
(pos_x >> SCALE_SUBPEL_BITS);
const SubpelParams subpel_params = { sf->x_step_q4, sf->y_step_q4,
pos_x & SCALE_SUBPEL_MASK,
pos_y & SCALE_SUBPEL_MASK };
// Get warp types.
const WarpedMotionParams *const wm =
&xd->global_motion[mi->ref_frame[ref_num]];
const int is_global = is_global_mv_block(mi, wm->wmtype);
WarpTypesAllowed warp_types;
warp_types.global_warp_allowed = is_global;
warp_types.local_warp_allowed = mi->motion_mode == WARPED_CAUSAL;
// Get convolve parameters.
ConvolveParams conv_params = get_conv_params(ref_num, 0, plane, xd->bd);
const InterpFilters filters =
av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
// Get the inter predictor.
const int build_for_obmc = 0;
av1_make_inter_predictor(pre, pre_buf->stride, comp_pred8, width,
&subpel_params, sf, width, height, &conv_params,
filters, &warp_types, mi_x >> pd->subsampling_x,
mi_y >> pd->subsampling_y, plane, ref_num, mi,
build_for_obmc, xd, cm->allow_warped_motion);
return;
}
}
const InterpFilterParams *filter =
av1_get_interp_filter_params_with_block_size(EIGHTTAP_REGULAR, 8);
if (!subpel_x_q3 && !subpel_y_q3) {
const uint16_t *ref;
int i;
ref = CONVERT_TO_SHORTPTR(ref8);
for (i = 0; i < height; i++) {
memcpy(comp_pred, ref, width * sizeof(*comp_pred));
comp_pred += width;
ref += ref_stride;
}
} else if (!subpel_y_q3) {
const int16_t *const kernel =
av1_get_interp_filter_subpel_kernel(filter, subpel_x_q3 << 1);
aom_highbd_convolve8_horiz(ref8, ref_stride, CONVERT_TO_BYTEPTR(comp_pred),
width, kernel, 16, NULL, -1, width, height, bd);
} else if (!subpel_x_q3) {
const int16_t *const kernel =
av1_get_interp_filter_subpel_kernel(filter, subpel_y_q3 << 1);
aom_highbd_convolve8_vert(ref8, ref_stride, CONVERT_TO_BYTEPTR(comp_pred),
width, NULL, -1, kernel, 16, width, height, bd);
} else {
DECLARE_ALIGNED(16, uint16_t,
temp[((MAX_SB_SIZE + 16) + 16) * MAX_SB_SIZE]);
const int16_t *const kernel_x =
av1_get_interp_filter_subpel_kernel(filter, subpel_x_q3 << 1);
const int16_t *const kernel_y =
av1_get_interp_filter_subpel_kernel(filter, subpel_y_q3 << 1);
const int intermediate_height =
(((height - 1) * 8 + subpel_y_q3) >> 3) + filter->taps;
assert(intermediate_height <= (MAX_SB_SIZE * 2 + 16) + 16);
aom_highbd_convolve8_horiz(ref8 - ref_stride * ((filter->taps >> 1) - 1),
ref_stride, CONVERT_TO_BYTEPTR(temp),
MAX_SB_SIZE, kernel_x, 16, NULL, -1, width,
intermediate_height, bd);
aom_highbd_convolve8_vert(
CONVERT_TO_BYTEPTR(temp + MAX_SB_SIZE * ((filter->taps >> 1) - 1)),
MAX_SB_SIZE, CONVERT_TO_BYTEPTR(comp_pred), width, NULL, -1, kernel_y,
16, width, height, bd);
}
}
void aom_highbd_comp_avg_upsampled_pred_c(
MACROBLOCKD *xd, const struct AV1Common *const cm, int mi_row, int mi_col,
const MV *const mv, uint16_t *comp_pred, const uint8_t *pred8, int width,
int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref8,
int ref_stride, int bd) {
int i, j;
const uint16_t *pred = CONVERT_TO_SHORTPTR(pred8);
aom_highbd_upsampled_pred(xd, cm, mi_row, mi_col, mv, comp_pred, width,
height, subpel_x_q3, subpel_y_q3, ref8, ref_stride,
bd);
for (i = 0; i < height; ++i) {
for (j = 0; j < width; ++j) {
comp_pred[j] = ROUND_POWER_OF_TWO(pred[j] + comp_pred[j], 1);
}
comp_pred += width;
pred += width;
}
}
void aom_highbd_jnt_comp_avg_pred_c(uint16_t *comp_pred, const uint8_t *pred8,
int width, int height, const uint8_t *ref8,
int ref_stride,
const JNT_COMP_PARAMS *jcp_param) {
int i, j;
const int fwd_offset = jcp_param->fwd_offset;
const int bck_offset = jcp_param->bck_offset;
uint16_t *pred = CONVERT_TO_SHORTPTR(pred8);
uint16_t *ref = CONVERT_TO_SHORTPTR(ref8);
for (i = 0; i < height; ++i) {
for (j = 0; j < width; ++j) {
int tmp = pred[j] * bck_offset + ref[j] * fwd_offset;
tmp = ROUND_POWER_OF_TWO(tmp, DIST_PRECISION_BITS);
comp_pred[j] = (uint16_t)tmp;
}
comp_pred += width;
pred += width;
ref += ref_stride;
}
}
void aom_highbd_jnt_comp_avg_upsampled_pred_c(
MACROBLOCKD *xd, const struct AV1Common *const cm, int mi_row, int mi_col,
const MV *const mv, uint16_t *comp_pred, const uint8_t *pred8, int width,
int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref8,
int ref_stride, int bd, const JNT_COMP_PARAMS *jcp_param) {
int i, j;
const int fwd_offset = jcp_param->fwd_offset;
const int bck_offset = jcp_param->bck_offset;
const uint16_t *pred = CONVERT_TO_SHORTPTR(pred8);
aom_highbd_upsampled_pred(xd, cm, mi_row, mi_col, mv, comp_pred, width,
height, subpel_x_q3, subpel_y_q3, ref8, ref_stride,
bd);
for (i = 0; i < height; i++) {
for (j = 0; j < width; j++) {
int tmp = pred[j] * bck_offset + comp_pred[j] * fwd_offset;
tmp = ROUND_POWER_OF_TWO(tmp, DIST_PRECISION_BITS);
comp_pred[j] = (uint16_t)tmp;
}
comp_pred += width;
pred += width;
}
}
void aom_comp_mask_pred_c(uint8_t *comp_pred, const uint8_t *pred, int width,
int height, const uint8_t *ref, int ref_stride,
const uint8_t *mask, int mask_stride,
int invert_mask) {
int i, j;
const uint8_t *src0 = invert_mask ? pred : ref;
const uint8_t *src1 = invert_mask ? ref : pred;
const int stride0 = invert_mask ? width : ref_stride;
const int stride1 = invert_mask ? ref_stride : width;
for (i = 0; i < height; ++i) {
for (j = 0; j < width; ++j) {
comp_pred[j] = AOM_BLEND_A64(mask[j], src0[j], src1[j]);
}
comp_pred += width;
src0 += stride0;
src1 += stride1;
mask += mask_stride;
}
}
void aom_comp_mask_upsampled_pred(MACROBLOCKD *xd, const AV1_COMMON *const cm,
int mi_row, int mi_col, const MV *const mv,
uint8_t *comp_pred, const uint8_t *pred,
int width, int height, int subpel_x_q3,
int subpel_y_q3, const uint8_t *ref,
int ref_stride, const uint8_t *mask,
int mask_stride, int invert_mask) {
if (subpel_x_q3 | subpel_y_q3) {
aom_upsampled_pred(xd, cm, mi_row, mi_col, mv, comp_pred, width, height,
subpel_x_q3, subpel_y_q3, ref, ref_stride);
ref = comp_pred;
ref_stride = width;
}
aom_comp_mask_pred(comp_pred, pred, width, height, ref, ref_stride, mask,
mask_stride, invert_mask);
}
#define MASK_SUBPIX_VAR(W, H) \
unsigned int aom_masked_sub_pixel_variance##W##x##H##_c( \
const uint8_t *src, int src_stride, int xoffset, int yoffset, \
const uint8_t *ref, int ref_stride, const uint8_t *second_pred, \
const uint8_t *msk, int msk_stride, int invert_mask, \
unsigned int *sse) { \
uint16_t fdata3[(H + 1) * W]; \
uint8_t temp2[H * W]; \
DECLARE_ALIGNED(16, uint8_t, temp3[H * W]); \
\
aom_var_filter_block2d_bil_first_pass_c(src, fdata3, src_stride, 1, H + 1, \
W, bilinear_filters_2t[xoffset]); \
aom_var_filter_block2d_bil_second_pass_c(fdata3, temp2, W, W, H, W, \
bilinear_filters_2t[yoffset]); \
\
aom_comp_mask_pred_c(temp3, second_pred, W, H, temp2, W, msk, msk_stride, \
invert_mask); \
return aom_variance##W##x##H##_c(temp3, W, ref, ref_stride, sse); \
}
MASK_SUBPIX_VAR(4, 4)
MASK_SUBPIX_VAR(4, 8)
MASK_SUBPIX_VAR(8, 4)
MASK_SUBPIX_VAR(8, 8)
MASK_SUBPIX_VAR(8, 16)
MASK_SUBPIX_VAR(16, 8)
MASK_SUBPIX_VAR(16, 16)
MASK_SUBPIX_VAR(16, 32)
MASK_SUBPIX_VAR(32, 16)
MASK_SUBPIX_VAR(32, 32)
MASK_SUBPIX_VAR(32, 64)
MASK_SUBPIX_VAR(64, 32)
MASK_SUBPIX_VAR(64, 64)
MASK_SUBPIX_VAR(64, 128)
MASK_SUBPIX_VAR(128, 64)
MASK_SUBPIX_VAR(128, 128)
MASK_SUBPIX_VAR(4, 16)
MASK_SUBPIX_VAR(16, 4)
MASK_SUBPIX_VAR(8, 32)
MASK_SUBPIX_VAR(32, 8)
MASK_SUBPIX_VAR(16, 64)
MASK_SUBPIX_VAR(64, 16)
void aom_highbd_comp_mask_pred_c(uint16_t *comp_pred, const uint8_t *pred8,
int width, int height, const uint8_t *ref8,
int ref_stride, const uint8_t *mask,
int mask_stride, int invert_mask) {
int i, j;
uint16_t *pred = CONVERT_TO_SHORTPTR(pred8);
uint16_t *ref = CONVERT_TO_SHORTPTR(ref8);
for (i = 0; i < height; ++i) {
for (j = 0; j < width; ++j) {
if (!invert_mask)
comp_pred[j] = AOM_BLEND_A64(mask[j], ref[j], pred[j]);
else
comp_pred[j] = AOM_BLEND_A64(mask[j], pred[j], ref[j]);
}
comp_pred += width;
pred += width;
ref += ref_stride;
mask += mask_stride;
}
}
void aom_highbd_comp_mask_upsampled_pred(
MACROBLOCKD *xd, const struct AV1Common *const cm, int mi_row, int mi_col,
const MV *const mv, uint16_t *comp_pred, const uint8_t *pred8, int width,
int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref8,
int ref_stride, const uint8_t *mask, int mask_stride, int invert_mask,
int bd) {
aom_highbd_upsampled_pred(xd, cm, mi_row, mi_col, mv, comp_pred, width,
height, subpel_x_q3, subpel_y_q3, ref8, ref_stride,
bd);
aom_highbd_comp_mask_pred(comp_pred, pred8, width, height,
CONVERT_TO_BYTEPTR(comp_pred), width, mask,
mask_stride, invert_mask);
}
#define HIGHBD_MASK_SUBPIX_VAR(W, H) \
unsigned int aom_highbd_8_masked_sub_pixel_variance##W##x##H##_c( \
const uint8_t *src, int src_stride, int xoffset, int yoffset, \
const uint8_t *ref, int ref_stride, const uint8_t *second_pred, \
const uint8_t *msk, int msk_stride, int invert_mask, \
unsigned int *sse) { \
uint16_t fdata3[(H + 1) * W]; \
uint16_t temp2[H * W]; \
DECLARE_ALIGNED(16, uint16_t, temp3[H * W]); \
\
aom_highbd_var_filter_block2d_bil_first_pass( \
src, fdata3, src_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \
aom_highbd_var_filter_block2d_bil_second_pass( \
fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \
\
aom_highbd_comp_mask_pred_c(temp3, second_pred, W, H, \
CONVERT_TO_BYTEPTR(temp2), W, msk, msk_stride, \
invert_mask); \
\
return aom_highbd_8_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp3), W, \
ref, ref_stride, sse); \
} \
\
unsigned int aom_highbd_10_masked_sub_pixel_variance##W##x##H##_c( \
const uint8_t *src, int src_stride, int xoffset, int yoffset, \
const uint8_t *ref, int ref_stride, const uint8_t *second_pred, \
const uint8_t *msk, int msk_stride, int invert_mask, \
unsigned int *sse) { \
uint16_t fdata3[(H + 1) * W]; \
uint16_t temp2[H * W]; \
DECLARE_ALIGNED(16, uint16_t, temp3[H * W]); \
\
aom_highbd_var_filter_block2d_bil_first_pass( \
src, fdata3, src_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \
aom_highbd_var_filter_block2d_bil_second_pass( \
fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \
\
aom_highbd_comp_mask_pred_c(temp3, second_pred, W, H, \
CONVERT_TO_BYTEPTR(temp2), W, msk, msk_stride, \
invert_mask); \
\
return aom_highbd_10_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp3), W, \
ref, ref_stride, sse); \
} \
\
unsigned int aom_highbd_12_masked_sub_pixel_variance##W##x##H##_c( \
const uint8_t *src, int src_stride, int xoffset, int yoffset, \
const uint8_t *ref, int ref_stride, const uint8_t *second_pred, \
const uint8_t *msk, int msk_stride, int invert_mask, \
unsigned int *sse) { \
uint16_t fdata3[(H + 1) * W]; \
uint16_t temp2[H * W]; \
DECLARE_ALIGNED(16, uint16_t, temp3[H * W]); \
\
aom_highbd_var_filter_block2d_bil_first_pass( \
src, fdata3, src_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \
aom_highbd_var_filter_block2d_bil_second_pass( \
fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \
\
aom_highbd_comp_mask_pred_c(temp3, second_pred, W, H, \
CONVERT_TO_BYTEPTR(temp2), W, msk, msk_stride, \
invert_mask); \
\
return aom_highbd_12_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp3), W, \
ref, ref_stride, sse); \
}
HIGHBD_MASK_SUBPIX_VAR(4, 4)
HIGHBD_MASK_SUBPIX_VAR(4, 8)
HIGHBD_MASK_SUBPIX_VAR(8, 4)
HIGHBD_MASK_SUBPIX_VAR(8, 8)
HIGHBD_MASK_SUBPIX_VAR(8, 16)
HIGHBD_MASK_SUBPIX_VAR(16, 8)
HIGHBD_MASK_SUBPIX_VAR(16, 16)
HIGHBD_MASK_SUBPIX_VAR(16, 32)
HIGHBD_MASK_SUBPIX_VAR(32, 16)
HIGHBD_MASK_SUBPIX_VAR(32, 32)
HIGHBD_MASK_SUBPIX_VAR(32, 64)
HIGHBD_MASK_SUBPIX_VAR(64, 32)
HIGHBD_MASK_SUBPIX_VAR(64, 64)
HIGHBD_MASK_SUBPIX_VAR(64, 128)
HIGHBD_MASK_SUBPIX_VAR(128, 64)
HIGHBD_MASK_SUBPIX_VAR(128, 128)
HIGHBD_MASK_SUBPIX_VAR(4, 16)
HIGHBD_MASK_SUBPIX_VAR(16, 4)
HIGHBD_MASK_SUBPIX_VAR(8, 32)
HIGHBD_MASK_SUBPIX_VAR(32, 8)
HIGHBD_MASK_SUBPIX_VAR(16, 64)
HIGHBD_MASK_SUBPIX_VAR(64, 16)
static INLINE void obmc_variance(const uint8_t *pre, int pre_stride,
const int32_t *wsrc, const int32_t *mask,
int w, int h, unsigned int *sse, int *sum) {
int i, j;
*sse = 0;
*sum = 0;
for (i = 0; i < h; i++) {
for (j = 0; j < w; j++) {
int diff = ROUND_POWER_OF_TWO_SIGNED(wsrc[j] - pre[j] * mask[j], 12);
*sum += diff;
*sse += diff * diff;
}
pre += pre_stride;
wsrc += w;
mask += w;
}
}
#define OBMC_VAR(W, H) \
unsigned int aom_obmc_variance##W##x##H##_c( \
const uint8_t *pre, int pre_stride, const int32_t *wsrc, \
const int32_t *mask, unsigned int *sse) { \
int sum; \
obmc_variance(pre, pre_stride, wsrc, mask, W, H, sse, &sum); \
return *sse - (unsigned int)(((int64_t)sum * sum) / (W * H)); \
}
#define OBMC_SUBPIX_VAR(W, H) \
unsigned int aom_obmc_sub_pixel_variance##W##x##H##_c( \
const uint8_t *pre, int pre_stride, int xoffset, int yoffset, \
const int32_t *wsrc, const int32_t *mask, unsigned int *sse) { \
uint16_t fdata3[(H + 1) * W]; \
uint8_t temp2[H * W]; \
\
aom_var_filter_block2d_bil_first_pass_c(pre, fdata3, pre_stride, 1, H + 1, \
W, bilinear_filters_2t[xoffset]); \
aom_var_filter_block2d_bil_second_pass_c(fdata3, temp2, W, W, H, W, \
bilinear_filters_2t[yoffset]); \
\
return aom_obmc_variance##W##x##H##_c(temp2, W, wsrc, mask, sse); \
}
OBMC_VAR(4, 4)
OBMC_SUBPIX_VAR(4, 4)
OBMC_VAR(4, 8)
OBMC_SUBPIX_VAR(4, 8)
OBMC_VAR(8, 4)
OBMC_SUBPIX_VAR(8, 4)
OBMC_VAR(8, 8)
OBMC_SUBPIX_VAR(8, 8)
OBMC_VAR(8, 16)
OBMC_SUBPIX_VAR(8, 16)
OBMC_VAR(16, 8)
OBMC_SUBPIX_VAR(16, 8)
OBMC_VAR(16, 16)
OBMC_SUBPIX_VAR(16, 16)
OBMC_VAR(16, 32)
OBMC_SUBPIX_VAR(16, 32)
OBMC_VAR(32, 16)
OBMC_SUBPIX_VAR(32, 16)
OBMC_VAR(32, 32)
OBMC_SUBPIX_VAR(32, 32)
OBMC_VAR(32, 64)
OBMC_SUBPIX_VAR(32, 64)
OBMC_VAR(64, 32)
OBMC_SUBPIX_VAR(64, 32)
OBMC_VAR(64, 64)
OBMC_SUBPIX_VAR(64, 64)
OBMC_VAR(64, 128)
OBMC_SUBPIX_VAR(64, 128)
OBMC_VAR(128, 64)
OBMC_SUBPIX_VAR(128, 64)
OBMC_VAR(128, 128)
OBMC_SUBPIX_VAR(128, 128)
OBMC_VAR(4, 16)
OBMC_SUBPIX_VAR(4, 16)
OBMC_VAR(16, 4)
OBMC_SUBPIX_VAR(16, 4)
OBMC_VAR(8, 32)
OBMC_SUBPIX_VAR(8, 32)
OBMC_VAR(32, 8)
OBMC_SUBPIX_VAR(32, 8)
OBMC_VAR(16, 64)
OBMC_SUBPIX_VAR(16, 64)
OBMC_VAR(64, 16)
OBMC_SUBPIX_VAR(64, 16)
static INLINE void highbd_obmc_variance64(const uint8_t *pre8, int pre_stride,
const int32_t *wsrc,
const int32_t *mask, int w, int h,
uint64_t *sse, int64_t *sum) {
int i, j;
uint16_t *pre = CONVERT_TO_SHORTPTR(pre8);
*sse = 0;
*sum = 0;
for (i = 0; i < h; i++) {
for (j = 0; j < w; j++) {
int diff = ROUND_POWER_OF_TWO_SIGNED(wsrc[j] - pre[j] * mask[j], 12);
*sum += diff;
*sse += diff * diff;
}
pre += pre_stride;
wsrc += w;
mask += w;
}
}
static INLINE void highbd_obmc_variance(const uint8_t *pre8, int pre_stride,
const int32_t *wsrc,
const int32_t *mask, int w, int h,
unsigned int *sse, int *sum) {
int64_t sum64;
uint64_t sse64;
highbd_obmc_variance64(pre8, pre_stride, wsrc, mask, w, h, &sse64, &sum64);
*sum = (int)sum64;
*sse = (unsigned int)sse64;
}
static INLINE void highbd_10_obmc_variance(const uint8_t *pre8, int pre_stride,
const int32_t *wsrc,
const int32_t *mask, int w, int h,
unsigned int *sse, int *sum) {
int64_t sum64;
uint64_t sse64;
highbd_obmc_variance64(pre8, pre_stride, wsrc, mask, w, h, &sse64, &sum64);
*sum = (int)ROUND_POWER_OF_TWO(sum64, 2);
*sse = (unsigned int)ROUND_POWER_OF_TWO(sse64, 4);
}
static INLINE void highbd_12_obmc_variance(const uint8_t *pre8, int pre_stride,
const int32_t *wsrc,
const int32_t *mask, int w, int h,
unsigned int *sse, int *sum) {
int64_t sum64;
uint64_t sse64;
highbd_obmc_variance64(pre8, pre_stride, wsrc, mask, w, h, &sse64, &sum64);
*sum = (int)ROUND_POWER_OF_TWO(sum64, 4);
*sse = (unsigned int)ROUND_POWER_OF_TWO(sse64, 8);
}
#define HIGHBD_OBMC_VAR(W, H) \
unsigned int aom_highbd_obmc_variance##W##x##H##_c( \
const uint8_t *pre, int pre_stride, const int32_t *wsrc, \
const int32_t *mask, unsigned int *sse) { \
int sum; \
highbd_obmc_variance(pre, pre_stride, wsrc, mask, W, H, sse, &sum); \
return *sse - (unsigned int)(((int64_t)sum * sum) / (W * H)); \
} \
\
unsigned int aom_highbd_10_obmc_variance##W##x##H##_c( \
const uint8_t *pre, int pre_stride, const int32_t *wsrc, \
const int32_t *mask, unsigned int *sse) { \
int sum; \
int64_t var; \
highbd_10_obmc_variance(pre, pre_stride, wsrc, mask, W, H, sse, &sum); \
var = (int64_t)(*sse) - (((int64_t)sum * sum) / (W * H)); \
return (var >= 0) ? (uint32_t)var : 0; \
} \
\
unsigned int aom_highbd_12_obmc_variance##W##x##H##_c( \
const uint8_t *pre, int pre_stride, const int32_t *wsrc, \
const int32_t *mask, unsigned int *sse) { \
int sum; \
int64_t var; \
highbd_12_obmc_variance(pre, pre_stride, wsrc, mask, W, H, sse, &sum); \
var = (int64_t)(*sse) - (((int64_t)sum * sum) / (W * H)); \
return (var >= 0) ? (uint32_t)var : 0; \
}
#define HIGHBD_OBMC_SUBPIX_VAR(W, H) \
unsigned int aom_highbd_obmc_sub_pixel_variance##W##x##H##_c( \
const uint8_t *pre, int pre_stride, int xoffset, int yoffset, \
const int32_t *wsrc, const int32_t *mask, unsigned int *sse) { \
uint16_t fdata3[(H + 1) * W]; \
uint16_t temp2[H * W]; \
\
aom_highbd_var_filter_block2d_bil_first_pass( \
pre, fdata3, pre_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \
aom_highbd_var_filter_block2d_bil_second_pass( \
fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \
\
return aom_highbd_obmc_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp2), W, \
wsrc, mask, sse); \
} \
\
unsigned int aom_highbd_10_obmc_sub_pixel_variance##W##x##H##_c( \
const uint8_t *pre, int pre_stride, int xoffset, int yoffset, \
const int32_t *wsrc, const int32_t *mask, unsigned int *sse) { \
uint16_t fdata3[(H + 1) * W]; \
uint16_t temp2[H * W]; \
\
aom_highbd_var_filter_block2d_bil_first_pass( \
pre, fdata3, pre_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \
aom_highbd_var_filter_block2d_bil_second_pass( \
fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \
\
return aom_highbd_10_obmc_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp2), \
W, wsrc, mask, sse); \
} \
\
unsigned int aom_highbd_12_obmc_sub_pixel_variance##W##x##H##_c( \
const uint8_t *pre, int pre_stride, int xoffset, int yoffset, \
const int32_t *wsrc, const int32_t *mask, unsigned int *sse) { \
uint16_t fdata3[(H + 1) * W]; \
uint16_t temp2[H * W]; \
\
aom_highbd_var_filter_block2d_bil_first_pass( \
pre, fdata3, pre_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \
aom_highbd_var_filter_block2d_bil_second_pass( \
fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \
\
return aom_highbd_12_obmc_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp2), \
W, wsrc, mask, sse); \
}
HIGHBD_OBMC_VAR(4, 4)
HIGHBD_OBMC_SUBPIX_VAR(4, 4)
HIGHBD_OBMC_VAR(4, 8)
HIGHBD_OBMC_SUBPIX_VAR(4, 8)
HIGHBD_OBMC_VAR(8, 4)
HIGHBD_OBMC_SUBPIX_VAR(8, 4)
HIGHBD_OBMC_VAR(8, 8)
HIGHBD_OBMC_SUBPIX_VAR(8, 8)
HIGHBD_OBMC_VAR(8, 16)
HIGHBD_OBMC_SUBPIX_VAR(8, 16)
HIGHBD_OBMC_VAR(16, 8)
HIGHBD_OBMC_SUBPIX_VAR(16, 8)
HIGHBD_OBMC_VAR(16, 16)
HIGHBD_OBMC_SUBPIX_VAR(16, 16)
HIGHBD_OBMC_VAR(16, 32)
HIGHBD_OBMC_SUBPIX_VAR(16, 32)
HIGHBD_OBMC_VAR(32, 16)
HIGHBD_OBMC_SUBPIX_VAR(32, 16)
HIGHBD_OBMC_VAR(32, 32)
HIGHBD_OBMC_SUBPIX_VAR(32, 32)
HIGHBD_OBMC_VAR(32, 64)
HIGHBD_OBMC_SUBPIX_VAR(32, 64)
HIGHBD_OBMC_VAR(64, 32)
HIGHBD_OBMC_SUBPIX_VAR(64, 32)
HIGHBD_OBMC_VAR(64, 64)
HIGHBD_OBMC_SUBPIX_VAR(64, 64)
HIGHBD_OBMC_VAR(64, 128)
HIGHBD_OBMC_SUBPIX_VAR(64, 128)
HIGHBD_OBMC_VAR(128, 64)
HIGHBD_OBMC_SUBPIX_VAR(128, 64)
HIGHBD_OBMC_VAR(128, 128)
HIGHBD_OBMC_SUBPIX_VAR(128, 128)
HIGHBD_OBMC_VAR(4, 16)
HIGHBD_OBMC_SUBPIX_VAR(4, 16)
HIGHBD_OBMC_VAR(16, 4)
HIGHBD_OBMC_SUBPIX_VAR(16, 4)
HIGHBD_OBMC_VAR(8, 32)
HIGHBD_OBMC_SUBPIX_VAR(8, 32)
HIGHBD_OBMC_VAR(32, 8)
HIGHBD_OBMC_SUBPIX_VAR(32, 8)
HIGHBD_OBMC_VAR(16, 64)
HIGHBD_OBMC_SUBPIX_VAR(16, 64)
HIGHBD_OBMC_VAR(64, 16)
HIGHBD_OBMC_SUBPIX_VAR(64, 16)