gecko-dev/dom/u2f/U2F.cpp

1070 строки
32 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "hasht.h"
#include "mozilla/dom/CallbackFunction.h"
#include "mozilla/dom/ContentChild.h"
#include "mozilla/dom/CryptoBuffer.h"
#include "mozilla/dom/NSSU2FTokenRemote.h"
#include "mozilla/dom/U2F.h"
#include "mozilla/Preferences.h"
#include "mozilla/ReentrantMonitor.h"
#include "mozilla/SizePrintfMacros.h"
#include "nsContentUtils.h"
#include "nsINSSU2FToken.h"
#include "nsNetCID.h"
#include "nsNSSComponent.h"
#include "nsURLParsers.h"
#include "nsXPCOMCIDInternal.h"
#include "pk11pub.h"
using mozilla::dom::ContentChild;
namespace mozilla {
namespace dom {
#define PREF_U2F_SOFTTOKEN_ENABLED "security.webauth.u2f_enable_softtoken"
#define PREF_U2F_USBTOKEN_ENABLED "security.webauth.u2f_enable_usbtoken"
NS_NAMED_LITERAL_CSTRING(kPoolName, "WebAuth_U2F-IO");
NS_NAMED_LITERAL_STRING(kFinishEnrollment, "navigator.id.finishEnrollment");
NS_NAMED_LITERAL_STRING(kGetAssertion, "navigator.id.getAssertion");
NS_INTERFACE_MAP_BEGIN_CYCLE_COLLECTION(U2F)
NS_WRAPPERCACHE_INTERFACE_MAP_ENTRY
NS_INTERFACE_MAP_ENTRY(nsISupports)
NS_INTERFACE_MAP_END
NS_IMPL_CYCLE_COLLECTING_ADDREF(U2F)
NS_IMPL_CYCLE_COLLECTING_RELEASE(U2F)
NS_IMPL_CYCLE_COLLECTION_WRAPPERCACHE(U2F, mParent)
static mozilla::LazyLogModule gU2FLog("u2f");
static nsresult
AssembleClientData(const nsAString& aOrigin, const nsAString& aTyp,
const nsAString& aChallenge, CryptoBuffer& aClientData)
{
MOZ_ASSERT(NS_IsMainThread());
U2FClientData clientDataObject;
clientDataObject.mTyp.Construct(aTyp); // "Typ" from the U2F specification
clientDataObject.mChallenge.Construct(aChallenge);
clientDataObject.mOrigin.Construct(aOrigin);
nsAutoString json;
if (NS_WARN_IF(!clientDataObject.ToJSON(json))) {
return NS_ERROR_FAILURE;
}
if (NS_WARN_IF(!aClientData.Assign(NS_ConvertUTF16toUTF8(json)))) {
return NS_ERROR_OUT_OF_MEMORY;
}
return NS_OK;
}
U2FStatus::U2FStatus()
: mCount(0)
, mIsStopped(false)
, mReentrantMonitor("U2FStatus")
{}
U2FStatus::~U2FStatus()
{}
void
U2FStatus::WaitGroupAdd()
{
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
mCount += 1;
MOZ_LOG(gU2FLog, LogLevel::Debug,
("U2FStatus::WaitGroupAdd, now %d", mCount));
}
void
U2FStatus::WaitGroupDone()
{
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
MOZ_ASSERT(mCount > 0);
mCount -= 1;
MOZ_LOG(gU2FLog, LogLevel::Debug,
("U2FStatus::WaitGroupDone, now %d", mCount));
if (mCount == 0) {
mReentrantMonitor.NotifyAll();
}
}
void
U2FStatus::WaitGroupWait()
{
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
MOZ_LOG(gU2FLog, LogLevel::Debug,
("U2FStatus::WaitGroupWait, now %d", mCount));
while (mCount > 0) {
mReentrantMonitor.Wait();
}
MOZ_ASSERT(mCount == 0);
MOZ_LOG(gU2FLog, LogLevel::Debug,
("U2FStatus::Wait completed, now count=%d stopped=%d", mCount,
mIsStopped));
}
void
U2FStatus::Stop(const ErrorCode aErrorCode)
{
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
MOZ_ASSERT(!mIsStopped);
mIsStopped = true;
mErrorCode = aErrorCode;
// TODO: Let WaitGroupWait exit early upon a Stop. Requires consideration of
// threads calling IsStopped() followed by WaitGroupDone(). Right now, Stop
// prompts work tasks to end early, but it could also prompt an immediate
// "Go ahead" to the thread waiting at WaitGroupWait.
}
void
U2FStatus::Stop(const ErrorCode aErrorCode, const nsAString& aResponse)
{
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
Stop(aErrorCode);
mResponse = aResponse;
}
bool
U2FStatus::IsStopped()
{
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
return mIsStopped;
}
ErrorCode
U2FStatus::GetErrorCode()
{
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
MOZ_ASSERT(mIsStopped);
return mErrorCode;
}
nsString
U2FStatus::GetResponse()
{
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
MOZ_ASSERT(mIsStopped);
return mResponse;
}
U2FTask::U2FTask(const nsAString& aOrigin, const nsAString& aAppId,
const Authenticator& aAuthenticator,
AbstractThread* aMainThread)
: mOrigin(aOrigin)
, mAppId(aAppId)
, mAuthenticator(aAuthenticator)
, mAbstractMainThread(aMainThread)
{}
U2FTask::~U2FTask()
{}
RefPtr<U2FPromise>
U2FTask::Execute()
{
RefPtr<U2FPromise> p = mPromise.Ensure(__func__);
nsCOMPtr<nsIRunnable> r(this);
// TODO: Use a thread pool here, but we have to solve the PContentChild issues
// of being in a worker thread.
mAbstractMainThread->Dispatch(r.forget());
return p;
}
U2FPrepTask::U2FPrepTask(const Authenticator& aAuthenticator,
AbstractThread* aMainThread)
: mAuthenticator(aAuthenticator)
, mAbstractMainThread(aMainThread)
{}
U2FPrepTask::~U2FPrepTask()
{}
RefPtr<U2FPrepPromise>
U2FPrepTask::Execute()
{
RefPtr<U2FPrepPromise> p = mPromise.Ensure(__func__);
nsCOMPtr<nsIRunnable> r(this);
// TODO: Use a thread pool here, but we have to solve the PContentChild issues
// of being in a worker thread.
mAbstractMainThread->Dispatch(r.forget());
return p;
}
U2FIsRegisteredTask::U2FIsRegisteredTask(const Authenticator& aAuthenticator,
const LocalRegisteredKey& aRegisteredKey,
AbstractThread* aMainThread)
: U2FPrepTask(aAuthenticator, aMainThread)
, mRegisteredKey(aRegisteredKey)
{}
U2FIsRegisteredTask::~U2FIsRegisteredTask()
{}
NS_IMETHODIMP
U2FIsRegisteredTask::Run()
{
bool isCompatible = false;
nsresult rv = mAuthenticator->IsCompatibleVersion(mRegisteredKey.mVersion,
&isCompatible);
if (NS_FAILED(rv)) {
mPromise.Reject(ErrorCode::OTHER_ERROR, __func__);
return NS_ERROR_FAILURE;
}
if (!isCompatible) {
mPromise.Reject(ErrorCode::BAD_REQUEST, __func__);
return NS_ERROR_FAILURE;
}
// Decode the key handle
CryptoBuffer keyHandle;
rv = keyHandle.FromJwkBase64(mRegisteredKey.mKeyHandle);
if (NS_WARN_IF(NS_FAILED(rv))) {
mPromise.Reject(ErrorCode::BAD_REQUEST, __func__);
return NS_ERROR_FAILURE;
}
// We ignore mTransports, as it is intended to be used for sorting the
// available devices by preference, but is not an exclusion factor.
bool isRegistered = false;
rv = mAuthenticator->IsRegistered(keyHandle.Elements(), keyHandle.Length(),
&isRegistered);
if (NS_WARN_IF(NS_FAILED(rv))) {
mPromise.Reject(ErrorCode::OTHER_ERROR, __func__);
return NS_ERROR_FAILURE;
}
if (isRegistered) {
mPromise.Reject(ErrorCode::DEVICE_INELIGIBLE, __func__);
return NS_OK;
}
mPromise.Resolve(mAuthenticator, __func__);
return NS_OK;
}
U2FRegisterTask::U2FRegisterTask(const nsAString& aOrigin,
const nsAString& aAppId,
const Authenticator& aAuthenticator,
const CryptoBuffer& aAppParam,
const CryptoBuffer& aChallengeParam,
const LocalRegisterRequest& aRegisterEntry,
AbstractThread* aMainThread)
: U2FTask(aOrigin, aAppId, aAuthenticator, aMainThread)
, mAppParam(aAppParam)
, mChallengeParam(aChallengeParam)
, mRegisterEntry(aRegisterEntry)
{}
U2FRegisterTask::~U2FRegisterTask()
{}
NS_IMETHODIMP
U2FRegisterTask::Run()
{
bool isCompatible = false;
nsresult rv = mAuthenticator->IsCompatibleVersion(mRegisterEntry.mVersion,
&isCompatible);
if (NS_FAILED(rv)) {
mPromise.Reject(ErrorCode::OTHER_ERROR, __func__);
return NS_ERROR_FAILURE;
}
if (!isCompatible) {
mPromise.Reject(ErrorCode::BAD_REQUEST, __func__);
return NS_ERROR_FAILURE;
}
uint8_t* buffer;
uint32_t bufferlen;
rv = mAuthenticator->Register(mAppParam.Elements(),
mAppParam.Length(),
mChallengeParam.Elements(),
mChallengeParam.Length(),
&buffer, &bufferlen);
if (NS_WARN_IF(NS_FAILED(rv))) {
mPromise.Reject(ErrorCode::OTHER_ERROR, __func__);
return NS_ERROR_FAILURE;
}
MOZ_ASSERT(buffer);
CryptoBuffer regData;
if (NS_WARN_IF(!regData.Assign(buffer, bufferlen))) {
free(buffer);
mPromise.Reject(ErrorCode::OTHER_ERROR, __func__);
return NS_ERROR_OUT_OF_MEMORY;
}
free(buffer);
// Assemble a response object to return
nsString clientDataBase64;
nsString registrationDataBase64;
nsresult rvClientData = mRegisterEntry.mClientData.ToJwkBase64(clientDataBase64);
nsresult rvRegistrationData = regData.ToJwkBase64(registrationDataBase64);
if (NS_WARN_IF(NS_FAILED(rvClientData)) ||
NS_WARN_IF(NS_FAILED(rvRegistrationData))) {
mPromise.Reject(ErrorCode::OTHER_ERROR, __func__);
return NS_ERROR_FAILURE;
}
RegisterResponse response;
response.mClientData.Construct(clientDataBase64);
response.mRegistrationData.Construct(registrationDataBase64);
response.mErrorCode.Construct(static_cast<uint32_t>(ErrorCode::OK));
nsString responseStr;
if (NS_WARN_IF(!response.ToJSON(responseStr))) {
return NS_ERROR_FAILURE;
}
mPromise.Resolve(responseStr, __func__);
return NS_OK;
}
U2FSignTask::U2FSignTask(const nsAString& aOrigin,
const nsAString& aAppId,
const nsAString& aVersion,
const Authenticator& aAuthenticator,
const CryptoBuffer& aAppParam,
const CryptoBuffer& aChallengeParam,
const CryptoBuffer& aClientData,
const CryptoBuffer& aKeyHandle,
AbstractThread* aMainThread)
: U2FTask(aOrigin, aAppId, aAuthenticator, aMainThread)
, mVersion(aVersion)
, mAppParam(aAppParam)
, mChallengeParam(aChallengeParam)
, mClientData(aClientData)
, mKeyHandle(aKeyHandle)
{}
U2FSignTask::~U2FSignTask()
{}
NS_IMETHODIMP
U2FSignTask::Run()
{
bool isCompatible = false;
nsresult rv = mAuthenticator->IsCompatibleVersion(mVersion, &isCompatible);
if (NS_FAILED(rv)) {
mPromise.Reject(ErrorCode::OTHER_ERROR, __func__);
return NS_ERROR_FAILURE;
}
if (!isCompatible) {
mPromise.Reject(ErrorCode::BAD_REQUEST, __func__);
return NS_ERROR_FAILURE;
}
bool isRegistered = false;
rv = mAuthenticator->IsRegistered(mKeyHandle.Elements(), mKeyHandle.Length(),
&isRegistered);
if (NS_WARN_IF(NS_FAILED(rv))) {
mPromise.Reject(ErrorCode::OTHER_ERROR, __func__);
return NS_ERROR_FAILURE;
}
if (!isRegistered) {
mPromise.Reject(ErrorCode::DEVICE_INELIGIBLE, __func__);
return NS_OK;
}
CryptoBuffer signatureData;
uint8_t* buffer;
uint32_t bufferlen;
rv = mAuthenticator->Sign(mAppParam.Elements(), mAppParam.Length(),
mChallengeParam.Elements(), mChallengeParam.Length(),
mKeyHandle.Elements(), mKeyHandle.Length(),
&buffer, &bufferlen);
if (NS_WARN_IF(NS_FAILED(rv))) {
mPromise.Reject(ErrorCode::OTHER_ERROR, __func__);
return NS_ERROR_FAILURE;
}
MOZ_ASSERT(buffer);
if (NS_WARN_IF(!signatureData.Assign(buffer, bufferlen))) {
free(buffer);
mPromise.Reject(ErrorCode::OTHER_ERROR, __func__);
return NS_ERROR_OUT_OF_MEMORY;
}
free(buffer);
// Assemble a response object to return
nsString clientDataBase64;
nsString signatureDataBase64;
nsString keyHandleBase64;
nsresult rvClientData = mClientData.ToJwkBase64(clientDataBase64);
nsresult rvSignatureData = signatureData.ToJwkBase64(signatureDataBase64);
nsresult rvKeyHandle = mKeyHandle.ToJwkBase64(keyHandleBase64);
if (NS_WARN_IF(NS_FAILED(rvClientData)) ||
NS_WARN_IF(NS_FAILED(rvSignatureData) ||
NS_WARN_IF(NS_FAILED(rvKeyHandle)))) {
mPromise.Reject(ErrorCode::OTHER_ERROR, __func__);
return NS_ERROR_FAILURE;
}
SignResponse response;
response.mKeyHandle.Construct(keyHandleBase64);
response.mClientData.Construct(clientDataBase64);
response.mSignatureData.Construct(signatureDataBase64);
response.mErrorCode.Construct(static_cast<uint32_t>(ErrorCode::OK));
nsString responseStr;
if (NS_WARN_IF(!response.ToJSON(responseStr))) {
return NS_ERROR_FAILURE;
}
mPromise.Resolve(responseStr, __func__);
return NS_OK;
}
U2FRunnable::U2FRunnable(const nsAString& aOrigin, const nsAString& aAppId,
AbstractThread* aMainThread)
: mOrigin(aOrigin)
, mAppId(aAppId)
, mAbstractMainThread(aMainThread)
{}
U2FRunnable::~U2FRunnable()
{}
// EvaluateAppIDAndRunTask determines whether the supplied FIDO AppID is valid for
// the current FacetID, e.g., the current origin.
// See https://fidoalliance.org/specs/fido-u2f-v1.0-nfc-bt-amendment-20150514/fido-appid-and-facets.html
// for a description of the algorithm.
ErrorCode
U2FRunnable::EvaluateAppID()
{
nsCOMPtr<nsIURLParser> urlParser =
do_GetService(NS_STDURLPARSER_CONTRACTID);
MOZ_ASSERT(urlParser);
uint32_t facetSchemePos;
int32_t facetSchemeLen;
uint32_t facetAuthPos;
int32_t facetAuthLen;
// Facet is the specification's way of referring to the web origin.
nsAutoCString facetUrl = NS_ConvertUTF16toUTF8(mOrigin);
nsresult rv = urlParser->ParseURL(facetUrl.get(), mOrigin.Length(),
&facetSchemePos, &facetSchemeLen,
&facetAuthPos, &facetAuthLen,
nullptr, nullptr); // ignore path
if (NS_WARN_IF(NS_FAILED(rv))) {
return ErrorCode::BAD_REQUEST;
}
nsAutoCString facetScheme(Substring(facetUrl, facetSchemePos, facetSchemeLen));
nsAutoCString facetAuth(Substring(facetUrl, facetAuthPos, facetAuthLen));
uint32_t appIdSchemePos;
int32_t appIdSchemeLen;
uint32_t appIdAuthPos;
int32_t appIdAuthLen;
// AppID is user-supplied. It's quite possible for this parse to fail.
nsAutoCString appIdUrl = NS_ConvertUTF16toUTF8(mAppId);
rv = urlParser->ParseURL(appIdUrl.get(), mAppId.Length(),
&appIdSchemePos, &appIdSchemeLen,
&appIdAuthPos, &appIdAuthLen,
nullptr, nullptr); // ignore path
if (NS_FAILED(rv)) {
return ErrorCode::BAD_REQUEST;
}
nsAutoCString appIdScheme(Substring(appIdUrl, appIdSchemePos, appIdSchemeLen));
nsAutoCString appIdAuth(Substring(appIdUrl, appIdAuthPos, appIdAuthLen));
// If the facetId (origin) is not HTTPS, reject
if (!facetScheme.LowerCaseEqualsLiteral("https")) {
return ErrorCode::BAD_REQUEST;
}
// If the appId is empty or null, overwrite it with the facetId and accept
if (mAppId.IsEmpty() || mAppId.EqualsLiteral("null")) {
mAppId.Assign(mOrigin);
return ErrorCode::OK;
}
// if the appId URL is not HTTPS, reject.
if (!appIdScheme.LowerCaseEqualsLiteral("https")) {
return ErrorCode::BAD_REQUEST;
}
// If the facetId and the appId auths match, accept
if (facetAuth == appIdAuth) {
return ErrorCode::OK;
}
// TODO(Bug 1244959) Implement the remaining algorithm.
return ErrorCode::BAD_REQUEST;
}
U2FRegisterRunnable::U2FRegisterRunnable(const nsAString& aOrigin,
const nsAString& aAppId,
const Sequence<RegisterRequest>& aRegisterRequests,
const Sequence<RegisteredKey>& aRegisteredKeys,
const Sequence<Authenticator>& aAuthenticators,
U2FRegisterCallback* aCallback,
AbstractThread* aMainThread)
: U2FRunnable(aOrigin, aAppId, aMainThread)
, mAuthenticators(aAuthenticators)
// U2FRegisterCallback does not support threadsafe refcounting, and must be
// used and destroyed on main.
, mCallback(new nsMainThreadPtrHolder<U2FRegisterCallback>(aCallback))
{
MOZ_ASSERT(NS_IsMainThread());
// The WebIDL dictionary types RegisterRequest and RegisteredKey cannot
// be copied to this thread, so store them serialized.
for (size_t i = 0; i < aRegisterRequests.Length(); ++i) {
RegisterRequest req(aRegisterRequests[i]);
// Check for required attributes
if (!req.mChallenge.WasPassed() || !req.mVersion.WasPassed()) {
continue;
}
LocalRegisterRequest localReq;
localReq.mVersion = req.mVersion.Value();
localReq.mChallenge = req.mChallenge.Value();
nsresult rv = AssembleClientData(mOrigin, kFinishEnrollment,
localReq.mChallenge, localReq.mClientData);
if (NS_WARN_IF(NS_FAILED(rv))) {
continue;
}
mRegisterRequests.AppendElement(localReq);
}
for (size_t i = 0; i < aRegisteredKeys.Length(); ++i) {
RegisteredKey key(aRegisteredKeys[i]);
// Check for required attributes
if (!key.mVersion.WasPassed() || !key.mKeyHandle.WasPassed()) {
continue;
}
LocalRegisteredKey localKey;
localKey.mVersion = key.mVersion.Value();
localKey.mKeyHandle = key.mKeyHandle.Value();
if (key.mAppId.WasPassed()) {
localKey.mAppId.SetValue(key.mAppId.Value());
}
mRegisteredKeys.AppendElement(localKey);
}
}
U2FRegisterRunnable::~U2FRegisterRunnable()
{
nsNSSShutDownPreventionLock locker;
if (isAlreadyShutDown()) {
return;
}
shutdown(ShutdownCalledFrom::Object);
}
void
U2FRegisterRunnable::SetTimeout(const int32_t aTimeoutMillis)
{
opt_mTimeoutSeconds.SetValue(aTimeoutMillis);
}
void
U2FRegisterRunnable::SendResponse(const RegisterResponse& aResponse)
{
MOZ_ASSERT(NS_IsMainThread());
ErrorResult rv;
mCallback->Call(aResponse, rv);
NS_WARNING_ASSERTION(!rv.Failed(), "callback failed");
// Useful exceptions already got reported.
rv.SuppressException();
}
NS_IMETHODIMP
U2FRegisterRunnable::Run()
{
MOZ_ASSERT(!NS_IsMainThread());
nsNSSShutDownPreventionLock locker;
if (isAlreadyShutDown()) {
return NS_ERROR_FAILURE;
}
// Create a Status object to keep track of when we're done
RefPtr<U2FStatus> status = new U2FStatus();
// Evaluate the AppID
ErrorCode appIdResult = EvaluateAppID();
if (appIdResult != ErrorCode::OK) {
status->Stop(appIdResult);
}
// First, we must determine if any of the RegisteredKeys are already
// registered, e.g., in the whitelist.
for (LocalRegisteredKey key: mRegisteredKeys) {
nsTArray<RefPtr<U2FPrepPromise>> prepPromiseList;
for (size_t a = 0; a < mAuthenticators.Length(); ++a) {
Authenticator token(mAuthenticators[a]);
RefPtr<U2FIsRegisteredTask> compTask =
new U2FIsRegisteredTask(token, key, mAbstractMainThread);
prepPromiseList.AppendElement(compTask->Execute());
}
// Treat each call to Promise::All as a work unit, as it completes together
status->WaitGroupAdd();
U2FPrepPromise::All(mAbstractMainThread, prepPromiseList)
->Then(mAbstractMainThread, __func__,
[&status] (const nsTArray<Authenticator>& aTokens) {
MOZ_LOG(gU2FLog, LogLevel::Debug,
("ALL: None of the RegisteredKeys were recognized. n=%" PRIuSIZE,
aTokens.Length()));
status->WaitGroupDone();
},
[&status] (ErrorCode aErrorCode) {
status->Stop(aErrorCode);
status->WaitGroupDone();
});
}
// Wait for all the IsRegistered tasks to complete
status->WaitGroupWait();
// Check to see whether we're supposed to stop, because one of the keys was
// recognized.
if (status->IsStopped()) {
status->WaitGroupAdd();
mAbstractMainThread->Dispatch(NS_NewRunnableFunction(
[&status, this] () {
RegisterResponse response;
response.mErrorCode.Construct(
static_cast<uint32_t>(status->GetErrorCode()));
SendResponse(response);
status->WaitGroupDone();
}
));
// Don't exit until the main thread runnable completes
status->WaitGroupWait();
return NS_OK;
}
// Since we're continuing, we hash the AppID into the AppParam
nsCString cAppId = NS_ConvertUTF16toUTF8(mAppId);
CryptoBuffer appParam;
if (!appParam.SetLength(SHA256_LENGTH, fallible)) {
return NS_ERROR_OUT_OF_MEMORY;
}
// Note: This could use nsICryptoHash to avoid having to interact with NSS
// directly.
SECStatus srv;
srv = PK11_HashBuf(SEC_OID_SHA256, appParam.Elements(),
reinterpret_cast<const uint8_t*>(cAppId.BeginReading()),
cAppId.Length());
if (srv != SECSuccess) {
return NS_ERROR_FAILURE;
}
// Now proceed to actually register a new key.
for (LocalRegisterRequest req : mRegisterRequests) {
// Hash the ClientData into the ChallengeParam
CryptoBuffer challengeParam;
if (!challengeParam.SetLength(SHA256_LENGTH, fallible)) {
continue;
}
srv = PK11_HashBuf(SEC_OID_SHA256, challengeParam.Elements(),
req.mClientData.Elements(), req.mClientData.Length());
if (srv != SECSuccess) {
continue;
}
for (size_t a = 0; a < mAuthenticators.Length(); ++a) {
Authenticator token(mAuthenticators[a]);
RefPtr<U2FRegisterTask> registerTask = new U2FRegisterTask(mOrigin, mAppId,
token, appParam,
challengeParam,
req,
mAbstractMainThread);
status->WaitGroupAdd();
registerTask->Execute()->Then(mAbstractMainThread, __func__,
[&status, this] (nsString aResponse) {
if (!status->IsStopped()) {
status->Stop(ErrorCode::OK, aResponse);
}
status->WaitGroupDone();
},
[&status, this] (ErrorCode aErrorCode) {
// Ignore the failing error code, as we only want the first success.
// U2F devices don't provide much for error codes anyway, so if
// they all fail we'll return DEVICE_INELIGIBLE.
status->WaitGroupDone();
});
}
}
// Wait until the first key is successfuly generated
status->WaitGroupWait();
// If none of the tasks completed, then nothing could satisfy.
if (!status->IsStopped()) {
status->Stop(ErrorCode::BAD_REQUEST);
}
// Transmit back to the JS engine from the Main Thread
status->WaitGroupAdd();
mAbstractMainThread->Dispatch(NS_NewRunnableFunction(
[&status, this] () {
RegisterResponse response;
if (status->GetErrorCode() == ErrorCode::OK) {
response.Init(status->GetResponse());
} else {
response.mErrorCode.Construct(
static_cast<uint32_t>(status->GetErrorCode()));
}
SendResponse(response);
status->WaitGroupDone();
}
));
// TODO: Add timeouts, Bug 1301793
status->WaitGroupWait();
return NS_OK;
}
U2FSignRunnable::U2FSignRunnable(const nsAString& aOrigin,
const nsAString& aAppId,
const nsAString& aChallenge,
const Sequence<RegisteredKey>& aRegisteredKeys,
const Sequence<Authenticator>& aAuthenticators,
U2FSignCallback* aCallback,
AbstractThread* aMainThread)
: U2FRunnable(aOrigin, aAppId, aMainThread)
, mAuthenticators(aAuthenticators)
// U2FSignCallback does not support threadsafe refcounting, and must be used
// and destroyed on main.
, mCallback(new nsMainThreadPtrHolder<U2FSignCallback>(aCallback))
{
MOZ_ASSERT(NS_IsMainThread());
// Convert WebIDL objects to generic structs to pass between threads
for (size_t i = 0; i < aRegisteredKeys.Length(); ++i) {
RegisteredKey key(aRegisteredKeys[i]);
// Check for required attributes
if (!key.mVersion.WasPassed() || !key.mKeyHandle.WasPassed()) {
continue;
}
LocalRegisteredKey localKey;
localKey.mVersion = key.mVersion.Value();
localKey.mKeyHandle = key.mKeyHandle.Value();
if (key.mAppId.WasPassed()) {
localKey.mAppId.SetValue(key.mAppId.Value());
}
mRegisteredKeys.AppendElement(localKey);
}
// Assemble a clientData object
nsresult rv = AssembleClientData(aOrigin, kGetAssertion, aChallenge,
mClientData);
if (NS_WARN_IF(NS_FAILED(rv))) {
MOZ_LOG(gU2FLog, LogLevel::Warning,
("Failed to AssembleClientData for the U2FSignRunnable."));
return;
}
}
U2FSignRunnable::~U2FSignRunnable()
{
nsNSSShutDownPreventionLock locker;
if (isAlreadyShutDown()) {
return;
}
shutdown(ShutdownCalledFrom::Object);
}
void
U2FSignRunnable::SetTimeout(const int32_t aTimeoutMillis)
{
opt_mTimeoutSeconds.SetValue(aTimeoutMillis);
}
void
U2FSignRunnable::SendResponse(const SignResponse& aResponse)
{
MOZ_ASSERT(NS_IsMainThread());
ErrorResult rv;
mCallback->Call(aResponse, rv);
NS_WARNING_ASSERTION(!rv.Failed(), "callback failed");
// Useful exceptions already got reported.
rv.SuppressException();
}
NS_IMETHODIMP
U2FSignRunnable::Run()
{
MOZ_ASSERT(!NS_IsMainThread());
nsNSSShutDownPreventionLock locker;
if (isAlreadyShutDown()) {
return NS_ERROR_FAILURE;
}
// Create a Status object to keep track of when we're done
RefPtr<U2FStatus> status = new U2FStatus();
// Evaluate the AppID
ErrorCode appIdResult = EvaluateAppID();
if (appIdResult != ErrorCode::OK) {
status->Stop(appIdResult);
}
// Hash the AppID and the ClientData into the AppParam and ChallengeParam
nsCString cAppId = NS_ConvertUTF16toUTF8(mAppId);
CryptoBuffer appParam;
CryptoBuffer challengeParam;
if (!appParam.SetLength(SHA256_LENGTH, fallible) ||
!challengeParam.SetLength(SHA256_LENGTH, fallible)) {
return NS_ERROR_OUT_OF_MEMORY;
}
SECStatus srv;
srv = PK11_HashBuf(SEC_OID_SHA256, appParam.Elements(),
reinterpret_cast<const uint8_t*>(cAppId.BeginReading()),
cAppId.Length());
if (srv != SECSuccess) {
return NS_ERROR_FAILURE;
}
srv = PK11_HashBuf(SEC_OID_SHA256, challengeParam.Elements(),
mClientData.Elements(), mClientData.Length());
if (srv != SECSuccess) {
return NS_ERROR_FAILURE;
}
// Search the signing requests for one a token can fulfill
for (LocalRegisteredKey key : mRegisteredKeys) {
// Do not permit an individual RegisteredKey to assert a different AppID
if (!key.mAppId.IsNull() && mAppId != key.mAppId.Value()) {
continue;
}
// Decode the key handle
CryptoBuffer keyHandle;
nsresult rv = keyHandle.FromJwkBase64(key.mKeyHandle);
if (NS_WARN_IF(NS_FAILED(rv))) {
continue;
}
// We ignore mTransports, as it is intended to be used for sorting the
// available devices by preference, but is not an exclusion factor.
for (size_t a = 0; a < mAuthenticators.Length() ; ++a) {
Authenticator token(mAuthenticators[a]);
RefPtr<U2FSignTask> signTask = new U2FSignTask(mOrigin, mAppId,
key.mVersion, token,
appParam, challengeParam,
mClientData, keyHandle,
mAbstractMainThread);
status->WaitGroupAdd();
signTask->Execute()->Then(mAbstractMainThread, __func__,
[&status, this] (nsString aResponse) {
if (!status->IsStopped()) {
status->Stop(ErrorCode::OK, aResponse);
}
status->WaitGroupDone();
},
[&status, this] (ErrorCode aErrorCode) {
// Ignore the failing error code, as we only want the first success.
// U2F devices don't provide much for error codes anyway, so if
// they all fail we'll return DEVICE_INELIGIBLE.
status->WaitGroupDone();
});
}
}
// Wait for the authenticators to finish
status->WaitGroupWait();
// If none of the tasks completed, then nothing could satisfy.
if (!status->IsStopped()) {
status->Stop(ErrorCode::DEVICE_INELIGIBLE);
}
// Transmit back to the JS engine from the Main Thread
status->WaitGroupAdd();
mAbstractMainThread->Dispatch(NS_NewRunnableFunction(
[&status, this] () {
SignResponse response;
if (status->GetErrorCode() == ErrorCode::OK) {
response.Init(status->GetResponse());
} else {
response.mErrorCode.Construct(
static_cast<uint32_t>(status->GetErrorCode()));
}
SendResponse(response);
status->WaitGroupDone();
}
));
// TODO: Add timeouts, Bug 1301793
status->WaitGroupWait();
return NS_OK;
}
U2F::U2F()
: mInitialized(false)
{}
U2F::~U2F()
{
nsNSSShutDownPreventionLock locker;
if (isAlreadyShutDown()) {
return;
}
shutdown(ShutdownCalledFrom::Object);
}
/* virtual */ JSObject*
U2F::WrapObject(JSContext* aCx, JS::Handle<JSObject*> aGivenProto)
{
return U2FBinding::Wrap(aCx, this, aGivenProto);
}
void
U2F::Init(nsPIDOMWindowInner* aParent, ErrorResult& aRv)
{
MOZ_ASSERT(!mInitialized);
MOZ_ASSERT(!mParent);
mParent = do_QueryInterface(aParent);
MOZ_ASSERT(mParent);
nsCOMPtr<nsIDocument> doc = mParent->GetDoc();
MOZ_ASSERT(doc);
nsIPrincipal* principal = doc->NodePrincipal();
aRv = nsContentUtils::GetUTFOrigin(principal, mOrigin);
if (NS_WARN_IF(aRv.Failed())) {
return;
}
if (NS_WARN_IF(mOrigin.IsEmpty())) {
aRv.Throw(NS_ERROR_FAILURE);
return;
}
if (!EnsureNSSInitializedChromeOrContent()) {
MOZ_LOG(gU2FLog, LogLevel::Debug,
("Failed to get NSS context for U2F"));
aRv.Throw(NS_ERROR_FAILURE);
return;
}
// This only functions in e10s mode
if (XRE_IsParentProcess()) {
MOZ_LOG(gU2FLog, LogLevel::Debug,
("Is non-e10s Process, U2F not available"));
aRv.Throw(NS_ERROR_FAILURE);
return;
}
// Monolithically insert compatible nsIU2FToken objects into mAuthenticators.
// In future functionality expansions, this is where we could add a dynamic
// add/remove interface.
if (Preferences::GetBool(PREF_U2F_SOFTTOKEN_ENABLED)) {
if (!mAuthenticators.AppendElement(new NSSU2FTokenRemote(),
mozilla::fallible)) {
aRv.Throw(NS_ERROR_OUT_OF_MEMORY);
return;
}
}
mAbstractMainThread = doc->AbstractMainThreadFor(TaskCategory::Other);
mInitialized = true;
}
void
U2F::Register(const nsAString& aAppId,
const Sequence<RegisterRequest>& aRegisterRequests,
const Sequence<RegisteredKey>& aRegisteredKeys,
U2FRegisterCallback& aCallback,
const Optional<Nullable<int32_t>>& opt_aTimeoutSeconds,
ErrorResult& aRv)
{
MOZ_ASSERT(NS_IsMainThread());
if (!mInitialized) {
aRv.Throw(NS_ERROR_NOT_AVAILABLE);
return;
}
RefPtr<SharedThreadPool> pool = SharedThreadPool::Get(kPoolName);
RefPtr<U2FRegisterRunnable> task = new U2FRegisterRunnable(mOrigin, aAppId,
aRegisterRequests,
aRegisteredKeys,
mAuthenticators,
&aCallback,
mAbstractMainThread);
pool->Dispatch(task.forget(), NS_DISPATCH_NORMAL);
}
void
U2F::Sign(const nsAString& aAppId,
const nsAString& aChallenge,
const Sequence<RegisteredKey>& aRegisteredKeys,
U2FSignCallback& aCallback,
const Optional<Nullable<int32_t>>& opt_aTimeoutSeconds,
ErrorResult& aRv)
{
MOZ_ASSERT(NS_IsMainThread());
if (!mInitialized) {
aRv.Throw(NS_ERROR_NOT_AVAILABLE);
return;
}
RefPtr<SharedThreadPool> pool = SharedThreadPool::Get(kPoolName);
RefPtr<U2FSignRunnable> task = new U2FSignRunnable(mOrigin, aAppId, aChallenge,
aRegisteredKeys,
mAuthenticators, &aCallback,
mAbstractMainThread);
pool->Dispatch(task.forget(), NS_DISPATCH_NORMAL);
}
} // namespace dom
} // namespace mozilla